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ABSTRACT

Conventional time-frequency Transformers primarily focus
on the global features of signals in the time-frequency do-
main while neglecting the local features in both the time
domain and frequency domain. This limitation hinders the
ability of the model to effectively capture the shared fea-
tures among time, frequency, and time-frequency represen-
tations. To address this issue, a Multi-Branch Joint Time-
Frequency Transformer (MBJTF-Transformer) is proposed
for domain generalization (DG) fault diagnosis of rotating
machinery. Specifically, a time-branch Transformer is de-
signed to extract temporal features, while a frequency-branch
Transformer captures frequency-domain information. In ad-
dition, a time-frequency Transformer is employed to learn
the shared representations across time, frequency, and time-
frequency domains. Finally, a multi-decision fusion strategy
of MBJTF-Transformer is adopted to enhance the generaliza-
tion capability of the model. Experimental results on both
the SCARA (Selective Compliance Assembly Robot Arm,
SCARA) dataset and the PU (Paderborn University) bearing
dataset demonstrate that the proposed MBJTF-Transformer
achieves superior DG performance compared to multiple
state-of-the-art sequential models.

1. INTRODUCTION

Rotating machinery has become essential in modern indus-
try, operating under complex and variable working condi-
tions. These variations often lead to distribution shifts be-
tween training and real-world data, making fault diagnosis
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not only crucial but also challenging. As a result, improv-
ing domain generalization (DG) performance has become in-
creasingly important to ensure accurate and reliable fault de-
tection across unseen operating conditions, thereby enhanc-
ing safety and reducing maintenance costs (Y. Chen, Zhang,
Yan, & Xie, 2025).

In recent years, DG-based fault diagnosis (DGFD) has at-
tracted widespread attention from researchers. Ma et al. pro-
posed a 3D dynamic convolutional network for multi-source
DG diagnosis of rotating equipment, which leverages fea-
ture activation and non-causal suppression to adaptively learn
domain-invariant features (Ma, Wei, Zhang, Kong, & Du,
2024). Wang et al. proposed a Multi-Scale Style Generative
and Adversarial Contrastive Networks (MSG-ACN) model
for machinery fault diagnosis, which generates diverse auxil-
iary samples and learns domain-invariant features through ad-
versarial contrastive learning to achieve robust performance
under unseen working conditions (Wang, Ren, Shen, Huang,
& Zhu, 2024). Zhao et al. proposed a semantic-discriminative
augmentation-driven network to tackle the challenge of class
imbalance in DG. By introducing a semantic regularization-
based mixup strategy to enrich minority classes and applying
triplet loss to enhance feature discrimination, their method
improves generalization to unknown domains (Zhao & Shen,
2024). Chen et al. explored domain-generalizable diagnostic
signals from the perspective of signal analysis and designed
a lightweight convolutional neural network for DG fault di-
agnosis of industrial robots, demonstrating certain practical
engineering value (Q. Chen, Li, Wu, Chen, & Shen, 2024).

Although these CNN-based methods can achieve DG fault di-
agnosis with relatively low model complexity, convolutional
neural networks often overlook the sequential nature of sig-
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nals, which may negatively impact diagnostic performance
(Xiao, Shao, Wang, Yan, & Liu, 2024). To address this lim-
itation, some researchers have developed sequential models
for fault diagnosis of rotating machinery. Xiao et al. proposed
a Bayesian variational Transformer (Bayesformer) for train-
ing an ensemble of networks, where all attention weights are
modeled as random variables to mitigate the adverse effects
of operating condition variations and noise interference (Xiao
et al., 2024). Liu et al. developed an Attention Contrastive
Calibration Transformer (ACCT), which segments time se-
ries into blocks to extract domain-invariant features and em-
ploys a region confusion-based data augmentation strategy to
enhance generalization (Liu, Chen, He, Shi, & Zhou, 2023).
Huang et al. introduced a causal Transformer to address out-
of-distribution generalization, which builds a causal layer to
extract causal relations across domains and incorporates a do-
main discriminator combined with a gradient reversal layer to
learn domain-invariant representations (Huang, Wang, Zhou,
Ning, & Song, 2023).

