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ABSTRACT

For a complex product, a single performance characteris-
tic(PC) often fails to fully reflect its degradation process,
making it essential to consider the joint degradation of mul-
tiple PCs. In this paper, we propose a bivariate degradation
model based on a shared frailty factor with the truncated nor-
mal distribution, using Wiener processes to characterize the
marginal distributions of the PCs. The assumption of the trun-
cated normal distribution aligns better with the physical back-
ground where the degradation rates of PCs are non-negative
during actual degradation processes. Furthermore, a method
for inferring unknown parameters is developed by employing
the expectation maximization algorithm. Under this model-
ing assumption, it became possible to obtain an analytical ex-
pression for the product’s lifetime distribution on the basis of
the concept of the first hitting time. Therefore, in this paper,
we further extend the normal distribution integral lemmas to
the case of the truncated normal distribution, and provide an-
alytical expression for the cumulative distribution function of
the product lifetime. Finally, the rational effectiveness of the
proposed model and methods is validated through a numeri-
cal simulation example and a case study on wheel wear.

1. INTRODUCTION

The demand for high-reliability products has become in-
creasingly prominent in many fields. Performance degra-
dation has become the main mode of failure for such
products(Kawakubo, Miyazawa, Nagata, & Kobatake, 2003;
Z. Wang, Hu, Wang, Zhou, & Si, 2014). Consequently,
methods for modeling and reliability analysis based on
degradation data of a single performance characteristic(PC)
have been proposed and extensively studied(Lu & Meeker,
1993; Meeker & Escobar, 1998). Among these, the general
path and the stochastic process are two main categories of
performance degradation models. Given the inherent ran-
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domness in products, stochastic process-based modeling
methods have garnered greater attention from scholars. The
Wiener process, in particular, has been widely applied due
to its clear physical significance and favorable mathematical
properties(Whitmore, 1995; Z. Zhang, Si, Hu, & Lei, 2018).

As product functionality becomes more complex, its
degradation usually can be characterized by two or more
PCs(X. Wang, Balakrishnan, & Guo, 2015; Zhai & Ye,
2023). Additionally, these PCs often exhibit interdependen-
cies. Consequently, the issue of multi-PC degradation has
attracted considerable attention recently, with research on bi-
variate degradation problems being the most extensive(Peng,
Li, Yang, Zhu, & Huang, 2016; Xu, Wang, Zhu, Pang, &
Lian, 2024). Currently, the method based on the copula func-
tion is an important mean of addressing such issues(X. Zhang
& Wilson, 2017; F. Wang & Li, 2017; Zheng, Chen, Lin, Ye,
& Zhai, 2023). This method describes the marginal degra-
dation processes and the relationship between PCs through
single-PC degradation models and a copula function. Since
these two aspects are considered separately, this approach
does not impose restrictions on the types of marginal degra-
dation processes, offering great flexibility in modeling.
However, the selection of copula functions is based solely
on certain information criteria in most cases, which may
lack intuitive significance. And it is worth noticing that the
lifetime distribution of the product in the sense of first hit-
ting time(FHT) cannot be expressed analytically due to the
complexity of copula functions.

To address the above issues, a new bivariate degradation
model based on the shared frailty factor is proposed by Xu et
al.(Xu, Shen, Wang, & Tang, 2018). The shared frailty factor
was initially introduced in the field of biostatistics to capture
the common risk faced by multiple populations(Hougaard,
2000; Michiels, Baujat, Mahé, Sargent, & Pignon, 2005). In
the mathematical model, the shared frailty factor is typically
assumed to be a random variable, representing the common
random effect induced by factors that cannot be quantitatively
described, which affect the different populations. Specifi-
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cally, this random variable is often defined as following a
distribution that is always positive with a mean of 1. This
assumption is made because negative frailty factors have no
practical meaning. And the assumption of a mean of 1 im-
plies that the frailty factor has a ’neutral” effect on the failure
time, preventing the frailty factor from having either an ex-
cessively large or small influence on the model. Based on
this concept, Xu et al.(Xu et al., 2018) introduce a shared
frailty factor in the drift term of the Wiener processes to
model the correlation between two PCs. More importantly,
an analytical expression for the FHT’s lifetime distribution
can be obtained in reliability analysis under this model as-
sumption. Subsequently, this method has attracted growing
interest(Yan, Wang, & Ma, 2023; Song & Cui, 2022; Barui,
Mitra, & Balakrishnan, 2024).

