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ABSTRACT

Neural networks have been widely applied in system dynam-
ics modeling. However, traditional neural networks still en-
counter limitations in capturing long-term dynamics, nonlin-
ear modeling, and interpretability. To address these chal-
lenges, this study proposes a novel neural network archi-
tecture, Deep Stacked State-observer based Neural Network
(DSSO-NN). Firstly, the state-space representation is intro-
duced, integrating discretized state-space equations into the
neural network design to leverage both system state informa-
tion and deep learning capabilities. Subsequently, two op-
timization measures are employed to enhance the network’s
nonlinear modeling ability with activation functions and the
state observer, respectively. Finally, DSSO-NN is validated
using the Case Western Reserve University bearing dataset.
Experimental results demonstrate that activation functions
provide minimal improvement to model performance. In con-
trast, the incorporation of the state observer significantly en-
hances the DSSO-NN’s ability to capture system dynamics
behaviors and improves modeling accuracy. DSSO-NN ex-
hibits higher precision and greater stability, offering a novel
perspective on using the state observer as an alternative to
traditional activation functions.

1. INTRODUCTION

In the context of the continuous development of neural net-
work and deep learning theories, significant progress has been
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made in various fields, particularly in applications such as
system dynamics modeling (Sarker, 2022) and fault diagnosis
(Ruan, Chen, Giihmann, Yan, & Li, 2022). However, when
dealing with nonlinear, time-varying, and multivariable sys-
tems, existing neural network architectures still face numer-
ous challenges. Traditional neural networks often struggle to
effectively capture the dynamics characteristics related to sys-
tem states, failing to fully exploit the rich information inher-
ent in the system. Despite certain breakthroughs in nonlinear
modeling, current methods remain insufficient in addressing
the complex dynamics in real-world systems, such as non-
linear interactions and time-varying parameters (Ren, Liu,
Cheng, Ma, & Li, 2023). Additionally, the issues of inter-
pretability and stability of neural networks in dynamics sce-
narios have not been effectively resolved, which limits their
widespread application in safety-critical domains (Li, Zhang,
Li, & Si, 2024). Therefore, enhancing the performance of
neural networks in dynamics modeling, particularly in cap-
turing complex time-varying behaviors, improving nonlinear
modeling capabilities, and effectively integrating dynamics
information from physical models into the learning process,
remains a pressing scientific challenge.

The state-space model, with its ability to describe system dy-
namics in a structured and interpretable form, offers a promis-
ing foundation for addressing these challenges. This has
led researchers to integrate conventional state-space models
with neural network frameworks, culminating in the develop-
ment of the State-space Neural Network (SS-NN) architec-
ture (Amoura, Wira, & Djennoune, 2011). A notable ben-
efit of state-space models is their capacity to explicitly de-
lineate system state variables and dynamics processes, which
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frequently enhances interpretability. Amoura et al. (Amoura
etal., 2011) proposed SS-NN for modeling nonlinear dynam-
ics systems, proving its capability to estimate nonlinear re-
lationships by substituting physical matrices with trainable
ones. Rangapuram et al. (Rangapuram et al., 2018) proposed
a state-space model for time-series forecasting, parameter-
ized using a Recurrent Neural Network (RNN) trained with
both time-series and dataset co-variants, confirming its ap-
plicability for bearing data as a type of time-series. Hauser
et al. (Hauser, Gunn, Saab Jr., & Ray, 2019) applied state-
space representation to understand deep neural networks,
demonstrating that the Residual Neural Network (ResNet)
(He, Zhang, Ren, & Sun, 2015) can be represented as a state-
space neural network, with skip connections equivalent to
first-order systems. Although SS-NN architecture has shown
significant success in various fields, it still faces considerable
challenges in modeling complex nonlinear and time-varying
dynamics systems. Traditional state-space models typically
assume linear system dynamics, whereas many real-world
systems exhibit highly nonlinear behavior, making such mod-
els inadequate for capturing these complexities.