While time-series models effectively consider sequential de-
pendencies and achieve promising diagnostic performance,
they often neglect the frequency-domain information of sig-
nals. Integrating frequency-domain features into sequential
models can help models make more reliable decisions. For
example, Ding et al. proposed a Time-Frequency Trans-
former (TFT) to extract time-frequency features from vibra-
tion signals, achieving superior diagnostic accuracy com-
pared to baseline and state-of-the-art methods (Ding, Jia,
Miao, & Cao, 2022). Wang et al. developed a Neural-
Transformer based on multi-head spatiotemporal impulse
self-attention, which extracts global time-frequency features
from 2D time-frequency representations and achieves 93.14%
diagnostic accuracy on three datasets (Wang et al., 2024). Li
et al. proposed the Frequency-Time Modality Transformer
(FTM-Transformer) for bearing fault diagnosis, which com-
bines multivariate decomposition of time-frequency features
and discrete wavelet transform to extract frequency-domain
and time-domain features, outperforming vision Transform-
ers and residual networks (Li, Wang, & Wu, 2023).

Although these time-frequency models capture global fea-
tures in both time and frequency domains, they rarely con-
sider the role of local features in the time and frequency do-
mains for decision-making. To address this gap, this paper
proposes a Multi-Branch Joint Time-Frequency Transformer
(MBJTF-Transformer) for DG fault diagnosis of rotating ma-
chinery. The main contributions are summarized as follows:

1. The MBJTF-Transformer framework is proposed, in
which time-domain, frequency-domain, and time-
frequency features are integrated to address the DG
problem in rotating machinery fault diagnosis.

2. A multi-branch feature extraction mechanism is de-
signed, consisting of a time-branch Transformer and a

frequency-branch Transformer to capture local features,
as well as a time-frequency Transformer to extract shared
cross-domain representations, thereby overcoming the
limitation of conventional models that focus only on
global features.

3. A multi-decision fusion strategy is introduced to enhance
model generalization, and extensive experiments con-
ducted on the SCARA and PU (Paderborn University)
datasets demonstrate that the proposed method outper-
forms several state-of-the-art sequential models in terms
of DG performance.

The remainder of this paper is organized as follows: Section
2 presents the proposed method, Section 3 provides experi-
mental analysis, and Section 4 concludes the paper.

2. METHODS

The overall framework, as illustrated in Figure 1, consists of
four main components: time-domain embedding, frequency-
domain embedding, time-frequency domain embedding, and
a multi-branch joint time-frequency Transformer.

Firstly, the raw input signals are separately segmented into
fixed-length patches in the time domain and frequency do-
main. The time-domain and frequency-domain embedding
modules transform these patch sequences into latent represen-
tations through a series of linear projections and nonlinear ac-
tivations, effectively encoding local contextual information.
Similarly, the time-frequency embedding module integrates
the concatenated time and frequency features to learn joint
representations that capture cross-domain correlations.

The extracted embeddings are then fed into three Transformer
branches: time, frequency, and time-frequency. The time-
domain and frequency-domain Transformers leverage multi-
head self-attention to capture global dependencies within
each domain, while the time-frequency Transformer em-
ploys multi-head cross-attention to model interactions be-
tween time and frequency representations.

Finally, the outputs from these three branches are fed into in-
dividual classification heads to predict fault classes, which are
then fused to obtain the final diagnostic decision. This multi-
branch design allows the model to fully utilize both local and
global features in the time, frequency, and time-frequency do-
mains, enhancing its generalization capability under unseen
operating conditions.

2.1. Time-domain Embedding

The time-domain embedding module is responsible for trans-
forming the segmented time-domain patches into latent rep-
resentations suitable for sequential modeling. As shown in
Figure 1, the raw time-domain input signal has a length of L
and consists of C' channels. This signal is first divided into
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Figure 1. The overall structure of the MBJTF-Transformer.
p overlapping or non-overlapping patches, each with a patch  expressed as (2):
length of [ and patch channels c. ) ) )
E; = Lineary(SiLU(Linear; (Py))) (2)

Each patch is then flattened to form a vector of dimension
I X c. These patch vectors, with an initial shape of (p,[ X c¢),
are projected into a lower-dimensional latent space by a series
of linear transformations and a nonlinear activation function
(SiLU). Specifically, the embedding process can be expressed

as (1):

E; = Lineary(SiLU(Linear; (Py)))

ey

where P, € RP*(1X¢) denotes the sequence of patch vectors,
and E; € RP*" is the resulting time-domain embedding ma-
trix, with n being the embedding dimension.