However, it is important to note that when using the Wiener
process to establish the marginal degradation processes of the
PCs, the shared frailty factor is typically assumed to follow a
normal distribution(Xu et al., 2018; Yan et al., 2023). This as-
sumption often does not reflect real-world scenarios and does
not align with the physical significance of the shared frailty
factor. On one hand, the degradation rates of products are
generally typically either always positive or always negative,
and a reversal of the degradation rates does not occur, such as
crack propagation(Meeker & Escobar, 1998) and battery ca-
pacity decline(Zhu et al., 2022). On the other hand, the frailty
factor, from a physical perspective, is expected to add a frail
component to the degradation process, leading to accelerated
or slowed product failure. Therefore, using a normal distri-
bution to model the shared frailty factor often overlooks its
non-negativity constraint. When the dispersion of the shared
frailty factor is small, this assumption does not cause signif-
icant errors. However, in real-life scenarios, the shared ran-
dom effect usually cannot be ignored. Using the normal dis-
tribution to model the shared frailty factor in such cases can
lead to an inadequate representation of the product’s degrada-
tion process and adversely affecting the accuracy of reliability
analysis.

To tackle this problem, we propose an improved bivariate
degradation model along with the corresponding parameter
estimation method and further derive the analytical expres-
sion for the FHT’s lifetime distribution. The main contri-
butions of this paper are as follows: first, we consider the
non-negativity constraint of the shared frailty factor by mod-
eling it with the truncated normal distribution, combined with
the linear Wiener process to establish a bivariate degradation
model. Further, considering the unobservability of the shared
frailty factor, we employ the expectation maximization(EM)
algorithm to obtain the maximum likelihood estimates of the
parameters. Based on this, we further extend the existing nor-
mal distribution integral theory to derive the analytical ex-
pression for the cumulative distribution function(CDF) of the

FHT’s lifetime distribution, from which the reliability func-
tion can also be easily obtained.

The remainder of this paper is organized as follows. In Sec-
tion 2, we conduct a bivariate degradation model that utilizes
the truncated normal distribution for the shared frailty factor
and linear Wiener processes, along with the method for esti-
mating unknown parameters using the EM algorithm. In Sec-
tion 3, we present the derivation of the analytical expression
for the product’s lifetime distribution in the context of FHT. A
numerical simulation example and a case study are provided
to validate the proposed method in Section 4. Finally, Section
5 concludes the paper.

2. MODEL CONSTRUCTION
2.1. Model Description

Assuming that two PCs degrade simultaneously during the
product’s usage, and the sth PC is defined as X(t), s = 1, 2.
Generally, the linear degradation pattern is commonly ob-
served in engineering products, and many nonlinear patterns
can be transformed into the linear one through certain con-
versions. Further considering the inherent random effects of
the product, we employ linear Wiener processes to describe
the marginal degradation processes of the two PCs. For the
two PCs of the same product, they are often influenced by the
same external environment, internal coupling failure mecha-
nisms, and similar manufacturing defects, which leads to the
degradation of the two PCs not being completely indepen-
dent. To describe the shared failure risk caused by unknown
factors affecting the two PCs, a shared frailty factor is in-
troduced. Since these risks are random, the frailty factor is
modeled as a random variable. To avoid altering the inher-
ent degradation patterns of the two PCs, its mean is set to 1.
Therefore, the degradation model for the sth PC is as follows

My : Xs(t) = aust + 0sB(t),s = 1,2 (1)

where s and o are the drift coefficient and the diffusion co-
efficient of the sth PC; B(-) is the standard Brownian motion;
« is the shared frailty factor, representing the common ran-
dom effect on the degradation rates of the two PCs caused by
experiencing the same environment, load, or operating condi-
tions. Therefore, « is typically modeled as a random variable.
Consequently, the correlation between the two PCs is natu-
rally described. At the same time, for each individual PC, the
individual variability is also characterized.

In existing research, the shared frailty factor is typically as-
sumed to follow a normal distribution. However, as men-
tioned earlier, the degradation rate of products is generally not
negative in practical scenarios. Thus, it is usually assumed to
be a positive random variable with a mean of 1. Under the
normal distribution assumption, the probability of the shared
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frailty factor being negative is often considered negligible,
which clearly contradicts objective reality and our expecta-
tion. This assumption leads to the model that inadequately
describe the degradation behavior of the two PCs, resulting
in irrationality in reliability analysis.

