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ABSTRACT

Achieving robust generalization in intelligent fault diagno-
sis under diverse industrial conditions remains challenging.
Most domain generalization (DG) methods focus on either
feature compactness or category separation, seldom address-
ing both in a unified framework. To overcome this, we pro-
pose a Bidirectional Structure Constraint (BSC) framework
comprising Momentum Feature Alignment (MFA) and Cate-
gory Anchor Separation (CAS). MFA employs a momentum-
driven strategy to capture domain-invariant features for each
category, while CAS encourages learnable class anchors to
repel each other in latent space, enhancing class separabil-
ity. These objectives are jointly optimized in a multi-loss
framework, enabling the model to learn representations that
are both intra-class compact and inter-class distinct. Exper-
iments on the Shandong University of Science and Tech-
nology (SDUST) rotating machinery fault diagnosis dataset
show that BSC significantly improves cross-domain general-
ization.

1. INTRODUCTION

Intelligent fault diagnosis based on deep learning has been
widely applied in industrial scenarios due to its ability to
automatically extract representative features from raw sen-
sor signals. However, most existing methods rely on the
assumption that training and test data are drawn from the
same distribution, which often does not hold in real-world
applications(Zhao, Zio, & Shen, 2024). In practical scenar-
ios, variations in operating conditions, sensor positions, or en-
vironmental noise lead to domain shifts, significantly degrad-
ing model performance when deployed in unseen domains
(Zhou, Chu, Chen, Shen, & Chen, 2025).
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To address this issue, various domain generalization (DG) ap-
proaches have been proposed, which aim to learn represen-
tations that generalize well across unseen domains. These
methods can be roughly categorized into five key directions:
data augmentation, domain alignment, feature disentangle-
ment, meta-learning, and model interpretability (Xiao et al.,
2025). Among these, domain alignment has been one of the
most extensively studied strategies, which seeks to reduce the
distribution discrepancy between source and target domains
in a shared latent space (Chen, Li, Wu, Chen, & Shen, 2024).
While effective in mitigating domain shift at a global level,
many alignment-based methods perform only distribution-
level matching, such as aligning marginal or conditional
statistics, without explicitly preserving the class-level se-
mantic structure. For example, Deep Correlation Alignment
(Deep CORAL) (Sun & Saenko, 2016) aligns global feature
distributions by minimizing the difference in covariance ma-
trices between source and target domains. AND-Mask Gradi-
ent Aggregation (ANDMask) (Parascandolo, Neitz, Orvieto,
Gresele, & Schölkopf, 2020) performs global feature align-
ment by enforcing consistent gradient directions across do-
mains, promoting invariant representation learning without
explicitly modeling class-level structure. Ma et al. (Ma et al.,
2024) introduced a method that combines domain adversarial
training with maximum mean discrepancy (MMD) to align
global feature distributions across multiple domains. Pu et al.
(Pu et al., 2024) proposed a Domain-Relevant Joint Distri-
bution Alignment (DRJDA) strategy, which aligns joint and
product distributions across domains via minimizing a rel-
ative chi-square divergence, effectively reducing global do-
main shift. These methods improve marginal alignment but
do not ensure class-wise feature consistency. As a result,
samples from different classes may be incorrectly aligned,
leading to ambiguous decision boundaries and degraded clas-
sification performance.

