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ABSTRACT

The rapid digital transformation in
engineering, coupled with the development of
increasingly complex systems, is pushing
industries to develop smarter and more efficient
methods for system development. Major
stakeholders/ industries are moving towards a
model-based framework for systems engineering,
RAM, and safety analysis to manage growing
system complexity while maintaining data
consistency and traceability.

The convergence and consolidation of
previously document-based engineering
approaches allows for the standardization and
streamlined capture of knowledge across
engineering disciplines. In this framework, data
availability and interoperability can easily
become a Dbottleneck without comparable
innovation to tooling and processes. In more
recent times Artificial Intelligence (Al) has been
identified as a powerful enabler on this front. Al
can assist engineers in developing RAMS models
more efficiently by leveraging legacy data, such
as historical FMECAs, and aligning it with
standardized taxonomies to automatically and
rapidly develop system models for downstream
analysis requirements.

1 INTRODUCTION-CURRENT INDUSTRY

LANDSCAPE
Modern engineering  systems  become
increasingly complex as the ever-growing

demand for more functionality perpetuates a
software driven evolution of engineering process
and design. This trend is prevalent in high
velocity sectors such as aerospace, and defense
where cutting edge consistently contends with
strict safety, regulatory, and cost constraints;
requiring increasingly efficient, necessarily

integrated system analysis and decision making
capabilities.

System development requires contributions
from a wide range of disciplines, organizations,
and geographic locations. This distributed
development environment frequently results in
siloed activities and workflows, where different
stakeholders rely on disparate tools, data
formats, and methodologies. The absence of
centralized and standardized/ compatible data
exacerbates challenges such as duplication of
effort, data inconsistency, and poor change
management.

Even with many software tooling options
available to do the heavy lifting in engineering
modelling and analyses, interoperability remains
a persistent challenge. Outputs from different
tools are often incompatible, and the lack of
digital continuity limits the ability to effectively
reuse prior work—leading to redundant efforts
and increased development timelines.

A particularly pronounced symptom of this
actuality is the vast amounts of legacy data in the
form of historical FMEA/ FMECA reports which
continue to remain underutilized. These
documents contain critical engineering insights,
yet they are often immediately stored
unmanaged, unmaintained, and under-
referenced, in formats that are not compatible
with modern applications.

A Digital Twin approach grounded in model-
based engineering offers a promising solution. By
creating structured, centralized, and machine-
readable representations of systems,
organizations can improve traceability, enable
cross-disciplinary  collaboration, and ensure
consistency throughout the system lifecycle.
Combining this with Al-powered natural language
processing (NLP) techniques, such as large



language models (LLMs), can enable the
automated transformation and ingestion of
legacy documents into structured and centralized
digital models. This not only accelerates model
creation and reduces manual workload but also
helps preserve engineering intent across the

system lifecycle.
2 MODEL-BASED APPROACH TO RAMS

A Digital Twin modelling solution such as
MADE (Maintenance Aware Design Ecosystem)
enables a model-based approach to RAMS
(Reliability, Availability, Maintainability, and
Safety) analysis by digitally mirroring aspects of a
system’s  expected operational behaviour;
simulating the interdependencies of its functions,
flows, and failures. At its core, this system model
serves as a dependency mapping of components
and subsystems, offering a structured and
scalable process for modelling and analyzing
system-wide resilience against risk.

The model creation process in MADE is
typically structured into three key steps:

e Functional Definition - Each system
element (or item) is assigned a defined
function, characterized by its input and
output flows. This allows for a clear
understanding of the system's intended
behavior and interactions.

e Failure Concept Attribution - For each
item, potential failure causes and modes
are identified. These define how the item
can fail.

e System Dependency Mapping -
Components are then connected to one
another, establishing a dependency that
reflects the system’s overall behavior and
the cascading effects of failures.

Approaches such as Functional Causal
Modelling (FCM) or Bond Graph simulation can be
employed to model and analyze these
interactions, enabling automated propagation of
failure effects across the architecture.

The core modelling principle leverages
standardized taxonomies for functions, flows, and
failure concepts. Use of common language and
labelling allows organization-wide collaboration,
distribution and reuse of engineering knowledge,
and frictionless integration across toolchains.

A critical enabler of this model-based
approach is digital continuity, made possible
through integration interfaces such as APIs and
structured import formats (e.g., Excel). These
ensure that data remains machine-readable and
centrally accessible throughout the system
lifecycle.