To ensure the non-negative nature of the shared frailty factor,
we assume that it follows a truncated normal distribution, de-
noted as & ~ T'N (i, 02). Its probability density function
can be expressed as

o(s2)
f(Ol) = 7“’
o (i)
where ¢(-) and ®(-) denote the PDF and the CDF of the nor-

mal distribution, respectively. Correspondingly, the mean and
the variance of « can be written as

a>0 2)

E(a) = pa +
¢ (52
) () )
Var(a) = 02 — 02 2 To) 4 Ha
e(s) \e(s) o

It is important to note that, as previously stated, the mean
of « is defined to be 1. Therefore, u, and o, can be
solved correspondingly according to (3), indicating that there
is only one unknown parameter in the distribution of a.
Therefore, the unknown parameters to be estimated is © =
{1, 2, 03%,03,04}. In the next subsection, we will provide
the parameter estimation method.

2.2. Parameter Estimation

Effective model parameter estimation is very important for
a reasonable reliability inference. For our proposed model,
the complete likelihood function requires integration over
a. The assumption that o follows the truncated normal dis-
tribution makes the expression of the complete likelihood
function quite complex, making it difficult to directly max-
imize. To address this issue, we employ the EM algorithm,
which has demonstrated excellent performance in the pa-
rameter estimation problem involving latent variables. The
algorithm consists of the expectation-step(E-step) and the
maximization-step(M-step). The E-step aims to obtain the
expected log-likelihood function, thus avoiding the challenge
mentioned above. And the M-step maximizes this expected
log-likelihood function to estimate the model parameters. It-
eratively applying the E-step and M-step continues until con-
vergence, resulting in the final estimates of the unknown
model parameters. During the iteration process, the objec-
tive function value of the EM algorithm is monotonic and

bounded above, which contributes to the good convergence
properties of the algorithm.

Assuming that a total of m units are involved in the test, each
unit is jointly characterized by two PCs to represent its degra-
dation. Therefore, the observed degradation can be denoted
as x;s; for the sth PC of the ith unit at measurement time
tisj» © = 1,2,....m, s = 1,2, 5 = 1,2,...,n;,. Fur-
ther, considering the independent increment property of the
Wiener process, we can define the increment of degradation
and time as Aw;s; and At, where Az = Tisj — Tig(j—1)
and At = tisj — tis(j—1)- Here, we first assume a; is ob-
servable for unit ¢, and set Q = {1, aa,...,amn}. The spe-
cific steps will be illustrated using the iteration at the [ + 1th
step as an example. Let the model parameters derived from
the Ith iteration are 1) = {u{" 1 52D 520 51y and
next we will carry out the [ + 1th iteration.

E-step:  calculate the expected log-likelihood function

Qelx,e0).

Q(01x,0") = Eqow L(O|X,Q)
_ - o\ E(ef) = 2uaB(e) + 2,
C+;{exp{aa<b (aa)} 952

[e3

m 2 nis

YYY Elnag%ln(misj)

i=1 s=1 j=1

n (Amigj)? — 20z s Atis; E(0v;) + i (Atisj)2 E(a?)]

202 At
4)

where C'is a constant, E(o;) and E(a?) represent the expec-
tation of a;; and 2.

From the Eq.(4), it can be seen that we need to obtain the val-
ues of F(«;) and E(a?). Using statistical knowledge, E(a?)
can be calculated through E(a?) = (E(a;))?+D(o;), where
D(w;) is the variance of ;. Therefore, what we essentially
need is to obtain the mean and variance of «;, which can be
inferred through statistical inference from the posterior distri-
bution of «;. Using the parameter estimates from the /th itera-
tion, the prior distribution of «; for the [ + 1th iteration can be
directly obtained. Further, by combining the observed data,
the likelihood function can be written, and thus, the posterior
distribution of c; can be obtained using Bayes’ theorem. The
detailed process can be written as

p(ai|X,00) o« p(X|ay, D )p(e;|0D)  (5)

From Eq.(5), it can be obtained that the posterior distribution
of «; remains the truncated normal distribution, denoted as
i ~ TN (pHD) | 204Dy

at 'Y at
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s=1

_ 2 6)
! ! 1 —1 (
=2 [ (203 () |

s=1

At this point, the complete expression for Q(0|X, ©(")) can
be provided, and then it need to be maximized. Next, we can
perform the M-step.