This transformation effectively encodes local contextual pat-
terns within each patch while preserving the sequential struc-
ture of the time-series data. The resulting embeddings serve
as the input to the subsequent time-domain Transformer
branch, enabling the model to learn temporal dependencies

for fault diagnosis.

2.2. Frequency-domain Embedding

The frequency-domain embedding module follows a similar

where Py € RP*(1x¢) denotes the patch sequence in the
frequency domain, and E; € RP*™ is the resulting em-
bedding matrix. This embedding module captures localized
frequency-domain patterns, which complement the temporal
information and are crucial for modeling the spectral charac-
teristics of rotating machinery signals.

2.3. Time-frequency Embedding

The time-frequency embedding module aims to capture joint
information by combining the features extracted from both
time and frequency domains. Specifically, the outputs of the
time-domain and frequency-domain patch embeddings (each
with shape p x ¢) are first concatenated along the feature
dimension, resulting in a combined representation of shape
p X 2c.

This concatenated representation is then passed through an
additional linear layer, a SiLU activation, and another linear
transformation to project it into the final embedding space.
The embedding process can be expressed as (3):

E,; = Linear,(SiLU(Linear; (Concat(P¢,Py)))) (3)

procedure to process the frequency-domain representation of
the original signal. Formally, the embedding process can be

yielding embeddings E;y € RP*". By fusing time and fre-
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quency information early in the feature space, this module
enables the subsequent time-frequency Transformer to learn
cross-domain dependencies and shared representations, fur-
ther enhancing the model’s ability to generalize under unseen
operating conditions.

2.4. Multi-branch Joint Time-Frequency Transformer

After the embedding process, the extracted features from the
time domain, frequency domain, and time-frequency domain
are separately fed into three Transformer branches to capture
complementary information.

The time-domain Transformer branch receives the time-
domain embeddings E; € RP*™ and applies a multi-head
self-attention mechanism to learn temporal dependencies
within the sequence. Specifically, query, key, and value ma-
trices (@, K¢, V;) are computed by projecting E; through
learnable weight matrices Wq, Wi, Wy,. The attention out-
put is calculated as (4):

QK[
Vd

where d is the scaling factor related to the embedding dimen-
sion. This process enables the model to focus on relevant
temporal patterns across patches.

Attention(Qy, K¢, Vi) = Softmax ( > V; 4)

The frequency-domain Transformer branch follows an analo-
gous design. It processes the frequency-domain embeddings
E s through multi-head self-attention, using its own set of pro-
jections (Q ¢, K¢, V), to model spectral dependencies.

The time-frequency Transformer branch differs in that it em-
ploys a multi-head cross-attention mechanism. Here, the con-
catenated embeddings from the time and frequency domains
E;y serve as the value and key (K, Vi), while the time-
domain embeddings E; are used to compute the query matrix
Q:. The cross-attention output is calculated as (5):

. QK[
Attention(Qy, Ky, Viy) = Softmax 7 Vig (5)

which allows the model to align and integrate information be-
tween temporal and spectral representations.

Each Transformer branch includes standard feed-forward and
normalization layers to refine the extracted features. Finally,
the outputs from the three branches are passed into separate
classification heads to predict fault categories, and their pre-
dictions are fused to produce the final diagnostic decision.

Overall, this multi-branch design addresses a key limita-
tion of existing time-frequency models by capturing not only
global but also local features in both the time and frequency
domains. Through the combination of time, frequency, and
time-frequency Transformers, MBJTF-Transformer learns

richer and more robust representations that generalize well
to unseen working conditions.

2.5. Multi-decision Fusion Strategy

Let the multi-source domain training dataset be
{(X3,y8)}Y,, where X3 € RE*C is the input signal from
source domain s € {1,...,5}, and yf € {1,..., K} is the
corresponding fault label.

After patching and embedding, we obtain three feature se-
quences E;,Ef, E;y € RP*". The model employs three
Transformer-based feature extractors: time-domain branch
Ti(-), frequency-domain branch 7/(-), and time-frequency
branch T} ;(-), which produce predicted class probabilities.
Specifically, the predicted class probabilities for the time do-
main, frequency domain, and time-frequency domain are cal-
culated by (6), (7), and (8), respectively:

yi = Ti(Ey) (6)
yr=Tr(Ey) (7)
Vir = Tip(Eey) 8

The cross-entropy losses for each branch are calculated by
(9), (10), and (11), respectively.