To overcome the limitations of current neural network mod-
eling methods, improve the handling of dynamics system
states, and enhance nonlinear modeling, interpretability, and
generalization, this paper proposes an innovative modeling
framework-Deep Stacked State-observer based Neural Net-
work (DSSO-NN). DSSO-NN integrates the structural repre-
sentation capability of state-space models with the powerful
fitting ability of neural networks. By incorporating a state ob-
server mechanism, DSSO-NN efficiently constructs complex
dynamics system models while providing real-time estima-
tion of internal states. The main contributions of this study
are as follows.

* Innovative network architecture design: A novel neural
network framework is proposed, enabling the seamless
integration of dynamics system state information with
the deep learning capabilities of neural networks.

* Enhanced nonlinear modeling via optimization: By com-
paring the effects of optimization strategies using activa-
tion functions and the state observer, DSSO-NN reveals
robust nonlinear modeling capabilities, attributed to the
inclusion of state observer mechanisms.

e Validation with experimental data: The effectiveness
of the proposed method is validated through modeling
experiments on the Case Western Reserve University
(CWRU) bearing dataset, underscoring its potential for
applications in system dynamics modeling.

The rest of this paper is organized as follows: Section 2 intro-
duces the state-space model and the state observer. Section 3
describes the design of DSSO-NN, along with the dataset and
pre-processing operations, and presents the results on the sin-
gle state-space layer. Section 4 compares the impact of two

optimization approaches on the performance of DSSO-NN.
Section 5 is the discussion. Section 6 concludes the paper,
summarizing the findings and outlining potential directions
for future work.

2. METHODOLOGY
2.1. State-space model

By creating a neural network with time-related hidden state,
the model could fit and predict certain nonlinear dynamics
systems. The mathematical expression for a state-space rep-
resentation is given by Eq. (1) (Luenberger, 1967):

1
y=C-z+D -u’ 0

{9’6 =A-z+B-u
where x represents the hidden state of the model, w is the in-
put, & is the differentiation in time, and y is system output.
The number of state variables d in the state-space model rep-
resents the model’s order. For a dth-order Multi-input Multi-
output (MIMO) system with m-dimensions of input and n-
dimensions of output, the dimensions of parameter matrices
are calculated as: A € RY*4 B e RI*m ( ¢ Rnxd,
D ¢ R™ ™. The matrix A, B, C, and D are called the
state matrix, the input matrix, the output matrix, and the feed-
forward matrix, respectively.

The state-space representation is based on continuous-
timestep, to apply such structure to deep learning tasks,
Euler’s method is applied in this task (Londofio & Olivera,
2019). In Eq. (2), the differentiation of the hidden state is
substituted with Euler’s function, and AT is the sampling
period of the system. Eq. (3) can be obtained by simplifying
Eq. (2). Eq. (4) indicates the output function of the system.
Egs. (3) and (4) are summarized together to obtain Eq. (5),
where the discretization of the parameter matrices is defined
in Eq. (6), while the dimension of the parameter matrices
remains the same.

. x(k+1) —x(k)

x—T:A-x(k)—i-B-u(kz), 2
x(k+1)={I+AT-A) -z(k)+AT-B-uk), @)
y(k) = C-x(k) + D - u(k), )

y(k) =H -2(k)+J-u(k)’ ®)

d=I+AT-A, G=AT-B, H=C, J=D. (6

{m(k+1) =& -2(k) + G- u(k)

2.2. State observer

A state observer is a system that can estimate the hidden
state of a real-world system by observing its output. One
of the classic types of state observers is the Luenberg ob-
server (Luenberger, 1971), which is widely used in control
theory. The goal of the Luenberg observer is to minimize the
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error between the estimated states and the real states through
the feedback of the difference between the estimated and ob-
served outputs.

The mathematical formulation of a Luenberg observer is de-
fined in Eq. (7) (Luenberger, 1971), where Z(t) and z(t) rep-
resent the estimated and real hidden states at timestep ¢, re-
spectively, and ¢(¢) and y(t) denote the estimated and real
system outputs. L is the defined gain matrix to guarantee the
desired system dynamics and convergence.

