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ABSTRACT

In an integrated steelmaking process, equipment failures can
significantly impact overall operations. Therefore,
predictive detection and prevention of failures are critical. In
this study, A three-layer hierarchical predictive detection
system has been developed in order to utilize large-scale,
multivariate operational data. This system is designed to
identify overall trends by leveraging big data, detect
correlation breakdowns through domain knowledge, and
detect shifts in single-signal levels. The effectiveness of the
proposed system has been confirmed through its application
to actual operational data from the steel manufacturing
process. In addition, general anomaly detection models,
including our system, rely on quantifying deviations from a
normal state as an anomaly score. In manufacturing settings,
data drift often occurs due to factors such as equipment part
replacements or changes in operational conditions. When
data drift occurs, it becomes necessary to redefine the
normal state. However, in manufacturing environments,
temporary runs or experimental operations mean that the
data following a drift is not necessarily guaranteed to
normal data. Therefore, it is necessary to evaluate whether
the data distribution is normal before and after the drift on a
case-by-case basis. Current approaches do not provide a
quantitative means to make this decision, leading to the
issue that model updates depend on the judgment of experts.
To address this, we propose a method that utilizes similar
equipment conditions to guide the timing and procedure for
model updates. By applying Jensen–Shannon divergence to

measure differences among four data distributions—derived
from two machines and two distinct periods— we provide
appropriate guidance for model construction based on a
table of potential anomalies. Through validation using real
data from two adjacent continuous casters, we confirmed
that identifying abnormal equipment and time periods
enables us to propose appropriate normal operating
windows. These validation results indicate that the proposed
system allows for comprehensive predictive maintenance,
integrating domain knowledge and thereby contributing to
stable operations in steelmaking facilities.

1. INTRODUCTION

Data-driven approaches have become increasingly important
in steel manufacturing, enabled by the availability of large-
scale process data. Among these, predictive maintenance is
a major application. Monitoring techniques for steelmaking
have particularly focused on detecting breakout events—
failures in which molten steel leaks from the mold—and
various approaches have been proposed to address this issue
(Zhang & Dudzic, 2006; Ansari et al., 2022). In the hot
rolling process, a variety of anomaly detection methods
have been proposed, targeting specific equipment such as
the rolling drive systems (Naruse, Midorikawa, and Tanaka,
2012; Akechi, Midorikawa, & Kobayashi, 2012), hydraulic
servo systems (Kitamura et al., 1991; Nozaki, 2010), and
motor current monitoring for table rolls used in steel
transport (Naruse et al., 2017; Hirata, Hachiya, & Suzuki,
2021). While these methods are effective for individual
equipment units, the large number of units in steel plants
makes comprehensive monitoring and management across
all equipment increasingly complex. Consequently, recent
years have seen the introduction of systems capable of
monitoring multiple signals in the steelmaking process
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using general or integrated approaches (Kato, Hangai, &
Fukami, 2023; Inoue, 2024; Sarda et al., 2021; Jakubowski
et al., 2021). In this study, we developed and implemented a
hierarchical anomaly sign detection system, which leverages
large-scale data to monitor multiple equipment units in a
layered monitoring framework (Hirata, Matsushita, Iizuka,
& Suzuki, 2021). The system integrates multiple
complementary monitoring approaches, including an entire
monitoring of large data sets, domain-informed analysis and
basic statistical methods.

On the other hand, when operating many anomaly detection
models, a new problem of model management arises. This
is because normal data frequently drifts due to equipment
upgrades, component replacements, and changes in
operating conditions, rendering the predefined normal range
invalid. The most common approach to this data drift issue
is to detect distribution changes using statistical measures,
followed by model updates (Lai, 1995; Chu, Stinchcombe &
White, 1996). More recently, sequential model update
methods based on online learning have been proposed
(Watte & Heinrichs, 2024). As a specific application, a
model update method utilizing a dedicated drift detector has
been proposed for collaborative robots (Kermonov, Nabissi,
Longhi & Bonci, 2023). However, in the steelmaking
process, parts are frequently repaired and reused, and
components following routine maintenance are not
necessarily in optimal condition. Although drift may be
detected, a unique challenge lies in determining what truly
constitutes a normal state. As an example of an approach to
a similar issue, a method that switches between historical
models has been proposed (Agate, Drago, Ferraro, & Re,
2022). However, when numerous models exist, their number
may increase further, complicating management. To address
this issue, this study proposes a method that compares
similar equipment and provides a detailed explanation of the
approach. While Harada, Hirata, Matsushita, Eto & Sato
(2023) provided only an overview of the proposed method,
this paper offers a comprehensive description of its
technical details, specific application results, and a
discussion.