M-step: maximizing the expected log-likelihood func-
tion. From Eq.(4), the expected log-likelihood function
Q(0]X,0W) can be divided into two unrelated parts, de-
noted as Q1(01|X,0") and Q(c,|X, W), which can be
maximized separately, where ©1 = {u1, y2, 07,05 }. Their
specific expressions can be written as

m 2
01(61]x,00) = ZZZ[ mo? 4 ln(A isi)

i=1 s=1j=1

20z Atis; B(ci) + 12 (Atis;)” E(0?)
QUEAtiSj

Qulrulx.0) =3~ {op {ou (52 )}
i=1 @

| E(0?) — 2uaBlag) + 42
202

N (Amig;)? —

@)

For Q1(0,]X,©"), we can obtain the estimate of ©; by set-
ting its first derivative with respect to the unknown parameters
to zero. Then we can express the analytical estimates of the
unknown parameters for the [ + 1th iteration as

‘u(lJrl) _ Z;’ll E (al) Tisng

>imi B(ef)tisn,,
1 T | (Azg)
2(14+1) _ (N
Ts =< E E ®)
Z?ll Nis i=1 j=1 Atls]

l l 2 2
72A$Z‘Sj‘u((€ JrI)E‘ (Oél) + (,LL(‘g +1)> AtiSjE(Oéi ):|

where s = 1, 2.

For Q,(04|X,0W), its expression is more complex, mak-
ing it impossible to obtain an analytical estimate for o, in
the same way as maximizing Q(0,|X,0"). Therefore,
a numerical optimization algorithm is needed to solve this.
Specifically, we employ the “fminbnd” function in MATLAB.

By following the above steps, ©(*1) can be obtained. We

can then continue the iteration until the change in parameters
reaches a predetermined threshold, indicating that the algo-
rithm has converged. Specifically, the EM algorithm is con-
sidered to have converged when the absolute values of the
relative changes of all parameters are less than 10-6. The
parameters obtained in this iteration will serve as the final es-
timates.

Additionally, it is important to note that the algorithm re-
quires initialization of the unknown parameters at the begin-
ning, meaning that initial values for the unknown parameters
must be provided. The appropriateness of initial values can
significantly impact both the accuracy and efficiency of the al-
gorithm. Therefore, to construct effective initial guesses that
can avoid slow convergence or local optima far from the true
MLE, we propose a four-step method. The specific steps are
as follows.

1) Calculate the degradation rates p;s of the two PCs for all
units through linear fitting, ¢ = 1,2,...,m, s = 1,2, the
specific calculation process can be provided as

Tisngs

fiis = 9)

tisnis

2) Obtain the initial guess of {1, 2} by calculating the mean
of fiss

~ Mis
fs = "> (10)
3) Get the initial value of {0?, 02} by MLE
mo Mg 2
L. = H H B (Azis; — tisAtisy)
Fale B /27r02AtW 202 At;;
11
Then the expression of 62 can be derived as
. 1 T | (Azggy)
62 = ST e Z Z % — 2AZgj s + HE At
i=1""s 529 5 iSj

12)
4) Obtain the initial guess of o, by MLE

L) -

i=1 0o ® (%Z)

where «; can be calculated as

_ Ha + a2

14
P (14)
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In the actual computation, the calculation of o, needs to be
carried out using a simple numerical optimization algorithm.
In this study, we implement it using the “fminbnd” function
in MATLAB.

3. RELIABILITY ANALYSIS

As a key issue in practical engineering, lifetime distribution
under the conception of FHT are focused in this section. For
a bivariate degradation situation, a product is considered to
have failed when either PC reaches its failure threshold. We
define the FHT;s lifetimes of the two PCs as T3 and 75. Con-
sequently, the product’s lifetime 7' is taken as the minimum
of T and T5. The specific form of the product lifetime distri-
bution Fp(t) can be expressed by

Fr (t) = FT] (t) + FT2 (t) - FT],TQ (t7t) (15)

where Fr, (t) and Fr, (t) are the lifetime time distributions
of PCy and PCy, respectively. Fp, 1, (¢,t) is the joint lifetime
distribution of the two PCs. As discussed earlier, when «
is a deterministic value, the two PCs are independent. This
means that when « is known, Frr, 7, (¢,t) can be expressed as
the product of Fr, (t) and Fr,(t). Therefore, the conditional
lifetime distribution of the product with respect to o can be
expressed as