{écm = A-a(t) + B-ult) + L~ (u(t) — (1))

X (N
§(t) = C-2(t) + D - u(t)

2>

3. DESIGN OF DEEP STACKED STATE-OBSERVER BASED
NEURAL NETWORK (DSSO-NN)

3.1. From state-space model to neural network layer

As noted in Section 2.1, the hidden time-relevant dynamics
of a system can be expressed using a state-space represen-
tation. The relationship of such dynamics is calculated with
the iteration of the hidden state through the state function,
and by using Eq. (1), the hidden state at each timestep can be
transformed into the desired form of output. Thus, the system
dynamics can be calculated using the parameter matrices A,
B, C, and D and the initial state x.

B B \B‘
A A A
(o C C
Figure 1. Basic structure of a DSSO-NN layer.

Based on this concept, the state-space model can be regarded
as a special case of an RNN. As shown in Fig. 1, A, B, C, D
indicate the four parameter matrices of the layer, [ug, ..., u]
represents the input vector, [y, ..., y¢] is the output vector of
the layer, and [z, ..., 2] is the hidden state between the in-
put and output. Hidden state at the first timestep x¢ is ran-
domly initialized, the calculation of the hidden state at next
timestep is determined by the input and the hidden state at
current timestep. Meanwhile, the output is exported through
the hidden state and the parameter matrix C. The computa-
tional process of the DSSO-NN layer is presented in Fig. 2.

3.2. Training and evaluation strategy

In this study, the Adam optimizer is employed for all training
and validation processes to ensure efficient optimization. The
model’s trainable parameters are initialized with a uniform
distribution with upper and lower bounds of [-1, 1]. As stated

Input matrix: u |
Sequence length: [yl
seq_len |

Number of orders: | 288

order
Weight

Initialize xy, i = 0

Xeyr = Wo - xe + Wy - g

Verr = We s Xepq + Wa - Upyq
—’T

Figure 2. Flowchart of DSSO-NN layer forward function.

in Section 3.1, the forward calculation is computed through
multiple iterations of the hidden state. To avoid exponential
gradient increases and Not a Number (NaN) outputs caused
by randomly initialized parameter matrices during forward
iterations, gradient clipping is applied during training. The
maximum gradient is set to 30. Meanwhile, during the train-
ing process, an early-stopping function is used to terminate
the training if the training loss does not decrease in three con-
secutive epochs.

The CWRU dataset discussed in Section 3.3 is bearing ac-
celeration data collected in the time domain. Each single
piece of data is a one-dimensional vector with the specified
length based on the fault characteristic frequency. To test and
evaluate such time-series data, the Root-Mean-Squared Error
(RMSE) loss function is chosen for the training stage. The
RMSE loss of the weights to be trained 6 is defined by the ac-
cumulation of the squared difference between predicted out-
put y and the target output y at each timestep, as shown in
Eq. (8) (Willmott & Matsuura, 2005). The RMSE loss alone
cannot justify the performance of the model, the R-squared
(R?) score is also adopted as an evaluation metric for quanti-
fying the modeling performance (Draper & Smith, 1966).

Ne [~ 2
Zizﬁ (Z/z‘ - yi)

RMSE(f) = T — 8)

3.3. Dataset introduction and pre-processing

As shown in Fig. 3, the CWRU test stand consists of the fol-
lowing components, including a 2 horsepower electric motor,
a shaft with a torque transducer and encoder, a dynamome-
ter, and an electronic control system. Both bearings are fea-
tured with four different fault diameters (fd), including 0.007
inches, 0.014 inches, 0.021 inches, and 0.028 inches. For this
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paper, the data acquired from the drive-end bearings and the
12 kHz drive end acceleration data is selected. Validation is
conducted using samples from the CWRU dataset with outer
race fault diameters of 0.007 inches and 0.021 inches (CWRU
outer race, fd=0.007/0.021").

Figure 3. Test bench of CWRU data (Smith & Randall, 2015).

The dataset is raw signals obtained directly from the test
bench. To utilize the data for bearing dynamics modeling, the
dataset should be pre-processed. When a fault occurs, a pe-
riodic vibration signal will be generated from the failure part
while the bearing is in operation. To obtain a signal that can
fully represent the bearing failure cycle, the available dataset
should be segmented. Starting from one fault spike of the vi-
bration signal, with a fixed length of data, a complete failure
cycle of the bearing is formed. The bearing failure period is
calculated with Eq. (9).