2. HIERARCHICAL ANOMALY DETECTION SYSTEM

Figure 1 illustrates the structure of the developed
hierarchical anomaly sign detection system. The
steelmaking process is characterized by a diverse array of
machinery and equipment organized in a hierarchical
configuration. Accordingly, monitoring is conducted at
three levels: the entire process, the equipment, and the
instruments. At each level, appropriate methods are applied
to ensure effective anomaly detection. This multi-layered
approach enables comprehensive and precise monitoring
from multiple perspectives. Furthermore, the adoption of
flexible and broadly applicable monitoring techniques
facilitates rapid and seamless deployment across various
processes and plants. Another key feature of the system is

its ability to visualize anomaly scores for each monitoring
item using a heat map, thereby enabling efficient and
comprehensive oversight of many monitored points. Figure
2 presents the system configuration and user interface. The
interface displays the monitoring targets along the y-axis
and time along the x-axis, with colors indicating computed
anomaly levels for each cell. When the user clicks any cell,
a pop-up window appears, providing detailed information.
An additional function automatically generates a report that
summarizes anomaly detection trends. This screen is
accessible via the web from control rooms or office
environments, contributing to the rapid diagnosis of
anomalies.

Figure 1. Outline of hierarchical anomaly detection system
using a continuous casting machine.

Adapted from: Harada et al. (2023), Fig.1.
Copyright (2025) The Iron and Steel Institute of Japan

Figure 2. System configuration of hierarchical anomaly
detection system.

2.1. Monitoring methods at each level

At the highest Entire level, where the number of variables
considered exceeds several hundred, Lasso regression
(Tibshirani, 1996) is utilized, as shown in Figure 3(a). Lasso
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regression sets the coefficients of less influential variables
to zero, thereby providing a significant reduction in
unnecessary explanatory variables from a large set. At the
intermediate Equipment level, as shown in Figure 3(b), the
primary method introduced is to monitor inter-variable
correlations using data-driven models (DBM: Data-Based
Models). This method targets systems where multiple data
points change simultaneously. When a new measurement is
obtained, it computes the distance to the previously
registered normal data. This distance is regarded as the
degree of deviation from the normal state. If it exceeds a
threshold, the system is judged to be anomalous. Regardless
of whether the relationships among variables are linear or
nonlinear, if equipment exhibits a definable correlation, it
becomes a candidate for this monitoring approach. In
continuous casting machines, the focus is on flowmeters in
the cooling system and on drive rolls. At the lower
Instrument level, as shown in Figure 3(c), statistical
methods or predefined thresholds are employed for upper
and lower limit control. The data handled at this level
consists of relatively simple indicators, such as motor
vibration values, temperature, and roll gap.

(a) Entire level monitoring: Detecting structural breaks in
correlational data using Lasso regression.

(b) Equipment level monitoring: Monitor anomalies based
on the distance from the normal distribution.

(c) Instrument level monitoring: Statistical Process Control.

Figure 3. Overview of monitoring methods at each
hierarchical level.

2.2. Detection example

As an example of mid-level equipment monitoring, we
focus on the secondary cooling spray in a continuous casting
machine. In this process, molten steel is continuously cast
and cooled to form steel slabs, while the secondary cooling
zone utilizes water sprays for slab cooling. It is well
established that the relationship between the spray’s flow
rate and pressure can be modeled using a quadratic function.
Figure 4 presents a time-series chart of anomaly scores for
the secondary cooling zone, indicating that the scores
gradually increased over several days and decreased
following pipe cleaning. Figure 5 presents a scatter plot
comparing the model data (representing the normal
distribution) with the actual data from three days before and
after the cleaning. During the period immediately preceding
the cleaning, when anomaly scores were elevated, the
distribution shifted upward and to the left relative to the
model data. This suggests that higher pressure was required
to achieve the same flow rate, indicating possible clogging
of the spray nozzles. Following the cleaning, the distribution
returned to a state closely matching the model, indicating
that normal operating conditions had been restored.