Li=Le(3t,9°) ©)
Ly=L(Y5y°) (10)
Lif=L(Ft5,9°) (1n

Finally, a multi-decision fusion strategy is applied by averag-
ing the three losses:
Li+Ly+ Ly
‘Cfusion = i M L7 (12)
3

This strategy encourages each branch to collaboratively learn
complementary time, frequency, and time-frequency repre-
sentations, improving generalization to unseen target do-
mains.

2.6. Model Optimization

The model is trained to minimize the fused loss L fysi0n de-
fined in (12). The training process adopts the Adam optimizer
with a learning rate 7), and the model parameters 6 are updated
iteratively to minimize the objective:

1
in Y £ 13
H}gln N L_Zl fusion ( )
where N is the total number of training samples across all
source domains. The final trained model is expected to gen-
eralize well to unseen target domains by leveraging the fused
decision from multiple specialized branches.
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3. EXPERIMENTS
3.1. Experimental Platform Introduction

The SCARA robot ball screw dataset and the PU bear-
ing dataset were used for fault diagnosis experiments. The
SCARA test platform is shown in Figure 2 (Q. Chen, Chen,
et al., 2024). Five types of electrical signals from the robot
drive motor were collected: J3_Current feedback, J3_U-phase
feedback current, J3_V-phase feedback current, J3_W-phase
feedback current, and J3_d-axis feedback current. The exper-
iments were conducted under four working conditions with
different loads: 0 kg, 3 kg, 6 kg, and 9 kg. The health states
of the ball screw include normal, spiral nut stuck, spline nut
stuck, and ball shedding, with a sampling frequency of 1600
Hz. The PU test platform is illustrated in Figure 3 (Lessmeier,
Kimotho, Zimmer, & Sextro, 2016). Both vibration signals
from bearings and phase current signals from the motor were
collected at a sampling frequency of 25,600 Hz. The health
states of the bearings include normal, outer race fault, and in-
ner race fault. The experiments were conducted under four
working conditions, as detailed in Table 1.

To evaluate the diagnostic performance of the model under
unseen operating conditions, the four working conditions of
both datasets were divided into source domains and unknown
target domains. The source domain data are labeled and ac-
cessible during training, while the target domain data are un-

© @6 ® 6 ©®
| | | |
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@ J3 axis
© Push-pull gauge

® Screw
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@ Computer
® Spline nut

( J3 drive motor
® Load

@ Control panel
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Figure 2. The SCARA robot platform used for experiments.

Electric motor | Torque-measurement shafd Bearing test modu1e§ Flywheeli Load motor

Figure 3. The PU bearing platform used for experiments.

Table 1. Four working condition settings of PU dataset.

No. Rotational speed Torque Radial force Name of Setting

0 1500 rpm 1500 rpm 1000 N N15-M07_F10
1 900 rpm 900 rpm 1000 N NO09_MO07_F10
2 1500 rpm 1500 rpm 1000 N N15-MO1_F10
3 1500 rpm 1500 rpm 400N N15_M07_F04
Table 2. Transfer tasks settings.
Datasets Tasks Source domains Unknown domains
TO No.1,2,3 No.0
PU T1 No.0,2,3 No.1
T2 No.0, 1,3 No.2
T3 No.0, 1,2 No.3
TO 3, 6 and 9kg Okg
T3 0, 6 and 9kg 3kg
SCARA 16 0.3 and 9ke 6kg
T9 0, 3 and 6kg 9kg

labeled and inaccessible. The transfer tasks are summarized
in Table 2.

3.2. Experimental setup

All experiments were conducted on a workstation equipped
with an Intel 17-9700 CPU and an RTX2080 GPU. To reduce
the influence of randomness, each transfer task was indepen-
dently repeated 10 times. For the SCARA dataset, each class
contains 50 samples, while for the PU dataset, each class con-
tains 61 samples. The source domain data were divided into
training and validation sets with a ratio of 7:3. The batch size
was set to 32.