1

I fs—lantimestep €z (9)
fBPFX

Ntimestep = ’V
where f, indicates the sampling frequency, and fpprx €
[fBrPr1, fBPFO, fBSF]. These fault characteristic fre-
quencies can be obtained once bearing geometry parame-
ters and shaft rotation speed are given (Ruan, Wang, Yan,
& Giihmann, 2023). Following Eq. (9), the timestep of the
CWRU dataset for the out race fault is calculated as 116.

To minimize the impact of high-frequency noise on the sig-
nals, both datasets shall be filtered by a low-pass filter after
segmentation of the dataset. The filtered signals are subse-
quently subjected to normalization. The speed of the shaft
and the torque of the motor for the same working conditions
can be considered constants for the bearing model since these
two variables do not change during the operation of the bear-
ing. The input shall become a two-dimensional vector with
a corresponding length the same as the target vector. The di-
mensions of the input and output are shown in Table 1. To
avoid the problem caused by the excessive value of the shaft
speed (over 1000) compared to the order of magnitude of the
torque (0 ~ 5), the shaft speed is divided by 60. The overview
of pre-processed CWRU dataset are summarized in Table 2.

The hyperparameters used to train all the models remain the
same throughout the experiment, the specific hyperparame-
ters are displayed in Table 3. All experiments are conducted

Table 1. In/output names and dimensions.

Symbol Name Dimension
Uy Motor load 2 nlt
Ug Motor speed / 60 [2. ]
Yobs Observation value (Target) [1, n]
* Assume the length of target data is 7.
Table 2. Summary of CWRU dataset.

Fault size St

Training set Test set
£d=0.007" 600 80
fd=0.021" 600 80

on a computer with a CPU Intel i7-7700HQ and a GPU
NVIDIA 1060. A portion of the training set is randomly
chosen to serve as the validation set in addition to the pre-
processed training set and the test set. The model is validated
on the validation set after each epoch of training.

3.4. Result on the single state-space layer

The model is validated on two different subsets of CWRU
dataset. The data collected from the outer race are selected.
All of the examined models in this paper are trained five
times, and the results of each training are recorded.

3.4.1. Case 1: CWRU outer race, fd=0.007"

The result is presented in Fig. 4a. Each box represents a
group of data with the same label. The green arrow indicates
the average value among the group, the top line and the bot-
tom line represent the maximum and the minimum value, re-
spectively. The irregular value is marked with a small circle.
The orange line indicates the median value of this group. The
R? score of each model indicates the average R? score of the
test set. The sequence of a single layer model is set within
the range [3, 5, 7..., 15]. As the order grows, the number of
trainable parameters increases significantly.

As shown in Fig. 4a, while the number of trainable param-
eters grows, the R? score shows an overall increasing trend.
When the model’s order is low, its performance stabilizes at
a very low level (close to 0). Additionally, although substan-
tially improved, the model’s performance at higher orders is
still unstable. The maximum R? score is around 0.25. In Fig.

Table 3. Hyperparameters for training.

Hyperparameter Setting
Optimizer Adam
Learning rate 0.001
Early-stopping patience 3
Batch size 1
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Figure 5. Validation result with the best performance on the single layer model.

5a, the example of the predicted output of the model under
15th-order is plotted. The starting part of the bearing dynam-
ics has already been expressed in the model, and the pattern
of degrading vibration over time is also noticeable. However,
since the model inputs are constant, the prediction cannot de-
scribe the nonlinearity of the signal, and the performance of
the model is below satisfaction.

3.4.2. Case 2: CWRU outer race, fd=0.021"

As presented in Fig. 4b, the models also show an increasing
trend in R? score with growing orders. The maximum of R?
score is below 0.175, which indicates that the fitting ability is
extremely restricted for the single state-space layer. Fig. 5b
gives a detailed look at the qualitative result. The data with
a larger fault diameter is much more complex, and the target
outputs contain high-frequency noises despite the dataset al-
ready being pre-processed with a low-pass filter. Therefore,
the predicted data can only follow the linear trend of the target
and is incapable of modeling the nonlinear part of the target.