Thus, a growing number of recent methods focus on promot-
ing intra-class compactness by encouraging features from the
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same class to cluster across domains. For instance, Wang et
al. (B. Wang, Wen, Li, & Gao, 2023) proposed the Adap-
tive Class Center Generalization Network (ACCGN), which
enforces class-wise feature compactness by aligning adap-
tive class centers across multiple source domains, while mit-
igating domain discrepancy through sparse domain regres-
sion. Shi et al.(Shi et al., 2023) proposed a Reliable Feature-
Assisted Contrastive Generalization Network (RFACGN),
which integrates contrastive learning with sample-adaptive
weighting to enhance domain-invariant representation and
improve feature discrimination under unseen machines and
working conditions. Jia et al. (Jia, Chow, Wang, & Ma, 2024)
proposed a Dynamic Balanced Dual Prototypical Network
(DBDP-Net), which aligns both class and domain prototypes
to promote intra-class compactness and domain-invariant rep-
resentation learning. Qian et al. (Qian, Luo, & Qin, 2024)
proposed an Adaptive Intermediate Class-wise Distribution
Alignment (AICDA) model that simultaneously aligns global
and class-conditional distributions via an adaptive intermedi-
ate representation, enhancing domain confusion and reducing
negative transfer. While these methods effectively enhance
intra-class consistency, they often lack mechanisms to en-
force inter-class separability, which may lead to feature over-
lap and ambiguous decision boundaries. This imbalance be-
tween intra-class alignment and inter-class discrimination re-
mains a fundamental limitation of existing domain alignment
frameworks.

To address the aforementioned limitations, we propose a
novel Bidirectional Structure Constraint (BSC) framework
that jointly enforces intra-class compactness and inter-class
separability under domain shifts. Specifically, we design a
Momentum Feature Alignment (MFA) mechanism to ensure
that features from the same class maintain consistent activa-
tion patterns across domains by aligning their class-specific
feature contributions with a momentum-updated reference.
Meanwhile, a Category Anchor Separation (CAS) module ex-
plicitly encourages the semantic distance between class an-
chors in the latent space to increase, thereby improving class
distinctiveness and preventing feature overlap. By combining
these two objectives in a unified multi-loss framework, BSC
preserves class semantics while mitigating domain-induced
feature distortions, ultimately enhancing generalization to un-
seen target domains.The main contributions of this work are
summarized as follows:

• We propose a BSC framework for DG in intelligent
fault diagnosis, which simultaneously enforces intra-
class compactness and inter-class separability through
class-level structural modeling.

• We design two complementary modules, MFA and CAS,
where MFA aligns class-specific feature contributions
across domains, and CAS encourages separation be-
tween class anchors in the latent space.

• We validate the proposed method on the SDUST rotat-

ing machinery dataset, where it consistently outperforms
state-of-the-art DG approaches in cross-domain diagnos-
tic scenarios.

2. METHODOLOGY

2.1. Momentum Feature Alignment

To enforce intra-class consistency and promote domain-
invariant representation learning, we introduce a Momentum
Feature Alignment (MFA) mechanism, as shown in Figure
1. This mechanism aligns class-specific feature contribu-
tions in the latent space by leveraging a dynamically updated
reference. Specifically, we interpret the classification layer
weights as learned reference vectors for each class, referred
to as anchors. For any input sample, its feature contribution
under a particular anchor is defined as the element-wise mul-
tiplication between its feature vector and corresponding an-
chor. This operation reflects the extent to which each feature
dimension is emphasized by the anchor during classification,
essentially quantifying the anchor’s reliance on specific latent
factors.

To promote stability and alignment across domains, we main-
tain a class-wise momentum-updated contribution repository,
denoted as M. For each class, this repository stores the aver-
age feature contributions computed from historical samples.
Formally, for class i, the feature contribution from anchor i
for sample j is computed as:

mi,j = ai ⊙ zj , (1)

where ai denotes the anchor for class i, zj is the extracted
feature vector of sample j, and ⊙ indicates element-wise mul-
tiplication.

The repository for class i is updated via an Exponentially
Moving Average (EMA) using a momentum factor µ:

M
(t+1)
i = (1−µ) ·M(t)

i +µ ·mean ({mi,j | yj = i}) . (2)

The MFA loss is computed by measuring the L2 norm be-
tween the current contribution of each sample and the corre-
sponding class repository vector:

Li
MFA =

1

Ni

∑
j:yj=i

∥mi,j −Mi∥2 , (3)

where Ni is the number of samples in class i within the cur-
rent mini-batch. The MFA loss is then obtained by averaging
over all present classes:

LMFA =
1

|Yb|
∑
i∈Yb

Li
MFA, (4)

where Yb is the set of class labels in the current mini-batch.

