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ABSTRACT

Many devices may experience nature degradation and mixed
jumps  simultaneously  whose  types  can  be  divided  into
positive jumps and negative jumps, while these complicated
performance rules also bring difficulties in lifetime analysis
within the concept of the first hitting time. To address this
issue,  this  paper  first  proposes  a  compound  degradation
process,  which is  characterized by linear path and mixed
jumps.  Then,  by  adopting  the  idea  that  transforms  the
positive jumps into the threshold, an approximate lifetime
solution is derived. Given the realistic application of furnace
wall, numerical verification shows that the proposed method
can  maintain  consistency  with  Monte  Carlo  simulation,
while  conspicuous  errors  exist  for  existing  methods,
demonstrating that the proposed method can be regarded as
theoretical support for the future studies.

Keywords:  Degradation;  Mixed jumps; First  hitting time;
Analytical lifetime distribution.

1. INTRODUCTION

The  past  decades  have  seen  the  rapid  development  of
degradation modeling and lifetime analysis since the devices
universally  experience  inevitable  deterioration,  which
results in failure, even catastrophes (Li et al., 2017; Wang et
al.,  2023;  Zhang et  al.,  2023).  Attributed to  the  complex
internal  and  external  factors,  the  performance  rules  have
gradually  evolved  from  continuous  degradation  to
discontinuous  one,  which  contains  random arrival  jumps,
e.g., positive jump and negative jump, illustrating unstable
characteristics.  For  the  purpose  of  prescribing  replace
polices  and  predicting  remaining  useful  life,  developing

accurate degradation modeling and lifetime assessment for
such type of degradation processes are apparent.

Attributed to  the  fact  that  the  positive  jump remains the
monotonic traits of natural degradation, its lifetime solution
has been extensively studied (Che et al., 2018; Fan et al.,
2017; Kharoufeh et al., 2006). The experiment on MEMS
micro-engines,  initiated  by  Sandia,  found  that  external
shock causes  abrupt  positive  jump (Tanner et  al.,  2000),
which is also known as the primary contributing factor for
other devices. According to this phenomenon, Peng et al.
(2011)  considered that  the  arrival  positive  jump obeys  a
Poisson process, and the total degradation presented a linear
path with positive jumps. To a further step, Wei et al. (2019)
found that the magnitude of positive jump is proportional to
external  shock,  and  divided  the  shock  into  harmless,
harmful,  and  fatal  ones,  arising  non-happening  jump,
positive jump and direct failure events respectively.

Along with the deep-going of the research, it is found that
the  negative  jump  appears  under  the  influence  of  self-
healing  mechanism  or  maintenance  activities  (Charri  &
Vinassa, 2014; Wang et al., 2023), and the total degradation
performs  non-monotonicity  and  randomness
simultaneously.  Obviously,  evaluating  its  failure  time
probability is nontrivial  but  hard to derive  a  closed-form
solution,  and numerous  studies  turn  to  use  intelligence
algorithm to evaluate the lifetime (Sun et al., 2023; Xu et
al.,  2024).  Obviously,  adopting  such  method  will  be
overwhelmed  by  heavily  computing  burden,  rendering
short-term prediction of useful life unattainable. Inspired by
the  lifetime analysis  method  proposed  for positive  jump,
Wang et al. (2018) transformed the negative jumps into the
failure  threshold,  and  derived  an  approximate  lifetime
solution.  However,  such  strong  approximate assumption
arises significant evaluation errors in some certain cases. To
obtain  a  high-efficient  method,  Cao  et  al.  (2025)
innovatively  proposed  the  concept  of  invalid  epoch,  and
derived  an  analytical  lifetime  solution  in  the  form  of
Laplace-Stieltjes transform (LST).
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The mixed jump is a more complex situation, which is a
combination of positive  and negative jumps. Hindered by
the above challenges, most  studies still rely on simulation
methods to calculate the lifetime, with effective analytical
lifetime analysis techniques being quite rare. However, such
phenomena  are  far  from  trivial  and  are  increasingly
encountered in various scenarios. The most typical situation
is the deterioration of rotating mechanical component with
multiple operational profiles. Li et al. (2019) and Kong et al.
(2021) found that when dynamic environment is involved,
the  vibration  signals  of  both  bearings  and  CNC milling
machine  are  composed of  nature  degradation  and  mixed
jumps. The similar phenomenon is also found in the devices
with  complex  failure  mechanisms.  For  instance,  for  the
furnace  wall,  due  to  the  complex  chemical  reactions
between  molten  iron  and  furnace  wall,  the  measured
temperature signal consists of nature degradation and mixed
jumps (Zhang et al., 2017).