4. OPTIMIZATION OF DSSO-NN

In Section 3.1, the fundamental structure of the network is
presented. However, the validation results show that the fit-

ting ability is not ideal. While the linear trend of the target
signal is followed by the predicted signal, the nonlinear part
of the target signal remains missing.

4.1. Activation function

The simple state-space-based model is not able to fit the non-
linear part of the signal. The conventional solution is to use
an activation function while computing the output. A nonlin-
ear trend could be integrated by the activation function into
the output of the model. In deep learning, some of the com-
monly used activation functions are Tanh, ReLU, Sigmoid,
and SoftPlus.

Tanh function is widely used in time-series data training,
which is defined by Eq. (10). The output of the Tanh function
is restricted to [-1, 1] and centered at zero-point. The defini-
tion of the Sigmoid function is similar to Tanh (see Eq. (11)),
while the output range of Sigmoid is [0, 1]. The Sigmoid
function can be regarded as the result of a linear variation of
the Tanh function. The shape of both functions are illustrated
in Fig. 6a.
et —e "

et 4 e’

f(x) (10)
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Figure 6. Illustration of different activation functions.
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Figure 7. Average R? score with different activation functions.

1

f(f):m-

(11
ReLU function is calculated via Eq. (12), which only projects
positive input, and 0 will be produced when the input is neg-
ative. This feature helps the model to operate at a faster rate,
but also brings the problem of zero gradient when the input
is negative. Thus, ReLLU function used in this paper is shifted
along the y-axis below, which enables the output of ReLU
function to cover the whole number field of the dataset. Fig.
6b shows the shape of the original as well as the shifted ReLU
function.

,x>=10

, <0 (12)

fa) = { max(()O, )

SoftPlus activation is defined with Eq. (13). SoftPlus can be
taken as a smoothing process for ReLU function. Similar to
ReLU, the output of SoftPlus is restricted and the function
used is also shifted. The shape of the SoftPlus function is
demonstrated in Fig. 6c¢.

f(x) =In(1+ €"). (13)

4.2. Results with different activation functions
4.2.1. Case 1: CWRU outer race, fd=0.007

The experiments are conducted by the models in increasing
order. Models with different activation functions and orders
are also trained five times, and the comparison of each kind
of model is analyzed with the mean of the average R? score
among the five trainings. In Fig. 7a, the results between the
baseline model (without activation function) and models with
selected activation functions are illustrated. With different ac-
tivation functions, the fitting ability of the models shows in-
conspicuous improvement. At higher orders, the model with
the activation function performs even worse than the model
without it.

4.2.2. Case 2: CWRU outer race, fd=0.021"

The dataset collected with a large fault diameter is more com-
plicated. Data with a fault diameter of 0.021” are used for
model training in different orders. Fig. 7b compares these
models with the test R? score. The results are similar to those
obtained from the data with a fault diameter of 0.007”, the
model without the additional activation function outperforms
the one with the additional activation function.
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Generally, activation functions are used to add nonlinearity
to model output. However, based on the experiments con-
ducted above, the impact of the activation functions on the
state-space-based models is insufficient. Hence, the activa-
tion functions are not selected as part of the models explored
in this paper.

4.3. Linear state observer correction

As introduced in Section 2.2, the state observer is a system
with state observation and output correction. These features
can be utilized to improve the model’s capability to fit nonlin-
earity. With this understanding, the gain vector L in Eq. (7)
can be set to a trainable parameter. By training with the ob-
servation data, parameter matrices shall be updated with the
optimizer, including L. Meanwhile, L vector promotes the
correction of the predicted output value to approach the actual
output. Finally, the DSSO-NN layer with linear state observer
correction can be constructed (see Fig. 8). The pseudocode
for the forward function of the DSSO-NN layer with a linear
observer is shown in Algorithm 1.

Figure 8. DSSO-NN layer with linear state observer.