Frio (t|la) = Fryjo (ti|a) + Fryjo (t2|a)

16
— Frjo (1) Fryjo (t2 o) (1o

where Fr | (t1|a) and Fp,), (t2]a) are the conditional
lifetime distribution of PC; and PCs with respect to «, re-
spectively. It is well known that, for a linear Wiener process,

the FHT’s lifetime distribution follows an inverse Gaussian
distribution. As a result, these two lifetime distributions can
be written as

—Ws + apsts
Fria (tsla) =@ | ———222
4o (ts o) ( —ch )

200t sws —Ws — st
+ ex P ,s=1,2
p{ o2 os\/ts

where wq and wo are the failure thresholds of the PC; and
PCo, respectively. However, considering the model proposed
in this paper, « is a random variable. Therefore, in or-
der to obtain the complete CDF of 7', we need to integrate
Frjo (t|a) with respect to . Essentially, we need to derive
the expectation of Frr|, (t|a) with respect to a.. Therefore,
the unconditional CDF of 7' can be represented as

a7)

Fr(t) = Eo (Fryja (t|a)) + Ea (Fryja (t]a))

(18)

- Ea (FTl\oz (t |a) FTQ\OL (t |OZ))
where  E, (Fryjo (tla)) and E, (Frya (tla)) are
the unconditional CDFs of 77 and 75, respectively.
Eo (Fryja (t|o) Pryo (t|o)) is the unconditional joint
CDF of T and T5.

Building upon Theorem 4 in (Pan, Liu, Huang, Cao, & Al-
saedi, 2017), we further extend it to the shared frailty factor
model proposed in this paper, and the specific expressions for
E. (Fr,jo (t]a)) can be given as

E (F (t |a)) — ! Ha P —Ws + flaflst —Ws + flaftst _ Ha O'a,us\/7E
o \FTs|a o /02t + 02 1212 % 1 02212 Oy 21 2,2
o Os + 0ol g3 + Oa s o Og + Oals
2 w 202 j12w? wso? 4+ o2t + 2wso2 2t
+exp ( /Ja/és s 4 a/’is s) w @ [ 9% 2:“04,“28 s ] 282 als (19)
05 Os oi\/o;t +ojust

&, (_wsog + Paptso2t + w0l ut

o\ oit + ok uit?

where s = 1, 2.

Next, we need to provide the specific expression for the other
part of Fr (t), namely the joint lifetime distribution of the
two PCs, which are E, (Fr,|q (t|a) Fryja (t]a)). Com-
pared to existing research on single PC degradation consid-
ering random effects, the dimensionality of the joint lifetime
distribution increases, making the expression of the condi-
tional lifetime distribution with integrals more complex. Si-
multaneously, in contrast to the current studies where the
shared frailty factor is assumed to follow a normal distri-

TattsVt
o+ ojult

_ Ha . QUaMsws
2
Oq gy

bution in bivariate degradation modeling, the assumption
of a truncated normal distribution introduces non-complete
real-number limits for the integral bounds, thus necessitat-
ing further consideration of the truncation effect. Over-
all, the conclusions derived from existing studies on FHT’s
lifetime distributions do not apply to the model proposed
in this paper. Therefore, to derive the explicit expression
for Eo (Fryja (t|a) Fryje (t|a)), we introduce Lemma 1,
Proposition 1, and Proposition 2.
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Lemma 1 ((Owen, 1981)). if Z ~ N(u,0?) and a1, as, a3, as € R, then the following holds

as al agay as a4

Yy
D (a1 + a22) D (az + as2) ¢(2)dx = tvn , Y ,— ,—
/ : Vita Vi+a3 7 /U +a3)(1+a3) 14463 /1443