3.3. Hyperparameter Selection

To ensure optimal performance of the proposed MBJTF-
Transformer, a grid search strategy was employed to deter-
mine the most suitable learning rate (Q. Chen, Li, et al,,
2024). Specifically, the learning rate was varied within the
range of [0.00005, 0.0001, 0.0005, 0.001, 0.005], and the av-
erage diagnostic accuracy across all DG tasks was used as the
evaluation metric. As shown in Figure 4, the model achieved
accuracies of 89.03%, 93.03%, 94.92%, 94.72%, and 62.37%
under the corresponding learning rates. When the learning
rate was too small (e.g., 0.00005), the convergence process
was relatively slow, leading to suboptimal accuracy. Con-
versely, a larger learning rate (e.g., 0.005) caused unstable
optimization and severe performance degradation. The learn-
ing rate of 0.0005 provided the best trade-off between con-
vergence speed and stability, achieving the highest diagnostic
accuracy of 94.92%. Therefore, 0.0005 was selected as the
optimal learning rate for all subsequent experiments.
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Figure 4. The diagnostic accuracy of the proposed model un-
der different learning rates.

3.4. Comparative experimental analysis

Table 3 represents the DG results on the SCARA and PU
datasets, including both ablation experiments and compar-
isons with several state-of-the-art sequential models: Aut-
oformer (Wu, Xu, Wang, & Long, 2021), Transformer
(Vaswani et al., 2017), DLinear (Zeng, Chen, Zhang, & Xu,
2023), FEDformer (T. Zhou et al., 2022), Informer (H. Zhou
etal., 2021), LightTS (Zhang et al., 2022), Reformer (Kitaev,
Kaiser, & Levskaya, 2020), and ETSformer (Woo, Liu, Sa-
hoo, Kumar, & Hoi, 2022).

To evaluate the contribution of each branch in the proposed
MBIJTF-Transformer (denoted as MBJTF-T), three ablation
variants were designed: MBJTF-T_A1 uses only the output
of the time-frequency branch, MBJTF-T_A2 uses only the
frequency-domain branch, and MBJTF-T_A3 uses only the
time-domain branch for decision-making.

The MBJTF-T achieves the highest average accuracy of
94.92%, significantly outperforming its ablated variants.
MBITF-T_A1 and MBJTF-T_A2 achieve average accuracies
of 91.86% and 88.80%, respectively, while MBJTF-T_A3
performs notably worse with 72.65%. These results demon-
strate that each individual branch contributes differently to
the overall performance, and the multi-decision fusion strat-
egy in MBJTF-T effectively combines their complementary
information, leading to better generalization to unseen oper-
ating conditions.

Among these benchmark models, Reformer achieved the
highest average accuracy (93.36%) across all DG tasks,
followed closely by LightTS with an average accuracy of
93.24%. The superior performance of Reformer and LightTS
primarily stems from their architectural optimizations for
temporal feature modeling and computational efficiency. Re-
former incorporates a Locality-Sensitive Hashing (LSH) at-
tention mechanism, which effectively reduces the computa-
tional complexity of long-sequence modeling while preserv-
ing global dependencies. LightTS, on the other hand, adopts

a simple MLP-based structure combined with two refined
downsampling strategies, enabling it to capture both local and
global dynamic variations with fewer parameters, thereby en-
hancing model generalization. Other methods, such as In-
former (91.62%) and DLinear (90.37%), also demonstrate
competitive performance. However, the proposed MBJTF-
T outperforms all of them, achieving an average accuracy
of 94.92%. This superior performance highlights the effec-
tiveness of integrating time-domain, frequency-domain, and
time—frequency representations through a multi-branch archi-
tecture combined with a multi-decision fusion strategy. The
consistent improvement over Reformer and LightTS further
confirms that our model can better capture both local and
global features, thereby achieving robust DG performance
under unseen operating conditions.

3.5. Training Process Analysis

In the T3 transfer task, the training processes on the PU and
SCARA datasets were monitored, as shown in Figure 5. It can
be observed that the source-domain test accuracy rises rapidly
and converges quickly in the early stages, indicating that the
model effectively learns source-domain features. In contrast,
the target-domain accuracy increases more slowly at first
but gradually approaches the source-domain performance as
training progresses, demonstrating strong cross-domain gen-
eralization capability. Meanwhile, both source and target
domain loss values decrease significantly within the first 20
epochs and then stabilize, suggesting a smooth training pro-
cess without overfitting. The proposed MBJTF-Transformer
exhibits fast convergence and stable transfer characteristics
during training, effectively extracting domain-invariant fea-
tures and achieving reliable cross-domain fault diagnosis per-
formance.