This mechanism ensures that, for samples of the same class,
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Figure 1. Operating principle of MFA method.

their features contribute to classification in a consistent way
under the same class anchor. This reduces the variation
among samples of the same class across domains and pro-
motes a more consistent latent representation. Consequently,
MFA narrows the distributional gap between domains and im-
proves training stability under domain shifts.

2.2. Category Anchor Separation

To enhance inter-class separability and prevent category over-
lap in the latent space, we introduce a Category Anchor Sep-
aration (CAS) mechanism as a complementary counterpart to
MFA. While MFA promotes compactness by aligning feature
contributions within each class, CAS explicitly encourages
separation between different class anchors in the latent space.
The core idea is that increasing the distance between anchors
helps the model establish clearer decision boundaries, reduc-
ing ambiguity especially under domain shifts.

In our framework, each class is associated with a learnable
anchor vector, which also serves as the weight of the clas-
sifier. These anchors act as class-level representatives that
guide feature alignment. To enforce separation, we compute
the pairwise distance between all anchors and penalize those
that are too close. Specifically, given two class anchors ai
and aj , we define their similarity score as the negative dis-
tance between them, scaled by a temperature factor τ :

Si,j = −d(ai,aj)

τ
, (5)

where d(·, ·) denotes the L2 distance, and τ is the temperature
hyperparameter to modulate the sharpness of the similarity
distribution.

To ensure that each anchor is only compared with other
classes, self-comparisons are removed via masking. The CAS
loss is then defined as:

LCAS = log

1 +
∑
i ̸=j

exp(Si,j)

 . (6)

By minimizing this loss, the model learns to spread class an-

Source domain 1

Source domain 2

Source domain K

…

Softmax

Anchors

Repository M

Feature extractor

Classifier

class-wise EMA

LMFA

LC

LCAS

Figure 2. Schematic diagram of the overall structure of the
BSC model.

chors across the latent space, which encourages each class
to occupy a distinct and non-overlapping region in the latent
space, thereby reinforcing inter-class discrimination.

2.3. Bidirectional Structure Constraint Framework

The BSC framework jointly optimizes three complementary
objectives: classification accuracy, intra-class consistency,
and inter-class separability, as shown in Figure 2. These
are enforced through a combination of standard cross-entropy
loss, MFA loss and CAS loss, respectively.

The total loss function of BSC can be expressed as:

LBSC = LC + αLMFA + βLCAS, (7)

where LC is the standard cross-entropy loss between the pre-
dicted logits and ground truth labels. The coefficients α and
β are hyperparameters controlling the relative importance of
different loss.

3. EXPERIMENT

3.1. Datasets

3.1.1. SDUST Rotating Machinery Dataset

We conduct our experiments on the SDUST (J. Wang et al.,
2024) rotating machinery fault diagnosis dataset, which is a
widely used benchmark for DG in intelligent fault diagnosis.
The SDUST test platform is shown in Figure 3. This dataset
contains vibration signals collected from rotating machinery
under different working conditions, simulating various load
levels and fault types across multiple operational domains.
To evaluate the cross-domain generalization performance of
our method, we select four representative working conditions
from the original dataset, covering diverse operating states
and fault types, as shown in Table 1.

Based on these selected conditions, we construct four DG
tasks by altering the source-target domain combinations.
Each task involves training the model on data from multi-
ple source domains and testing it on an unseen target domain
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Figure 3. The SDUST bearing platform used for experiments.

Table 1. Four operating conditions.

Condition Speed(RPM) Load(N)
A 1500 0
B 2000 20
C 2500 40
D 3000 60

without using any target data during training. The details of
the task settings are shown in Table 2. This experimental
design allows us to comprehensively assess the domain ro-
bustness and transferability of the proposed BSC framework
under realistic and challenging diagnostic scenarios.