— 0o

(20)
where ton(-) is the cumulative distribution function of a three-dimensional normal distribution.
Proposition 1. if Z ~ TN (u1,0?) and A1, As, A3, A4 € R, then the following holds
1 A+ A A3+ A A Ayo?
By (® (A1 + A7) ® (A3 + A7) = \/1 2l \/3 A \/ 2 ;*/
1+ AQO’ 1 + A40’ 1 + AQO' 1+ A40’
21
A1 + AQ/J A3 + A4/J /J A2A40' _ AQO' B A40’
\/1+ 4207 14 (A0 7 1+ (P14 (a0 1+ () 1+ (Aao)?
where bun(-) is the cumulative distribution function of a two-dimensional normal distribution.
Proposition 2. if Z ~ TN (u1,0?) and By, Ba, Bs, By, Bs € R, then the following holds
1 B2o?
Ez (exp (BsZ) ® (B1 + B2Z) @ (Bs + By Z)) = m exp | Bsu + —5
< lbon B1 +BQ,LL+BQB5O'2 + Boop B3+B4,LL—|-B4B5O'2 +B40’,u. BQB4O'2
/14 (Bao)? J1+ (Buo)? V14 (B2 1+ (Buo)?
(22)

By + Bopi+ ByBs50® + Boop B3+ Baji+ ByBso? + Byop K ByByo?
—ton , — Bso;

J1+ (Bao)? ’ J1+ (Bio)? 1+ (Bao? 1+ (Bio)
B

The proof of the above propositions can be found in Ap-

pendix. Based on Proposition 1 and Proposition 2, the spe- Fror, (0, ) =U1+Us+Us+ Uy (23)
cific expression of Frr, 1, (t,t) can be given as

where

+oo _ _ -1 _ _
U1=/ <1>< “’1+0‘“1t)<1>( w2+a“2t> fla)da = <¢> (““)) {bvn( ST ihefte, w2+“2w2““;p1p2>
0 o1Vt o2Vt Oa b3

P4 P3p4
_tm(—wl +Wife —W2 + powalla  fla P1P2 P1 _m)}
p3 ’ P4 " 0o p3ps’ Pz pa

+oo 2 _ t _ _ t o -1 2 o 2 2
e [en e () () (2] e )
0 op o1Vt oo/t o o o5

e} 2

x [bvn (_“’1 + (Wi fia + 2D1P605 ° + Piila —Wa — faWafla — 2P2P6Ty © — Pafla _p1p2>

9

b3 D4 " p3pa
ton <—w1 + Wi la + 21605 © + Piita —wa — pawatia — 2PapsTy - — P2ha _ o 2ps . PPz P1 272)]6

, e

Ps3 Pa Oa 05’ p3pa’ p3 P4
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+00 -1 2
201 w1 } (—w1 — ault) (—w2 + amt) ( (,ua>> (2,u1w1,ua 2p5>

U. =/ exp ——— ¢ @ (0] a)da=(P | — exp| ——=—— + —>
° 0 p{ U% o1Vt o2Vt fe) Ou P ‘7% Uil

% {bvn (—wl — MWifa — 2p1p501_2 — Pifa —WwW2 + Howalla + 2p2p50'1_2 + P2bla . P1P2

Ps3

P4 ’ p3p4>

—ton <W1 — [MW1fa = 2P1P50T 2 — Pijla —Wa + HaWafla + 2PaP507 -+ Pofia fla 2P P12 P1 _pz)]

b3

P4 Oa 0 p3pap3 Da

Toe 20wy 20iows —wy — apgt —wy — ot
Uy = / ex { + } P ( ) P ( ) a)do
! 0 P of o3 o1Vt oo/t fle)

-1
o 2w 2ow
_ <<I> (M )) exp(( M12 L ,u22 Q)Ma-F
Oa o1 o3

2 (p205 + 2pspeoio? + piot)
otos

{bm (—m — w1 fla — 2P1P50y > — 2P1P6OT - — Pilla —Wa — HaWakle — 2P2P505 - — 2Pape0y > — Pajle P1P2

b3

D4 ’ DP3P4 )

) )

—tun <_w1 — 1 Difia = 2p1p505 > — 2p1p60y ” — Pifia —Wa — powafia — 2PaP505 - — 2Papes - — Pafia

b3
_Ha 295 26 pip2 P pz)]
0o 07 03 psps p3 pa
where
P1 = 10t
D2 = U204t

Therefore, combining Eq.(19) and Eq.(23), we can obtain

4. CASES STUDY

In this section, we provide a numerical simulation example
and a wheel wear case study to demonstrate the validity and
efficacy of the proposed model and methods. First, in the nu-
merical simulation example, we verify the effectiveness of the
parameter estimation and reliability analysis methods. Fur-
thermore, we showcase the advantage of our model through a
case study of wheel wear.