Notably, many legacy FMEA/FMECAs already
include the foundational elements needed for

model-based analysis (functional descriptions,
failure modes, causes, and effects). However, this
data is often buried in unstructured, non-
standardized documents that are difficult to reuse
manually. The advent of advanced LLM
technology offers a powerful lifeline. By using
LLMs to extract, interpret, and structure legacy
RAMS data, organizations can accelerate the
creation of Digital Twins and unlock valuable
engineering insights that would otherwise remain

siloed or inaccessible.
3 Al ASSISTED LEGACY DATA CONVERSION

Recent advances in machine and deep
learning have propelled rapid progress in
generative artificial intelligence (Al). Because of
its versatility and the breadth of knowledge
encoded in its models, generative Al is not
applied across an ever-widening range of
domains. In particular, LLMs have expanded their
influence beyond natural language tasks to
motion simulation, music generation, and robotic
control because of their text generation
capabilities.

3.1 Potential of Generative Al Applications in
Systems Engineering

LLMs are rapidly reshaping systems
engineering. Traditionally, engineers have
depended on manual design, simulation and
analysis to manage the escalating complexity of
modern systems. Recent progress in LLM
technology now enables Al tools to generate
technical artefacts—from detailed diagrams and
executable code to well-formed system
requirements—with minimal human input [1]. By
combining rich systems-engineering knowledge
bases with advanced computational techniques,
generative Al offers a more efficient and less
error-prone approach to both conceptual and
practical engineering tasks. Ongoing
breakthroughs in multimodal processing and
reasoning further broaden this potential, allowing
LLM-based systems to ingest test, images, and
audio concurrently; as a result, they promise to
redefine the efficiency, creativity, and precision
of engineering solutions [2].

A concrete use case is automated content
generation. Engineers can instruct Al assistants
to produce tailored documents for diverse
stakeholders or to repurpose existing engineering
information for adjacent objectives. For example,
generative Al can partially automate the
conversion of FMEA data into a formal system
model—a task that has historically required
labour-intensive, time-consuming manual work by
systems engineers. By delegating the initial



model-creation step to Al, engineers can devote
more time to comprehensive analysis and
iteration, thereby accelerating the overall
development cycle [3]. These capabilities herald
not merely the automation of routine tasks, but a
paradigm shift in how engineers conceive,
validate, and iterate on design models.

3.2 Use of LLMs Toward Model Generation

Generative Al is permeating not only systems
engineering but a growing array of other
disciplines, and its use-cases are poised to
multiply rapidly. This diversification is being
matched by a wave of inventive technical
approaches. Therefore, understanding key skills
in LLMs are crucial since importance of skills are
increasing and, they can’t be used properly
without knowing, so a few skills are described
follows:

e Prompt engineering is the deliberate design of input
instructions that steer a LLM toward a verifiable, use case
specific result. In workflow presented in this paper, each
prompt is partitioned into three explicitly labelled blocks: task
—a concise statement of the exact work to be performed,
criteria—bullet-point constraints that the model must observe,
output format—a schema that the model’s reply must
replicate

e LLMs fall into two categories: proprietary frontier models
—such as GPT o04-mini, GPT 03, GPT 40, Gemini, and
Claude—that lead in performance, scalability, and multimodal
integration, and open-source alternatives like Llama and Phi,
which can be deployed locally for greater data privacy and
security. Factors such as model size, tokenization strategy,
prompt complexity, and decoding method influence both
response fidelity and runtime, so choosing the right model
requires balancing these trade-offs. For example, when
extracting insights from FMEA data, Llama 3 offered
enhanced control and confidentiality but produced largely
unsatisfactory outputs, whereas GPT oland 03-mini generated
acceptable results. In creating MADE models—where precise
interpretation of complex inputs is vital—minimizing
hallucinations and maximizing accuracy are paramount.

¢ Fine-tuning and retrieval-augmented generation (RAG)
enhance LLMs by incorporating domain-specific data,
enabling them to deliver more accurate, context-aware
outputs. There are multiple ways to apply these methods. For
fine-tuning, a dataset that correctly maps FMEA data to the
MADE taxonomy can be used to adapt a pre-trained model.
RAG is appropriate when engineering manuals or case-
specific documentation (e.g., rocket-engine maintenance
guides) are available. By integrating these resources, LLMs
can produce substantially more precise and reliable responses.