3.1.2. SCARA Robot Dataset

We further evaluate the proposed BSC framework on the Se-
lective Compliance Assembly Robot Arm (SCARA) dataset
to assess its generalization performance across different me-
chanical systems. The SCARA fault diagnosis platform is de-
veloped at Soochow University and is designed to collect op-
erational data from IR-C8 series high-speed SCARA robots,
as shown in Figure 4. This dataset focuses on the ball screw
system, a critical motion component in industrial robots.

During experiments, current signals are acquired from the
ball screw drive at a sampling frequency of 8 kHz, and each
sample contains 1024 data points. Four motor load conditions
are considered: 0 kg, 3 kg, 6 kg, and 9 kg, representing dis-
tinct operational domains. Four health states are defined to
characterize different fault types: normal (N), missing balls
(L), helical nut stuck (S1) and spline nut stuck (S2).

For each category, 1600 samples are used for training and
800 samples for testing. Four domain generalization tasks
are constructed by varying the load conditions of the source
and target domains, as summarized in Table 3. For example,

Table 2. Details of 4 diagnosis tasks of SDUST.

Task Source domain Target domain
Task1 B,C,D A
Task2 C,D B
Task3 A,B C
Task4 A,B,C D

① ② ③ ④ ⑤ ⑦⑥ ⑧ ⑩⑨

① J3 drive motor ② Control panel ③ Computer ④ J3 axis ⑤ Screw

⑥ Load ⑦ Helical nut ⑧ Spline nut ⑨ Push-pull gauge ⑩ Ball shedding

(a)

(b)

(c)

Figure 4. The SCARA bearing platform used for experi-
ments.

Table 3. Details of 4 diagnosis tasks of SCARA.

Task Source domain Target domain
T0 3kg,6kg,9kg 0kg
T3 0kg,6kg,9kg 3kg
T6 0kg,3kg,9kg 6kg
T9 0kg,3kg,6kg 9kg

in Task T0, data collected under 3 kg, 6 kg, and 9 kg are used
as source domains, while data under 0 kg serve as the target
domain.

The SCARA dataset differs from SDUST in both signal
modality (current vs. vibration) and mechanical structure
(robotic ball screw vs. rotating machinery), thus provid-
ing a complementary benchmark to verify the robustness and
cross-system adaptability of the proposed BSC framework.

3.2. Implementation Settings

In our implementation, we adopt a lightweight variant of
ResNet (He, Zhang, Ren, & Sun, 2016) as the feature extrac-
tor, where only a single residual block is retained to reduce
model complexity and facilitate efficient training. The over-
all architecture includes three key hyperparameters: µ in (2),
α and β in (7).

While a lightweight ResNet was adopted to reflect edge-
oriented constraints and isolate the contribution of BSC, the
objective is backbone-agnostic and can scale to deeper CNNs
or Transformer-style feature extractors, with expected accu-
racy gains at the expense of higher compute; a systematic
backbone study across deployment budgets is left for future
work.

To ensure fair and reproducible model selection, we fol-
low the best practices recommended by the DomainBed
(Gulrajani & Lopez-Paz, 2020) benchmark. Concretely, we
adopt a domain-wise data partitioning scheme, in which 80%
of the samples in each source domain are allocated for train-
ing and the remaining 20% are held out for validation. Hyper-

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Table 4. Hyperparameter selecting.

Hyperparameter Default Range
momentum factor µ 10−2 [10−4,10−1]

loss weight α 1 [10−3,1]
loss weight β 1 [10−3,1]

step 2000 {1000,2000,...,5000}
learning rate 10−3 [10−4,10−2]

batch size 32 {32,64}

parameter optimization is performed via the Optuna frame-
work. A predefined search space is specified for key param-
eters, from which 30 candidate configurations are sampled.
Each configuration is independently evaluated over four runs,
and the one with the best average validation accuracy is se-
lected as the final setting.