4.1. Numerical simulation example

Initially, a numerical simulation example is conducted to val-
idate the performance of the proposed parameter estimation
and reliability analysis methods. The unknown model param-
eters (1, pa, 02,03, 04) are set to (1.2, 1, 0.16, 0.09, 0.6).
The simulation approach is as follows: first, the vulnerabil-
ity factor ay; for the ith unit is generated from the truncated
normal distribution TN (p14,02), 4 = 1,2,...,m. Next, the
degradation processes are generated from the perspective of
independent increments, leveraging the conditional indepen-
dence of X (t)|a and X2 (t)|c. We consider that the two PCs
are measured simultaneously, and the measurement interval

p3 = /ot + pio2t?
ps = /o3t + p3o2t?

2

Ps = 110«
D6 = H2W20q

Fr (t). And then, we have completed the reliability analy-
sis.

At is defined as 0.1, which means that measurements are
taken at time ¢t = 0.17, j = 1,2, ..., n. Here, m and n repre-
sent the number of units and measurements, respectively. To
thoroughly evaluate the performance of the proposed parame-
ter estimation method, we tested its stability and accuracy un-
der different sample size settings. Therefore, we consider dif-
ferent combinations of sample sizes and measurement counts,
specifically setting m to (5, 15) and n to (10, 20). For each
condition, we perform the simulation 1,000 times to obtain
the mean and root mean square error(RMSE) of the estimated
parameters. The results are presented in Table 1. The param-
eter estimation results indicate that, regardless of whether the
unit size m is small or large, the mean of the estimates is very
close to the true value. Additionally, as the number of mea-
surements increases, the RMSE results show an improvement
in the precision of the parameter estimates, which aligns with
objective trends. These conclusions validate the effectiveness
of the proposed parameter estimation method.

Furthermore, we set the failure thresholds of the two PCs, wy
and wo, to 5 and 4, respectively. Using the proposed analyti-
cal reliability analysis method, we obtained the CDF curve of
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Table 1. Mean and RMSE of the parameters estimates based on 1000 replications.

(m,n) Indices 1 15 o? o3 Ou
(5.10) Mean 1.1993 1.0090 0.1583 0.0890 0.5652
’ RMSE 0.3276 0.2717 0.0349 0.0195 0.5008
(5.20) Mean 1.2040 1.0051 0.1581 0.0899 0.5680
’ RMSE 0.3062 0.2550 0.0233 0.0131 0.4282
(15.10) Mean 1.2017 0.9974 0.1591 0.0896 0.5987
’ RMSE 0.1884 0.1575 0.0201 0.0114 0.2838
(15.20) Mean 1.1993 1.0035 0.1595 0.0901 0.5981
’ RMSE 0.1805 0.1457 0.0135 0.0079 0.2288

the product’s lifetime under the concept of FHT. We also in-
cluded the curves obtained through Monte Carlo simulations
as the benchmark for comparison. Specifically, based on the
true values of the model parameters, we simulate the product
degradation path using the independent increment property
of the Wiener process to obtain the product’s lifetime. This
process is repeated multiple times, and the lifetimes are sta-
tistically analyzed to obtain the CDF curve. The results are
shown in Fig.1. It can be observed that the lifetime distribu-
tion curves obtained from both methods(the proposed analyti-
cal reliability analysis method and the Monte Carlo numerical
simulation method) show very little difference, which verifies
the effectiveness of the reliability analysis method proposed
in this paper.
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Figure 1. the CDF curve of the FHT’s lifetime of the simula-
tion example.

4.2. Real application

In this section, a practical engineering example is provided.
For trains, wheel wear is one of the primary factors leading
to a gradual decline in performance. When the wear reaches
a certain fixed value, it is considered that the train has failed
and can no longer operate. Therefore, the wear amount on
the wheel diameter can be taken as an PC of train perfor-
mance. Freitas et al.(Freitas, de Toledo, Colosimo, & Pires,
2009) published a dataset depicting wear of a specific wheel
from 14 trains continuously monitored by a railway company