3.6. Feature Visualization Analysis

To further evaluate the DG capability of our model, we con-
ducted feature visualization on the T6 transfer task of the
SCARA dataset, as shown in Figure 6. S-Normal indi-
cates source domain samples labeled as Normal, while T-
Normal indicates target domain samples labeled as Normal.
In the first row of Figure 6, we visualize the feature distri-
butions produced by MBJTF-T and its three ablation vari-
ants. In MBJTF-T_Al, the overall clustering is still reason-
able, but the class boundaries are less distinct compared to
MBIJTF-T. In MBJTF-T_A2, samples of the same fault type
remain roughly grouped, yet the boundary between classes
becomes blurrier, suggesting reduced discriminative power.
In MBJTF-T_A3, the feature clusters are still formed, but the
separation between different classes is less clear, and the de-
cision boundary is not as sharp as in MBJTF-T. These ob-
servations indicate that although each single branch can cap-
ture useful fault features to some extent, integrating time,
frequency, and time-frequency representations jointly con-
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Table 3. Diagnostic results of ablation experiments and comparative experiments.

SCARA

PU

Methods Average
TO T3 T6 T9 TO T1 T2 T3
MBIJTE-T  74.50+4.76  92.30+6.84 99.65+0.41 97.25+2.49 99.67+0.53 99.89+0.23 96.17+1.91 99.89+0.23 94.92%
MBIJTF-T_A1 66.30+£9.79 80.15+£9.87 98.15£1.84 92.00+4.89 99.45+0.36 100.00+0.00 99.45+0.68 99.34+0.72 91.86%
MBITF-T_A2 56.50+5.73 71.35£3.74 96.40+1.85 90.35+3.28 99.56+0.43 99.95+0.17 98.03+1.39 98.25+1.63 88.80%
MBJTF-T_A3 74.70+£0.54 98.35+1.00 98.25+1.60 97.75+2.26 60.38+5.93 49.13£7.37 34.43+0.81 68.25+6.41 72.65%
Autoformer 45.60+£10.07 52.60+£19.27 67.00+£17.83 72.10+£15.95 99.51+£0.87 91.58+6.68 98.74+0.89 100.00+0.00 78.39%
Transformer 61.95+3.88 80.10+4.35 79.70+£5.41 71.20£7.62 99.95+0.17 97.54+0.97 66.67+0.00 99.95+0.17 82.13%
DLinear  74.9027.00 91.45£1.89 93.40+2.21 87.55£2.95 98.14+1.65 96.89+1.82 83.39+532 97.21+1.30 90.37%
FEDformer  58.05£6.40 77.00£5.29 87.80+4.24 81.95+4.45 99.84+0.37 97.05£1.91 69.95+£3.62 99.89+0.23 83.94%
Informer 73.35£5.46  93.40+2.87 95.20+1.62 91.75£2.20 99.67+0.38 99.62+0.52 80.22+6.40 99.78+0.38 91.62%
LightTS 82.35+11.44 85.80+10.61 97.30+£2.67 86.80+4.56 99.73+0.39 98.74+1.00 95.46+4.55 99.73+0.53 93.24%
Reformer 85.25+4.81 97.25+1.89 99.45+0.60 94.85+3.29 99.95+0.17 92.40+7.41 78.14+6.26 99.62+0.52 93.36%
ETSformer  83.25+8.30 92.40+4.50 82.65+11.46 76.75+6.73 99.13+1.37 78.63+13.83 72.68+26.99 96.67+7.40 85.27%
PU T3 of eight state-of-the-art sequential models. Among these, Re-
— former and LightTS exhibit relatively better DG, with source
1.0 1 and target domain samples of the same class closer together
- 1.00 and clearer boundaries between fault classes. However, the
separation is still less distinct than MBJTF-T. Other models
§ 0.8 1 —— TD test accuracy - 0.75 . §uch as Autoformer, FjEDformer, and Informer show'sign'if-
é« —— SDtestaccuracy | 050 § 1c.ant. overlap across d1.ff.erent fault classes a‘nd'dom.alns, in-
3 0.6 TD test loss . dicating weaker capa}blhty tq extract domain-invariant fea-
< 3D test loss tures. Overall, the visualization results clearly demonstrate
- 0.25 that MBJTF-T captures more discriminative and domain-
0.4 1 aligned representations, leading to improved generalization
: : : : 1 0.00 on unseen target domains.
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Epoch
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< —— SD fest loss - 0.5 mental results on the SCARA and PU datasets demonstrate
0.4 that MBJTF-T significantly outperforms state-of-the-art se-
quential models in terms of DG performance. The feature
0.2 1, : | : y 0.0 visualization analysis further confirms that MBJTF-T can ef-
0 25 50 75 100 .fectively align sarr?p}es from source and t.arget domains, leaq-
Epoch ing to clearer decision boundaries and improved diagnostic