The optimal configuration obtained from the Optuna search
corresponds to α = 0.3843 and β = 0.1009, yielding the high-
est average diagnostic accuracy across all tasks. A further
inspection reveals that excessively large α values cause the
model to overemphasize intra-class compactness, which may
suppress inter-class diversity and lead to feature redundancy.
Conversely, an overly large β amplifies the inter-class repul-
sion effect, resulting in unstable convergence and degraded
feature alignment within the same class. The chosen balance
effectively harmonizes these two objectives, ensuring both
consistent intra-class alignment and clear inter-class separa-
bility, while maintaining stable optimization and robust cross-
domain generalization.

3.3. Comparative experimental analysis

To evaluate the effectiveness of the proposed BSC frame-
work, we compare it against several representative domain
generalization (DG) methods on the SDUST rotating machin-
ery dataset and the SCARA robot dataset. The selected base-
lines include: Empirical Risk Minimization (ERM) (Vapnik,
2013), Domain-Adversarial Neural Network (DANN) (Ganin
& Lempitsky, 2015), Domain-Adversarial Conditional En-
tropy (DANNCE) (Sicilia, Zhao, & Hwang, 2023), Invari-
ant Risk Minimization (IRM) (Arjovsky, Bottou, Gulra-
jani, & Lopez-Paz, 2019), Mixup (Yan, Song, Li, Zou, &
Ren, 2020), Maximum Mean Discrepancy (MMD) (Li, Pan,
Wang, & Kot, 2018) and causal invariant representation learn-
ing based on maximum mean discrepancy (CauslRL MMD)
(Chevalley, Bunne, Krause, & Bauer, 2022).

Table 5 summarizes the diagnostic accuracy on four DG
tasks. As shown, the proposed BSC framework achieves the
highest average accuracy of 88.0%, surpassing all baseline
methods. Notably, it also yields the best performance in two
out of four tasks (Task1, Task3, and Task4), and ranks second
in Task2 and Task3.

Compared to the ERM baseline, which does not incorporate

Table 5. Diagnostic results of SDUST comparative experi-
ments.

Methods Task1 Task2 Task3 Task4 Average
ERM 71.6±1.9 88.2±3.1 89.4±1.1 95.8±1.2 86.3

DANN 73.1±2.0 84.9±2.3 87.4±1.5 94.4±1.6 85.0
DANNCE 72.3±2.4 83.8±3.3 88.2±1.5 95.1±1.8 84.9

IRM 72.6±2.9 82.7±2.8 84.8±2.1 86.7±4.4 81.7
Mixup 70.3±1.7 73.9±2.0 94.1±1.9 91.4±2.4 82.4
MMD 72.7±1.4 83.7±3.2 88.2±0.7 93.2±1.7 84.5

CauslRL MMD 72.4±2.1 93.2±2.1 89.1±1.0 94.8±1.6 87.4
BSC 76.4±1.9 88.5±0.8 90.2±0.9 96.7±0.4 88.0

any domain alignment strategy, BSC improves the average
accuracy by 1.7 percentage points, demonstrating the advan-
tage of structure-aware class-level modeling. While DANN
and DANNCE introduce domain adversarial training, their
performance fluctuates across tasks and remains lower than
BSC, indicating the limitations of global distribution align-
ment without explicit class separation. IRM and Mixup ex-
hibit the weakest performance on Task2, ranking at the bot-
tom among all methods and revealing their limited general-
ization capability under complex domain shifts. This suggests
that regularization-based or invariant risk approaches may
not fully capture domain-specific semantics. CauslRL MMD
shows competitive performance on Task2 and achieves the
second-best overall average (87.4%), highlighting the poten-
tial of causality-based representation learning. Nevertheless,
BSC consistently outperforms it across most tasks, suggest-
ing that jointly enforcing intra-class compactness and inter-
class separability leads to better generalization under com-
plex domain shifts.