Figure 4. Time-series chart of anomaly scores for the
secondary cooling zone spray.
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Figure 5. Scatter plot showing the relationship between flow
rate and pressure in the secondary cooling zone spray.

3.MODEL UPDATING METHOD

Thus far, detection methods and examples of the
hierarchical anomaly detection system have been introduced.
However, as the number of monitoring models grows,
managing the models themselves becomes increasingly
challenging. For instance, in a continuous casting machine,
hundreds of models may be employed, each requiring a
defined normal operational range. Nevertheless, the more
models there are, the harder it becomes to update
continuously and appropriately each one. In most cases,
model updates follow these steps:

(1) Focus on models with relatively elevated anomaly scores
that remain below the detection threshold, as these may still
indicate potential anomalies.

(2) Investigate recent trends to hypothesize the reasons
behind the elevated scores and examine the values of the
relevant variables.

(3) Based on the identified cause, decide whether to update
the model by treating the current values as normal, or to
regard the state as abnormal and refrain from updating.

Steps (1) and (2) can be partially automated, but for step (3),
an engineer with in-depth field knowledge must rely on
experience and insights, which presents a significant
challenge to full automation. Expert engineers often gather
supporting evidence by comparing the current state with
similar existing equipment. The proposed method was
developed with a focus on facilitating decision-making
process.

3.1. Proposal method

Figure 6 presents a schematic diagram of the proposed
method, which estimates normal data by comparing similar
equipment across different time periods. First, assuming
that the time periods correspond to pre- and post-repair or
regular maintenance phases, equipment A and B are divided
into Time Periods 1 and 2, resulting in distributions labeled
A1, A2, B1, and B2. Next, the differences among the four
distribution pairs — (1) A1 vs. A2; (2) B1 vs. B2; (3) A1 vs.
B1; and (4) A2 vs. B2—are evaluated using the Jensen–
Shannon divergence, and a threshold is applied to determine
statistical significance. Finally, as summarized in Table 1,
the appropriate distribution to be used as normal data is
selected for each case. However, for Cases 4 and 13,
identifying whether Equipment A or B represents the
normal condition may be infeasible, making it difficult to
narrow down the possibilities. Subsequently, after
evaluating each signal, the period determined to represent a
“normal distribution” is designated as the new normal
period for the model associated with that signal, and the
model’s normal values are updated accordingly. For

instance, in a model utilizing signals from Case 5 (where B1
and B2 are normal) and Case 14 (where A2 and B2 are
normal), B2—recognized as normal by both signals—is
adopted as the updated normal data. This approach enables
flexible adaptation even in scenarios where multiple signals
exhibit drift.

Fig.6 Comparison of data distributions for Equipment A and
B across two periods.

Adapted from: Harada et al. (2023), Fig.3.
Copyright (2025) The Iron and Steel Institute of Japan

Table 1. Normal distribution judgment table based on
four conditions.

Case
Condition

Normal distribution(1) (2) (3) (4)
1 ○ ○ ○ ○ Nothing

2 ○ ○ ○ - A2, B2

3 ○ ○ - ○ A1, B1

4 ○ ○ - - A1, A2 or B1, B2

5 ○ - ○ ○ B1, B2

6 ○ - ○ - A2, B1, B2

7 ○ - - ○ A1, B1, B2

8 ○ - - - B1, B2

9 - ○ ○ ○ A1, A2

10 - ○ ○ - A1, A2, B2

11 - ○ - ○ A1, A2, B1

12 - ○ - - A1, A2

13 - - ○ ○ A1, A2 or B1, B2

14 - - ○ - A2, B2

15 - - - ○ A1, B1
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3.2. Evaluation method

The verification was conducted by analyzing the actual
current data of the pinch rolls, obtained from a continuous
caster during normal operations. The continuous caster
distributes molten steel from a single tundish to two molds,
producing two slabs simultaneously. Of the two production
lines, one is designated as Equipment A, and the other as
Equipment B. The transport pinch rolls, which consist of
motor-driven rolls spaced at regular intervals, are used to
extract the slab, which has solidified externally. Period 1
was defined as approximately one week prior to regular
maintenance, while Period 2 corresponded to approximately
one week following maintenance. The continuously
collected data, converted into per-slab values, were used as
representative indicators. All conditions (1) through (4)
were tested using a threshold of 0.3 to determine significant
differences between distributions. This threshold was set by
referencing equipment standards and the distributions
observed during past abnormal conditions.