4.4. Results with linear state observer
4.4.1. Case 1: CWRU outer race, fd=0.007"

In this experiment, the single state-space is selected as the
baseline model. A state-space model with a linear observer is
trained with the same hyperparameters five times as a com-
parison test. As illustrated in Fig. 9a, the performances of the
models with a linear observer have a lower variance compared
to the models without, meanwhile, the mean of R? score
among the five trainings also reaches over 0.89. Compared
to the results obtained from the models without the linear ob-
server in Fig. 4a, the R? scores of each order’s model increase
significantly. Also, the trend of increasing R? scores along
with the increasing order of the model remains. Fig. 10a
presents the comparison between the results obtained from
models trained on the same dataset with and without a lin-
ear observer, which more clearly shows the improvement in
the performance of the model by the linear observer. The
orange bars represent the results of the models with a linear

observer and the blue bars are those without. The model’s test
RZ scores at each order show distinct improvement, where the
best average R? score of the models without linear observer
is around 0.2, yet the minimum of the average R? score of the
models with linear observer is over 0.89. Based on the anal-
ysis above, the models with linear observer correction show
great progress in terms of R?. The best performance of the
model appears in the 11th-order model. Comparing with the
best model without a linear observer, the validation R? is im-
proved from 0.237 to 0.902.

The result of the validation set is plotted in Fig. 11a. With
this model structure, there is a clear improvement in the qual-
itative results as well. The blue prediction line is almost iden-
tical to the target line. In Fig. 5a, the prediction computed by
the model without a linear observer can still maintain a small
error with the actual signal at the beginning, but with each it-
eration of the operation, the error gradually accumulates. Fi-
nally, the predicted value cannot match the actual signal at
all. However, the prediction computed by the model with the
linear observer not only follows the actual signal well at the
beginning. As time goes on, the errors between the predicted
signal and the actual signal are not accumulated but main-
tained within a normal range. This shows the power of the
linear state observer, which brings the model’s fitting ability
to another level.

Algorithm 1 Pseudocode of DSSO-NN layer forward func-
tion with linear observer correction.

Input: u: input matrix, y.,s: observation value of output,
seq_len: sequence length, order: number of orders,
Weo, Wy, W, Wy: weight matrices, Wp: observer cor-
rection vector.
initialize hidden state x
for i = 0 to seq_len do
Tep1 = W -2 + Wy - ug
Yer1 = We - Tppr + Wq - ugq
if y,,s then
Tip1 = Tog1 + Wi - (Yobs — Yt)
7: end if
8: end for
Output: estimated vector of y.

A N

4.4.2. Case 2: CWRU outer race, fd=0.021"

As demonstrated in Fig. 9b, the average R? score increases
as the order increases. The mean R? score of each model is
higher at high order. The highest average R? score is 0.628,
obtained from the 11th-order models. Compared to the re-
sults obtained from the models without a linear observer in
Fig. 4b, the R? scores of each order’s model increase signif-
icantly. Fig. 10b presents the comparison between the mod-
els with/without a linear observer. The average R? score at
each order of the model from the model without a linear ob-
server contains values less than 0 and the maximum is only
around 0.1. The models with the linear state observer present
a significant improvement compared with the baseline mod-
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Figure 9. Results with linear state observer.
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Figure 10. Comparison between models with/without linear state observer.

els. The best performance of the models appears in the 11th-
order model. The validation R? score is raised from 0.123 to
0.628.

Fig. 11b shows the validation results with the best per-
formance. Though the data from the CWRU outer race
(fd=0.021"") contain much more noise, the model is capable
of following not only the linear trend but also the nonlinear
trend. The predicted signal can maintain a stable error with
the actual signal most of the time. However, the linear state
observer does not perform well when the signals suddenly
increase or decrease on a large scale. The signal decreases
from -0.25 to -1 and increases back to over -0.2 in a very
short time, which means the correction provided by the linear
observer (L - (Yobs — Yprea)) does not vary enough while the
difference increases or decreases, further optimization should
be undertaken.

Nevertheless, DSSO-NN demonstrates admirable perfor-
mance across a range of metrics in terms of tracking the
expected outcomes. Therefore, employing DSSO-NN for
bearing dynamics modeling is deemed feasible.