As reviewed above, one can conclude that the degradation
process with  abrupt  jumps has become a  focus in  recent
years,  while  there  still  exist  some  shortcomings.  The
prominent  problem  is  that  although  the  lifetime  analysis
method has been readily solved for linear path with negative
jumps (Cao et al., 2025), there remains a gap in the analysis
for  mixed  jump scenarios.  The  possibility  to  extend  the
current  theory for  conducting lifetime analysis for  mixed
jumps presents an intriguing topic. To address this issue, by
converting the positive jump into the threshold, this paper
proposes  a  closed-form  approximate  lifetime solution  for
linear path with mixed jumps.

The remainder of the paper is organized as follows. Section
2  delineates  the  scope  of  the  model  and  establishes  the
compound degradation process involving linear  path with
mixed  jumps.  Section  3  derives  an  analytical  lifetime
solution under the concept of the first hitting time (FHT).
Then, Section 4 conducts the numerical verification via a
realistic application. Finally, Section 5 summarizes the main
conclusions.

2. MATHEMATICAL MODEL

This section focuses on the establishment of the compound
degradation process with linear path and mixed jumps. As
plotted  in  Fig.  1,  the  product  undergoes  continuous
degradation  process  and  five  discrete  jumps.  Due  to  the
existence of mixed jumps, the overall degradation exhibits
non-monotonicity  and  fluctuations,  and  once  the  total
degradation first hits the preset failure threshold x, then the

failure  happens  at  T x ,  which  is  also  defined as  the  first
hitting time (FHT). To delineate the model with clarity, the
following assumptions are introduced.

Figure 1. Schematic diagram of linear path with 
mixed jumps.

(1) The continuous process is described by a linear path

X (t )=rt +ε (1)

where  r  is the  degradation rate, and the  random error  is
assumed  to  obey  the  normal  distribution,  denoted  as

ε N (με ,σε
2 ).

(2)  The arrival  times of  positive  jump  are decided by  a
Poisson process with intensity λ p, corresponding to a  time

sequence {δi
p}i=1

∞
, and its arrival number until t  is recorded

as  N p ( t ).  Besides, to capture a variety of  situations, it is
assumed that the magnitude of positive jump follows non-

restrictive  CDF  FY
p ( y ) with  domain [ 0 ,+∞ ) ,  which

constitutes  the  sequence  of  {Y i
p }i=1

∞
.  Under  the  above

assumptions,  the  cumulative  magnitude  of  positive  jump
until t  is

Sp ( t )=∑
i=1

N p
( t )

Y i
p (2)

(3)  The  procedure  concerning  positive  jumps  operates
independently of those related to negative jumps. Similar to

those  of  positive  jump  events,  the  sequence  {δ j
n } j=1

∞
 of

negative jump arrival times follow a Poisson process with
intensity  λn, and their magnitudes consist the nonnegative

sequence  {Y j
n }j=1

∞
 based  on non-restrictive  CDF  FY

n ( y ).

Thus, the cumulative magnitude of negative jump up to t  is

Sn (t )=∑
j=1

N n
(t )

Y j
n (3)

where  N n ( t ) represents  the  arrival  number  of  negative

jumps until t .
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(4) The compound degradation process is consisted of three
parts including continuous degradation, positive jumps and
negative jumps. Thus, we have

X S ( t )=X (t )+Sp (t )−Sn ( t ) (4)

Due to the randomly occurring negative jumps, the overall
degradation  exhibits  non-monotonicity.  To  guarantee  the
reliability of  the product, it is usually announced that the
product fails when its total degradation first hits the failure
threshold, and the failure time is known as the FHT. Given
the failure threshold x, the formal definition is: 

T x=inf {t∨XS (t )≥ x } (5)

The corresponding FHT distribution is

F ( x ,t )=Pr {T x ≤ t } (6)

There is no deny that the FHT distribution plays a key part
in  remaining  useful  life  prediction  and  maintenance
decision-making, and we will place our primary focus on
the FHT analysis for the proposed model.