3.3 Description of Solution Architecture

To automate system-model creation with
LLMs, the processing pipeline must be explicit,
modular, and repeatable. The workflow below
balances data-engineering pragmatism with LLM-

centric best practices are listed in Table 1 below:

Table 1 - Solution Architecture for LLMs
Application

Paragraph Stage

Purpose & Design
Notes

Legacy-data
ingestion

Collect requirements
documents, FMEA
tables, etc. Convert
every source to a
machine-readable
format
(CSV/JSON/markdown)

Domain-taxonomy
injection

Supply a controlled
vocabulary (flow
properties, functions)
as a constraint so the
model can generate
consistent outputs and
support
interoperability

Deterministic feature
extraction

Pre-compute
information that is
obvious from the data
e.g., item hierarchy

Structured
prompting

Craft prompt the
embed a clear task
with ideal formats

Optional adaption
layer

Fine tuning or RAG can
be used for LLMs for
better outputs

Human-in-the-loop
validation

Present the draft
outputs to
engineers/users for
verification and
feedback

Result serialization &
integration

Export final structure
to the certain formats
e.g., JSON

Figure 1 - Flowchart for a subsystem-level
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4 CASE STUDY

There are significant challenges in creating
RAMS models for the MADE digital-twinning
process, primarily because of the high up-front
time and resource requirements. A case study



was developed using an existing FMEA of a rocket
engine, to demonstrate the potential advantages
of an LLM seeded modelling approach. The FMEA
dataset, sourced from a legacy system, includes
text-based fields such as LCN, item
nomenclature, item function, failure mode, local
effect, next effect, and end effect. The dataset
contains a wide range of failure modes that vary
in specificity. Typical examples include failures
related to fuel delivery (e.g., fails to supply fuel,

fails to increase fuel flow) mechanical power
transmission (e.g., fails to create rotational
motion), filtration (e.g., fails to remove

contaminants from air/fuel). This variability
reflects common inconsistencies found in legacy
FMEA sources and presents a realistic challenge
for automated model generation, particularly
when mapping unstructured text to structured
MADE model concepts.

Following the process and workflow described
in the previous section, our approach aimed to
significantly reduce the time and manual effort
required for transformation, making legacy-
system integration more efficient and accessible
while also synergizing with human expert
knowledge. More specifically, the objective of this
case study was to generate a fully serviceable
MADE model using only FMEA data as input. A
serviceable MADE model must include item
dependencies, item functions, flows, and flow
properties, as these are essential for the model-
creation process. These outputs are visualized in
Figure 2.

4.1 Data Injection and Feature Extraction

When the FMEA dataset is ‘loaded’ the first
major step is to enrich the FMEA dataset with a

predefined set of model concept definition
taxonomies (i.e. functions, failures, flow
properties). This is provided as a text file

alongside the source FMEA, the taxonomical
language therein acting as the targets for
mapping natural language artefacts to. This
ensures that all items, hierarchy, and failure
definitions are fully recovered.

The emphasis on item hierarchy is essential
for the top-down generation process: we begin by
producing outputs at the system level and then
use those results to guide the generation of
subsystem-level outputs. Figure 1 illustrates the
generation process, which is applicable to both
system-level and all subsystem-level generation
processes.

As an example, the case study dataset
defines five system-level items—A1l (Fuel Tank),
A2 (Diesel Engine), A3 (Coupling), A4 (Alternator
Unit), and A5 (Control Unit)—and multiple

such as A20001
Filter), A20003

subsystem items under A2,
(Coupling 1), A20002 (Air
(Engine), and so forth. By identifying and
processing A2 at the top level, we can
subsequently generate precise outputs for each
of its subordinate items. This hierarchical
strategy preserves structural consistency and
enhances the accuracy and relevance of our

feature-extraction pipeline.

Figure 2 - Sample Outputs from LLMs
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4.2 Structured Prompting

In this phase, we employ LLM-based
methodologies to guide and refine our outputs.
First, we empirically optimize each prompt to
elicit the desired format and context. Because
even minor prompt variations can produce
dramatically  different responses, multiple
iterations are required to converge on an ideal
prompt structure. We evaluate leading GPT
architectures—namely 40, 01, and o03-mini—both
for their cutting-edge performance and
scalability. Each model is prompted identically,
then its outputs are compared in terms of
consistency, accuracy, and relevance to
determine which delivers the best results.