5. DISCUSSION

Activation functions are widely regarded as critical com-
ponents in enhancing the nonlinearity of neural networks,
enabling them to model complex input-output relationships
(Apicella, Donnarumma, Isgro, & Prevete, 2021). However,
our experiments on DSSO-NN reveal that the contribution
of activation functions to model performance improvement
is negligible, as shown in Fig. 7. This finding challenges
the traditional perspective that activation functions are indis-
pensable for increasing nonlinearity and improving perfor-
mance. Current research often focuses on optimizing ac-
tivation functions or their variants, such as ReLU, Leaky
ReLU, and Sigmoid, to enhance neural network performance
(Ramachandran, Zoph, & Le, 2017; Deng, Wang, & Lin,
2024). However, these activation functions have inherent lim-
itations. On the one hand, their behavior is static and pre-
defined, lacking adaptability to specific system dynamics or
signal characteristics. On the other hand, in tasks involving
high-dimensional data or complex signals, activation func-
tions may amplify noise, leading to instability or reduced
robustness in model outputs. These challenges are particu-
larly pronounced in the domain of system dynamics model-
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Figure 11. Validation results with the best performance using the linear state observer.

ing, where the dynamics characteristics of the process being
modeled are both diverse and crucial.

In this study, we propose replacing activation functions with
state observers. Unlike activation functions, state observers
incorporate system dynamics into the modeling process by
introducing nonlinearity through real-time state information.
This mechanism aligns the network’s responses more closely
with the physical system being modeled, thereby enhancing
its ability to capture dynamics features. Our experiments
demonstrate that substituting activation functions with state
observers in bearing dynamics modeling achieves superior
performance. The findings presented herein pave the way for
the development of novel deep learning layers grounded in
state observers.

By standardizing state-observer-based layers as replacements
for traditional activation functions and applying them across
various architectures, a more interpretable and robust method
for introducing nonlinearity can be established. This ap-
proach also reduces the reliance on hyperparameter tuning
of activation functions, improving training stability and con-
vergence. Moreover, state-observer-based layers, being more
closely aligned with the fundamental dynamics of the system,
enhance the generalization capabilities of deep learning mod-
els, resulting in better performance in practical applications.

Finally, while this study represents an initial exploration of
replacing activation functions with state observers, it under-
scores the feasibility and value of this research direction. By
standardizing state-observer-based layers, future neural net-
work designs could reduce reliance on data-driven optimiza-
tion while achieving greater interpretability and computa-
tional efficiency. Nevertheless, this study still requires further
optimization. For instance, future work could employ visu-
alization analysis to elucidate the underlying mechanism by
which the state observer outperforms activation functions, ex-
plore whether integrating the two yields superior performance
compared to a standalone state observer, and investigate more
diverse forms of state observer modules for deep learning net-

works by drawing inspiration from the design principles of
various activation functions.

6. CONCLUSION

To address the challenges posed by neural networks in mod-
eling complex dynamics systems, a novel DSSO-NN is pro-
posed in this paper. The core idea involves constructing neu-
rons based on traditional state-space equations and state ob-
servers to form the network layers. This architecture enables
DSSO-NN to effectively overcome the limitations of existing
methods in handling nonlinear and time-varying dynamics
systems. Experimental validation demonstrates the superior
performance of this framework in bearing dynamics model-
ing.

In conclusion, the incorporation of state observers sig-
nificantly enhances the nonlinear modeling capabilities of
DSSO-NN and offers a promising alternative when traditional
activation functions fail. Experimental results on the CWRU
dataset further validate the advantages of DSSO-NN in dy-
namics modeling, highlighting its potential in tackling com-
plex nonlinear systems.

Future work includes introducing nonlinear state observers
and exploring optimization strategies such as serial and
parallel structures to further improve model performance.
Mechanism-based modeling could be utilized to investigate
the weight parameters in DSSO-NN, aiming to reduce the
number of identifiable parameters and enhance training ef-
ficiency. Additionally, DSSO-NN could be extended to more
complex dynamics systems to assess its scalability and ro-
bustness across various industrial and scientific applications.
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