3. LIFETIME ASSESSMENT

Before deriving the analytical FHT solution, some important
mathematical prerequisites are introduced. As a well-known
mathematical  technique,  the  Laplace-Stieltjes  transform
(LST) for  the FHT function with respect  to variable  t  is
defined as

~F ( x , s )=∫
0

∞

e−st F ( x , d t ) (7)

The current study has investigated the FHT distribution of
linear path with negative jumps,  and has derived a novel
analytical  lifetime solution in the  form of  LST, which is
regarded  as  a  key  basis  of  our  work.  To  be  specific,  it
yields:

Lemma (Cao et al., 2025). For the compound degradation
with  linear  path  and  negative  jumps,  if  the  PDF  of

cumulative  magnitude  f Sn ( υ) (z∨N n (υ )= j ) exists  for

∀ j ∈ N , and ∀ υ∈ [ 0 ,+∞ ) , then

~F (x ,s∨λp
=0 )≅exp {[ λn

r
ψ ( s )−

s
r
−

λn

r ] x } (8)

where ψ (s )=∑
j=1

∞

∫
0

∞

P j ∙ e
−s ∙ z /r ∙ f Sn (υ ) ( z∨Nn

(υ )= j) d z,

P j=
e−λn z /r ( λn z /r )

j−1

j !
,  and f Sn ( υ ) (z∨N n (υ )= j ) is  the

PDF of the cumulative magnitude under the condition of  

N n (υ )= j.

The above lemma holds true  when  x≥ 0,  and obviously,
~
F ( x , s)=1 when x<0. To ensure a unified expression, we
define

~F1 ( x , s )={ 1 x<0
~F ( x , s∨λ p

=0 ) x≥ 0
(9)

Based  on  the  aforementioned  conclusions,  the  idea  of
threshold  transformation  is  employed  as  an  approximate
approach  to  address  the  FHT  solution  of  the  proposed
model, and the following theorem is proposed.

Theorem. Let L−1 {⋅} denotes  the  inverse  Laplace

transform.  If  the  PDFs  of  f S p (υ) ( z∨N p (υ )=i ) and

f Sn ( υ) (z∨N n (υ )= j ) exist  for  ∀ i , j∈ N ,  and

∀ υ∈ [ 0 ,+∞ ) , then  the  FHT  distribution  can  be
approximated as

F ( x ,t )

≅∑
i=0

∞

L−1{s−1 ⋅∫
0

∞
~F1 ( x−z , s) ⋅ f S p (t ) ( z∨N p

(t )=i ) d z}
⋅ Pr {N p ( t )=i }

(10)

where Pr {N p ( t )=i }=
e−λp t (λ pt )

i

i !
.

Proof. Given the condition of N p (t )=i, the arrival positive
jumps  can  be  transformed  into  the  threshold,  and  the
lifetime distribution is rewritten as

F (x , t∨N p (t )=i )

¿ Pr {X (t )−Sn (t ) ≤ x−S p ( t )∨N p ( t )=i }
(11)

Note  that  the  right  side  decrease  monotonically,  and  for
most of actual degradation processes, the rate of decrease on
the left side is greater than that on the right side on average,
which means that it can be approximately considered that

3



there is only one intersection point between the two. Then
Eq. (11) is approximated as

F (x , t∨N p (t )=i )

≅∫
0

∞

F1 (x−z , t )⋅ f S p (t ) ( z∨N p
(t )=i ) d z

(12)

where F1 ( x ,t )=L−1 {s−1⋅~F1 ( x , s) }.

Based on the Poisson process, we have

Pr {N p ( t )=i }=
e−λp t (λ pt )

i

i !
(13)

Combining  the  results  of  Eq.  (12)  and  Eq.  (13),  the
following approximation holds

F ( x ,t )

≅∑
i=0

∞

L−1{s−1 ⋅∫
0

∞
~F1 ( x−z , s ) ⋅ f S p

(t ) ( z∨N p
(t )=i ) d z}

⋅ Pr {N p ( t )=i }

(14)

and the proof is complete.

Since the above findings holds without constraints on the

CDFs of FY
p ( y ) and FY

n ( y ), it can be regarded as a general

solution for practical applications. More importantly, when
both positive jumps and negative jumps follow the normal

distributions, i.e., Y i
p N ( μp , σ p

2 ) and Y i
n N ( μn , σn

2 ), the

expression can be  further simplified; for  detail derivation,
readers can combine the proposition proposed by Cao et al.
(2025), and we shall not go into much detail.

4. APPLICATION CASE

In this section, the quality and the applicability of the main
results  are  demonstrated  via  numerical  experiment.
Specifically, we consider the erosion of  furnace wall, and
the existing methods are applied as comparisons.