Figure 5. The training process of the MBJTF-Transformer on
the T3 transfer task.

tributes to clearer decision boundaries and better domain
alignment.

The lower part of Figure 6 presents the feature distributions

accuracy.

For future work, we plan to explore how to extend the pro-
posed framework to tackle the few-shot fault diagnosis prob-
lem. By integrating meric-learning or prototype-based ap-
proaches, we aim to enhance the adaptability and practicality
of MBJTF-T in real-world industrial applications with scarce
labeled data.
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Figure 6. The t-SNE visualization of the feature representations learned by the MBJTF-Transformer.

ACKNOWLEDGMENT

This work was financially supported by the National Nat-
ural Science Foundation of China under Grants 52375114,
52272440, and 52175056, and by the Postgraduate Research
& Practice Innovation Program of Jiangsu Province under
Grant KYCX25_3465.

REFERENCES

Chen, Q., Chen, L., Li, Q., Shi, J., Wang, D., & Shen, C.
(2024). Metric learning-based few-shot adversarial do-
main adaptation: A cross-machine diagnosis method
for ball screws of industrial robots. IEEE Transactions

on Instrumentation and Measurement, 73, 1-10. doi:
10.1109/TIM.2024.3403183

Chen, Q., Li, Q., Wu, S., Chen, L., & Shen, C. (2024).
Fault diagnosis for ball screws in industrial robots un-

der variable and inaccessible working conditions with
non-vibration signals. Advanced Engineering Infor-
matics, 62, 102617.

Chen, Y., Zhang, D., Yan, R., & Xie, M. (2025). Applications
of domain generalization to machine fault diagnosis: A
survey. IEEE/CAA Journal of Automatica Sinica.

Ding, Y., Jia, M., Miao, Q., & Cao, Y. (2022). A novel time—
frequency transformer based on self-attention mech-
anism and its application in fault diagnosis of rolling
bearings. Mechanical Systems and Signal Processing,
168, 108616.

Huang, H., Wang, R., Zhou, K., Ning, L., & Song, K. (2023).
Causalvit: Domain generalization for chemical engi-
neering process fault detection and diagnosis. Process
Safety and Environmental Protection, 176, 155-165.

Kitaev, N., Kaiser, L., & Levskaya, A. (2020). Re-
former: The efficient transformer. arXiv preprint
arXiv:2001.04451.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Lessmeier, C., Kimotho, J. K., Zimmer, D., & Sextro, W.
(2016). Condition monitoring of bearing damage in
electromechanical drive systems by using motor cur-
rent signals of electric motors: A benchmark data set
for data-driven classification. In Phm society european
conference (Vol. 3).

Li, K., Wang, C., & Wu, H. (2023). Multimodal transformer
for bearing fault diagnosis: A new method based on
frequency-time feature decomposition.

Liu, S., Chen, J., He, S., Shi, Z., & Zhou, Z. (2023). Few-shot
learning under domain shift: Attentional contrastive
calibrated transformer of time series for fault diagno-
sis under sharp speed variation. Mechanical systems
and signal processing, 189, 110071.

Ma, H., Wei, J., Zhang, G., Kong, X., & Du, J. (2024).
Causality-inspired multi-source domain generalization
method for intelligent fault diagnosis under unknown
operating conditions. Reliability Engineering & Sys-
tem Safety, 252, 110439.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., ... Polosukhin, I. (2017). Atten-
tion is all you need. Advances in neural information
processing systems, 30.