In terms of computational efficiency, the proposed BSC
framework introduces negligible additional overhead com-
pared with standard ERM-based training. The momentum
update in MFA and the pairwise anchor computation in CAS
increase the overall computation by approximately 4–6%.
This moderate increase is attributed mainly to the EMA up-
dates in MFA. The inference speed remains effectively un-
changed, as both modules are only active during training.

To further assess the cross-system generalization of the BSC
framework, additional experiments are performed on the
SCARA robot dataset. The diagnostic results on four DG
tasks are summarized in Table 6.

As observed, the proposed BSC framework again achieves
the best overall performance, with average accuracy of
92.75% across the four tasks. The result is higher than that
of all baseline methods. In particular, BSC shows remark-
able stability under domain shifts with large load variations,
where adversarial approaches such as DANN and DANNCE
experience significant performance degradation. The results
suggest that the bidirectional structural constraints effectively
preserve class semantics and mitigate domain-induced distor-
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Table 6. Diagnostic results of SCARA comparative experi-
ments.

Methods T0 T3 T6 T9 Average
ERM 89.3±1.5 92.3±1.7 92.7±1.2 77.1±2.1 87.8

DANN 91.0±1.8 94.3±2.2 88.7±1.5 56.6±2.8 82.6
DANNCE 89.0±2.9 92.2±2.4 86.8±1.9 75.4±3.1 85.8

IRM 56.5±2.8 93.7±2.6 78.3±2.1 46.6±3.6 68.8
Mixup 95.8±1.8 95.2±2.0 96.5±1.7 66.9±1.8 88.6
MMD 88.9±1.1 91.8±1.5 86.1±1.2 43.0±1.2 77.4

CauslRL MMD 56.9±2.3 66.8±1.0 62.4±1.6 52.3±2.3 59.6
BSC 97.4±0.8 94.2±1.0 95.2±0.6 84.3±1.1 92.8

tions, even when applied to a completely different mechanical
system.

Notably, the strong performance on the SCARA dataset
demonstrates that the proposed BSC framework is not limited
to vibration-based diagnostics but can be extended to current-
signal-based and robotic systems, reflecting its scalability, ro-
bustness, and practical applicability in diversified industrial
scenarios.

3.4. Visualization Analysis

To further illustrate the effectiveness of the proposed BSC
framework in learning discriminative and domain-invariant
representations, we employ t-SNE in Task 1 to visualize the
feature distributions of different models on the test domains.
Figure 5 presents the two-dimensional embeddings generated
by t-SNE for eight different methods: ERM, DANN, DAN-
NCE, IRM, Mixup, MMD, CauslRL MMD, and our pro-
posed BSC.

From the visualizations, it is evident that ERM, which does
not account for domain shift, produces highly scattered and
overlapping feature clusters, indicating poor generalization.
DANN and DANNCE, which incorporate domain-adversarial
training, exhibit slightly improved separation, yet still suf-
fer from ambiguous class boundaries and inconsistent feature
distributions. IRM and Mixup also fail to form compact and
well-separated clusters, with significant overlap across cate-
gories, especially in complex domain shift conditions. MMD
and CauslRL MMD achieve relatively better alignment, with
reduced inter-domain discrepancy. However, their class-wise
boundaries remain fuzzy, and some categories still exhibit
significant intra-class dispersion. In contrast, the proposed
BSC framework demonstrates the most compact and clearly
separated feature clusters. Each class forms a tight group,
with minimal overlap across categories, highlighting the ef-
fectiveness of BSC in simultaneously promoting intra-class
compactness and inter-class separability.

3.5. Ablation Study

To investigate the individual contributions of the MFA and
CAS modules, we conduct ablation experiments based on

Table 7. Diagnostic results of ablation experiments.

Methods Task1 Task2 Task3 Task4 Average
ERM 71.6±1.9 88.2±3.1 89.4±1.1 95.8±1.2 86.3

ERM+MFA 75.6±2.1 87.8±1.0 90.4±1.1 96.8±0.8 87.7
ERM+CAS 74.1±2.0 87.3±2.4 90.1±2.1 97.0±1.7 87.1

BSC 76.4±1.9 88.5±0.8 90.2±0.9 96.7±0.4 88.0

the ERM baseline. Specifically, we construct three variants:
ERM+MFA, ERM+CAS, and the full BSC model that inte-
grates both modules. The diagnostic results on four cross-
domain tasks from the SDUST dataset are reported in Table
7.