3.3. Evaluation results

Table 2 presents the evaluation results for drive rolls #1
through #4, while the corresponding histograms are shown
in Figure 7. Each histogram overlays the four distributions:
A1, A2, B1, and B2. For Roll #1, all distributions were
classified as normal, and Figure 7(a) illustrates that the
distributions overlap. For Roll #2, all distributions except
A1 were considered normal, and Figure 7(b) confirms that
the mean value of A1 is lower than those of the others. For
Roll #3, all distributions except B2 were judged to be normal,
and Figure 7(c) shows that the mean of B2 is higher than the
other distributions. Although B1 also differs in mean and
variance compared to A1 and A2, its overall distribution
remains within a reasonable range, suggesting that it does
not significantly deviate from expected behavior. As part of
an actual operational improvement initiative, adjustments
were made to the operation in response to the observation
that the values of B2 exceeded the expected normal range.
For Roll #4, either A or B was determined to represent the
normal distribution, and Figure 7(d) reveals a marked
difference between the distributions of Equipment A and
Equipment B.

Table 2. Results of JS divergence and estimated normal
distributions for Drive Rolls #1 to #4.

Roll
JS divergence Case and estimated

normal distribution(1) (2) (3) (4)
#1 0.07 0.02 0.01 0.01 16: All
#2 0.69 0.02 0.40 0.05 6: A2, B1, B2

#3 0.12 1.64 0.01 0.89 11: A1, A2, B1

#4 1.17 0.72 0.10 0.02 4: A1, A2 or B1, B2

Figure 7. Histograms of distributions for A1, A2, B1, and B2

across Rolls #1 to #4.

3.4. Discussion

There remains scope for further exploration regarding the
method used to compare distributions. In this study, we
employed JS divergence, considering its computational
efficiency and symmetrical properties, but alternative
approaches such as the Wasserstein distance, Kullback-
Leibler divergence, or custom drift detection algorithms
could also be considered. However, KL divergence was not
adopted because it is an asymmetric metric, which could
lead to biased conclusions toward either equipment A versus
B or period 1 versus 2. Although Wasserstein distance
offers symmetry, its computational cost becomes significant
for high-dimensional models or non-Gaussian distributions,
which could impact existing system performance. If these
limitations can be addressed, distribution comparison using
alternative methods could be employed to estimate normal
distributions by referencing Table 1. Furthermore, it may be
beneficial to introduce a custom penalty function that
assigns penalties to distributions exceeding the equipment’s
operational limits, based on historical failure data.

Similarly, determining the appropriate threshold values for
drift detection warrants further consideration. In our
verification, a uniform threshold of 0.3 was applied to all
conditions (1) through (4); however, in practical
applications, thresholds should be tailored to the
characteristics of each specific piece of equipment.
Moreover, by assigning distinct thresholds to conditions (1)
through (4), designers can flexibly determine during the
design phase whether to prioritize inter-equipment
variability or temporal changes.

This method is applicable to configurations in which
identical equipment is arranged in parallel, such as multiple
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CVD systems in semiconductor manufacturing lines or
parallel filling machines in food packaging lines, which are
designed to improve throughput. Furthermore, it can also be
applied to equipment with symmetrical structures or
operations, such as sizing presses that apply pressure from
both sides in metal rolling processes, or simultaneous
processing systems for left and right doors in automotive
manufacturing lines. These examples demonstrate the
potential for broad applicability across various industrial
domains.

4. CONCLUSION

In this study, a hierarchical anomaly detection framework
was implemented in a continuous casting machine, which is
an important process in steelmaking, and its detection
results were presented. To address data drift issues in
anomaly detection systems that rely on numerous models, a
method was devised to identify representative normal data
by comparing the distributions of similar equipment. To
validate the approach, we applied the technique to the drive
rolls of the continuous casting machine and confirmed its
practical viability. The proposed method enables a reduction
in reliance on subjective judgment. In the future, integration
of sensor calibration records, repair histories, and system
update logs is planned to achieve further automation.
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