Wang, J., Ren, H., Shen, C., Huang, W., & Zhu, Z. (2024).
Multi-scale style generative and adversarial contrastive
networks for single domain generalization fault diag-
nosis. Reliability Engineering & System Safety, 243,
109879.

Woo, G., Liu, C., Sahoo, D., Kumar, A., & Hoi, S.
(2022).  Etsformer: Exponential smoothing trans-
formers for time-series forecasting. arXiv preprint
arXiv:2202.01381.

Wu, H., Xu, J., Wang, J., & Long, M. (2021). Autoformer:
Decomposition transformers with auto-correlation for
long-term series forecasting. Advances in neural infor-
mation processing systems, 34, 22419-22430.

Xiao, Y., Shao, H., Wang, J., Yan, S., & Liu, B. (2024).
Bayesian variational transformer: A generalizable
model for rotating machinery fault diagnosis. Mechan-
ical Systems and Signal Processing, 207, 110936.

Zeng, A., Chen, M., Zhang, L., & Xu, Q. (2023). Are
transformers effective for time series forecasting? In
Proceedings of the aaai conference on artificial intelli-
gence (Vol. 37, pp. 11121-11128).

Zhang, T., Zhang, Y., Cao, W, Bian, J., Yi, X,
Zheng, S., & Li, J. (2022). Less is more:
Fast multivariate time series forecasting with light
sampling-oriented mlp structures.  Retrieved from
https://arxiv.org/abs/2207.01186

Zhao, C., & Shen, W. (2024). Imbalanced domain gener-
alization via semantic-discriminative augmentation for
intelligent fault diagnosis. Advanced Engineering In-
formatics, 59, 102262.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., &

Zhang, W. (2021). Informer: Beyond efficient trans-
former for long sequence time-series forecasting. In
Proceedings of the aaai conference on artificial intelli-
gence (Vol. 35, pp. 11106-11115).

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., & Jin, R.
(2022). Fedformer: Frequency enhanced decomposed
transformer for long-term series forecasting. In Inter-
national conference on machine learning (pp. 27268—

27286).
BIOGRAPHIES
Qitong Chen received the B.Eng. de-
A gree in electrical engineering from Hei-
longjiang Bayi Agricultural University,
- = Daqing, China, in 2021. He is currently

pursuing the Ph.D. degree in Computer Sci-
ence and Technology at Soochow Univer-
sity, Suzhou, China. His research interests
include fault diagnosis of industrial robots,
fault diagnosis of rotating machinery, domain generalization,
adversarial learning, few-shot learning, and transfer learning.

Liang Chen received the Ph.D. degree in
control engineering from a joint Ph.D. pro-
gram with Zhejiang University, Hangzhou,
China, and TU Berlin, Berlin, Germany,
in 2009. He is currently a professor with
the Department of Automation Engineer-
ing, the School of Mechanical and Electric
Engineering, Soochow University, Suzhou,
China. His research interests include intelligent control and
deep learning-based intelligent sensoring and fault diagnosis.

Hong Zhuang received the B.Eng. degree

in Electrical Engineering and Automation

from Soochow University Wen Zheng Col-

lege, Suzhou, China. She is currently pursu-

ing further studies in Engineering Manage-

ment at Nanjing University, Nanjing, China.

Presently, she serves as a research assistant

at the School of Mechanical and Electric

Engineering, Soochow University. Her research interests in-
clude transfer learning and domain generalization.

Qi Li received the B.Eng. and M.Eng.

degrees in electrical engineering and con-

p_ trol theory & control engineering from Soo-

w suing the Ph.D. degree in mechanical engi-

“ neering with Tsinghua University, Beijing,

China. His research interests lie in the inter-

section of trustworthy Al and reliable prognostic and health

in light chemical engineering from Soo-

.- control science and engineering at Soochow

University, Suzhou, China. Her research in-

j terests include intelligent fault diagnosis of

rotating machinery, domain adaptation, do-

chow University, Suzhou, China, in 2019
management (PHM).

chow University, Suzhou, China, in 2023.
main generalization, and transfer learning.

@)
-

Wenjing Zhou received the B.Eng. degree

and 2022, respectively. He is currently pur-
‘: - . She is currently pursuing the M.S. degree in