4.1. Background

The  furnace  wall  is  a  large-scale  complex  system  that
inevitable experiences degradation due to the erosive effects
of  molten  iron.  However,  within  the  background  of
continuous  monitoring,  determining  the  loss  in  wall
thickness  poses  significant  challenges.  As  an  indirect

alternative measurement approach, temperature sensors are
installed at a proper depth of the furnace wall to reflect its
operational  status.  Obviously,  the  conditional  monitored
temperature will  continuously rise,  and more importantly,
furnace  wall  may  undergo  chemical  reactions  with  the
molten  iron  wall,  resulting  in  the  change  of  thermal
conductivity of the furnace wall. As a result, the measured
temperature exhibits random fluctuations, and thus the total
degradation  procedure  is  composed  of  continuous
degradation and mixed jumps. To guarantee the reliability
and  the  safety,  it  is  regulated  that  when  the  monitored
temperature first exceeds a specified threshold, the furnace
wall must be shut down or replaced. Based on the experts’
experience and previous studies (Zhang et al.,  2017),  the
specific  model  parameters  for  furnace  wall  are  given  in
Table 1.

Table 1. Model parameters for furnace wall.

Paramete
r

Value Description

x 500℃ The failure threshold.

r 1℃/day The degradation rate.

λn 2×10−2
/day

The  Poisson  intensity  of
negative jumps.

λ p 2×10−2
/day

The  Poisson  intensity  of
positive jumps.

Y i
n Y i

p N ( 30 ,102 )℃The  CDF  of  magnitudes  of
negative jumps.

Y i
p Y i

n N (50 ,102 ) ℃The  CDF  of  magnitudes  of
positive jumps.

4.2. Main results

According to the parameters outlined in Table 1, the FHT
distribution for  the proposed model  can be  calculated via
inverse  Laplace  algorithm  (Abate  &  Whitt,  1995).  As
comparisons, the current models are introduced, which are
abbreviated as follows:

M0: The model proposed in our work that incorporates the
linear  path  and  mixed  jumps  simultaneously.  The  FHT
distribution is calculated via Theorem 1.

M1: Only the linear path and negative jumps are considered,
and  the  FHT  distribution  can  be  obtained  according  to
Lemma 1 (Cao et al., 2025).

M2:  Its total  degradation is  composed  of  linear  path and
positive jumps, and the FHT distribution is given by Peng et
al. (2011).

Meanwhile,  we  shall  adopt  Monte  Carlo simulation  as  a
benchmark  to  verify  the  theoretical  correctness.  The
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simulation generates the pseudo lifetime in accordance with
the  degradation model  proposed  in  Section  2,  where  the
sample size and discretized time interval of simulation are
preset as M=50000, and △ t=0.1.

As shown in Fig. 2, the FHT results for simulation, M0, M1

and M2 are plotted. One can see that the proposed method is
consistent with the simulation during the whole computing
period.  In  contrast,  inevitable  errors  appear  for  both
comparison methods M1 and M2. The reason arises from the
incomplete consideration of the types of jumps. To evaluate
the performance of the proposed model quantitatively, two
important lifetime indexes including the maximum absolute
CDF error  and the relative error  of  MTTF are calculated,

where MTTF=∫
0

∞

t ⋅ f ( x , t )d t , and f ( x , t ) is the PDF of

FHT. Results show that, for our method M0, the maximum
absolute CDF error is 3.53% and the relative error of MTTF
is 2.41%. Consequently, comprehensive considerations are
required  when  both  negative  jumps  and  positive  jumps
exist.
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Figure 2. Lifetime results of simulation and 
analytical methods.

5. CONCLUSION

Owing to the complexity of operational factors growing, the
degradation  modeling  and  lifetime  analysis  for
discontinuous degradation have been increasingly focused
on,  especially  when  positive  jumps  and  negative  jumps
(mixed jumps) are presented. In this paper, we develop a
novel compound degradation process involving linear path
and mixed jumps. Then, by transforming positive jumps into
the threshold, an approximate FHT distribution is derived.
To verify the rationality and the practicality of the method, a
real  application of  furnace  wall  is  demonstrated.  Results
show  that  compared  with  current  methods,  the  proposed
method performs better.

Although  numerical  studies  demonstrate  the  proposed
method,  the  solution  is  still  preliminary,  and  under  the
condition  of  significant  magnitude or  frequent  jump,  the
approximation may involve inevitable errors. Thus,  in the
future  studies,  how to  improve  the  accuracy  of  the  FHT
solution is an important issue.
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