in Brazil. Following the common data processing method
adopted by current existing bivariate degradation studies, the
14 wheel samples are divided into two groups, each treated
as a PC, as shown in Fig.2. Actually, we consider a prac-
tical scenario in which a train has two critical wheels. The
degradation of each wheel can be regarded as a PC, and the
failure of either wheel would result in the failure of the en-
tire train. Since the two wheels of the same train experience
the same environment, load, and operating conditions, their
failure processes exhibit interdependence. The degradation
measurement is the wear value of wheel diameter, and it is
defined that the wheel is considered to have failed when the
wear reaches 77 mm.
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The proposed model is defined as My and adopted to
fit the degradation data in Fig.2. And model parameters
(p1, po, 03,03, 04) are estimated as (0.0908, 0.1115, 0.0052,
0.0136, 0.8247). Model M; defined in Section 4.1(the shared
frailty factor follows a normal distribution) is applied as a
reference, AIC values 360.65 for My and 362.12 for M; are
obtained to demonstrate the fitting goodness. Clearly, My il-
lustrates a better fitting goodness.

In addition, comparative results of life distribution CDF curve
obtained from My and M; are shown in Fig.3. It is evident
that there are noticeable differences between the reliability
analysis results estimated by the two models. Specifically,
the CDF of product lifetime describes the probability that the
product will fail at or before a specific time, serving as an
important indicator for assessing the reliability of a product.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

From Fig.3, it can be seen that when the product failure prob-
ability is low, M; provides a more optimistic estimate of the
product’s lifetime compared to My, suggesting a longer prod-
uct lifetime under the same failure probability. This may lead
to potential risks in practical engineering due to the failure to
perform timely maintenance, highlighting the need for proac-
tive maintenance. On the other hand, as the failure probability
of the product increases, M offers a more conservative esti-
mate, which may lead to unnecessary waste of maintenance
resources. In this case, the frequency of preventive mainte-
nance can be reduced.

Furthermore, to evaluate the goodness-of-fit, the empirical
CDF curve is obtained using the Kaplan—Meier method, and
the results are shown in Fig. 3. It can be observed that the
CDF estimated based on model My exhibits good agreement
with the empirical CDF. From a quantitative perspective, the
goodness-of-fit of the two models was compared by calculat-
ing the area difference between the estimated CDF and the
empirical CDF. The area differences for models Mg and My
were 620.61 and 847.13, respectively. As the area difference
of model My is smaller, it indicates that model M, provides a
more accurate prediction of the lifetime distribution.

For a better understanding, we provided the estimated val-
ues for the two quantile lifetimes, ¢y.1 and % 5, as shown in
Table 2. The results indicate that inaccuracies in model es-
timation can lead to significant biases in the reliability esti-
mation results. As mentioned earlier, when the product’s fail-
ure probability is low, such as p = 0.1, M; provides a more
optimistic estimate, with the estimated ¢( ; being larger. Si-
multaneously, when the failure probability increases, such as
p = 0.5, M; offers a more conservative estimate, with (5 be-
ing shorter. In both cases, this could lead to the formulation
of unreasonable maintenance strategies, resulting in either the
occurrence of risks or the waste of resources.
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Figure 3. the estimated product FHT’s lifetime distribution
CDF curves

Table 2. Estimation of ¢y 1 and ¢q 5 for the train wear failure
using My and M; .

Model t51(x10%km) tg 5(x10%km)
My 367.52 748.98
M, 380.24 690.59

5. CONCLUSION

This paper aims to investigate the issues of bivariate degrada-
tion modeling and reliability analysis. Considering the physi-
cal background where the degradation rates of PCs are always
positive or negative during the actual degradation process, we
propose a bivariate degradation model based on Wiener pro-
cesses and a shared frailty factor with the truncated normal
distribution. Furthermore, a specific estimation method for
the unknown model parameters is provided based on the EM
algorithm. Building on the existing normal distribution inte-
gral theory, we present the propositions for the bivariate trun-
cated normal distribution integral, and further provide the an-
alytical expressions for the CDF of product lifetime under the
FHT framework.

Next, a numerical simulation example is used to validate the
effectiveness of the proposed parameter estimation method
and the correctness of the analytical expression for the FHT
lifetime distribution, demonstrating excellent performance
even under the small sample condition. Furthermore, a case
study on wheel wear is conducted to validate the practical
significance of the proposed model.

In the future, we plan to consider commonly observed non-
linear degradation and sensor noise in engineering products,
and to investigate the new challenges they pose for parameter
estimation and reliability analysis. In addition, we recognize
that maintenance is crucial for ensuring product reliability,
and thus we also aim to develop corresponding maintenance
decision-making methods.
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