Compared to the vanilla ERM baseline, incorporating either
MFA or CAS consistently improves the domain generaliza-
tion performance. ERM+MFA achieves an average accu-
racy of 87.7%, indicating that aligning class-specific feature
contributions helps maintain intra-class consistency across
domains. ERM+CAS also brings performance gains, with
an average accuracy of 87.1%, demonstrating the benefit of
enhancing inter-class separability through anchor repulsion.
The full BSC model, which jointly optimizes both objectives,
further improves the average accuracy to 88.0%, outperform-
ing all ablated variants. This confirms the complementary
nature of MFA and CAS, and highlights the effectiveness of
jointly enforcing intra-class compactness and inter-class dis-
tinctiveness in enhancing generalization to unseen domains.

4. CONCLUSION

In this paper, we proposed a novel Bidirectional Structure
Constraint (BSC) framework for DG in intelligent fault diag-
nosis. Unlike existing approaches that focus solely on either
intra-class compactness or inter-class separation, our method
integrates both objectives through a unified design of class-
level structural constraints. Specifically, the MFA module
aligns class-specific feature contributions across domains to
improve intra-class consistency, while the CAS module pro-
motes semantic separation among class anchors to enhance
inter-class discriminability. These two objectives are jointly
optimized within a multi-loss learning paradigm, enabling the
model to learn robust and transferable representations that
generalize well to unseen domains. Extensive experiments
conducted on the SDUST rotating machinery dataset demon-
strate that our method consistently outperforms existing DG
techniques, verifying its effectiveness and applicability under
diverse industrial conditions.

In future research, we will further explore the integration of
the proposed Momentum Feature Alignment (MFA) mecha-
nism with edge computing and real-time monitoring systems,
enabling on-device inference and adaptive updating for low-
latency fault diagnosis in industrial environments. Moreover,
we plan to extend the scalability of the BSC framework to
the fault diagnosis of industrial robots, where complex multi-
joint dynamics and heterogeneous sensory data pose addi-

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

6 5 4 3
t-SNE Dimension 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

t-S
N

E 
D

im
en

si
on

 2

BSC

8 7 6 5
t-SNE Dimension 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

t-S
N

E 
D

im
en

si
on

 2

ERM

1 2 3 4
t-SNE Dimension 1

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

t-S
N

E 
D

im
en

si
on

 2

DANN

1 2 3 4
t-SNE Dimension 1

1.5

1.0

0.5

0.0

0.5

1.0

t-S
N

E 
D

im
en

si
on

 2

DANNCE

1 0 1
t-SNE Dimension 1

1

2

3

4

5

t-S
N

E 
D

im
en

si
on

 2

IRM

3 2 1 0
t-SNE Dimension 1

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

t-S
N

E 
D

im
en

si
on

 2

Mixup

1 0 1 2
t-SNE Dimension 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t-S
N

E 
D

im
en

si
on

 2

MMD

2 1 0 1
t-SNE Dimension 1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

t-S
N

E 
D

im
en

si
on

 2

CauslRL_MMD

Train 0
Test 0

Train 1
Test 1

Train 2
Test 2

Train 3
Test 3

Train 4
Test 4

Train 5
Test 5

Train 6
Test 6

Train 7
Test 7

Train 8
Test 8

Train 9
Test 9

Figure 5. The t-SNE visualization of the feature representations learned by different algorithms on Task 1.

tional challenges for domain generalization. By combining
MFA and CAS with edge intelligence and continual learning
paradigms, our future work aims to establish a more robust,
scalable, and adaptive DG framework for real-time intelligent
health monitoring in industrial applications.
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