Second, we integrate Chain-of-Thought (CoT)
prompting [4] to decompose complex generation
tasks into smaller, more manageable steps. Our
application must produce three distinct outputs—
item functions, inter-item flow names, and flow
properties—and CoT enables the model to



generate intermediate reasoning for each
subtask. By passing these intermediate outputs
along the pipeline, we both improve overall
accuracy and more closely mimic human
problem-solving

4.3 Human-in-the-loop Validation

Once the model has generated its outputs,
users may review each result and is given the
opportunity to provide feedback on its
acceptability. If any aspect of the generated
information is incomplete or insufficiently
detailed, users request additional content from
the model. Through this iterative feedback loop—
beginning with system-level outputs and
cascading into subsystem-level validation—the
MADE model gradually becomes both more
comprehensive and more concise. Because the
LLM occasionally misinterpreted or inconsistently
mapped these failure modes, a simple human-in-
the-loop correction step was used. Through the
Ul, engineers were shown the model’s output
along with a set of valid options for each element
(function, flow or property). If the model's
selection was incorrect, the user could quickly
replace it with the correct option.

4.4 Result Integration

After the generation and validation phases
are complete, all approved outputs are mapped
into the MADE API's data schema. In this final
integration step, item dependencies, item
functions, flows, and flow properties are
organized according to the API specification,
producing a fully structured dataset that is ready
for deployment in the digital-twinning process.

Functional Failure
Analysis Model
(FMECA)
Constructing

Baseline RAMS 67.95
model
Identify Source 100

Failure Modes
Table 4 - LLM & Engineer Modelling Times

Modelled by Time to Complete (hr)
03-mini 041
ol 0.94
40 0.27
Engineer 20

In this study, accuracy (5) for each task was
calculated as the number of correctly generated
artefacts divided by the total number of
generated artefacts for that task. As per the
results, current LLM capabilities have the
potential to reduce the amount of time required
to construct a MADE model from legacy FMEA's
by up to 95%, It must also be noted that this
significant reduction in time does not introduce
significant inaccuracies or errors into the model.
Although early generation LLM’s such as GPT-40
were prone to hallucinations and unsatisfactory
outputs, the latest models employ advanced
reasoning techniques that dramatically enhance
the accuracy of outputs. When assessing the
relevant accuracy scores for replicating a
complex system model, from the latest model,
GPT-01, the results were as follows:

Table 5 - Accuracy Scores

Task Accuracy (%)

Designating Function 90.00

4.5 System Model Diagrams Comparison System Boundaries 95.00

Table 2 - Processing Times (s) Mapplng_ 89.32

Dependencies
Syste Flow Designating Flows 80.00
Mo | Functi m Depend Prope Tot
del ons Bound | encies rties al These results indicate a good understanding
aries of the system-level boundaries and functions,
03- 14 allowing the LLM to generate the lower-level
min | 192 104 264 900 system items with the relevant context required
. 60 :

I to generate an accurate and serviceable MADE
33 model. Overall, these results reaffirm the
ol 510 315 1056 1503 84 potential for LLM's to drastically reduce modelling
97 time, without sacrificing accuracy of a similar
40 84 98 287 204 3 magnitude. The figures below illustrate expected
Table 3 - Task Completion ?nu(;cggltl results, compared to the original MADE

Task. Completion (%) Figure 3 - Original Subsystem

Generating 87.83
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5 BENEFITS AND RISKS ASSESSMENT
5.1 Benefits and Opportunities

As illustrated in the case study above,
leveraging an LLM integrated modelling workflow
has the potential to significantly accelerate and
enhance the engineering system-model
development process—While the case study
focused rather narrowly on the scenario of
utilizing a relatively unpolished, ‘freehand’ data
source to build scalable engineering system
model, this method is easily augmented to
enhance modelling beyond this use case. An Al-
driven approach dramatically reduces
development time and scales effortlessly: models
can be generated rapidly and expanded on
demand. Looking ahead, Al won't merely
automate routine tasks but will also spur
innovation by enabling creative and technical
applications. Furthermore, ongoing advances in
Al—along with the continual upgrade of pre-
trained models such as GPT-3 and GPT-4-Mini—
promise ever-better quality and more capable
responses.

5.2 Limitations and Risks

Despite these benefits and rapid technical
progress, significant challenges remain:
e Hallucination and Reliability
LLMs can produce seemingly plausible but
factually incorrect outputs. This makes human
oversight essential: every model-generated
artifact must be vetted, and one should never
rely on the model’s response without review.
¢ Implementation Complexity
Effective use of LLMs requires prompt
engineering and programming expertise.
Involving subject-matter experts in prompt
design is crucial to guide the model in the
right direction and extract the needed
features for the MADE model.
e Token Constraints

1. Alzoubi, Y. I,

Each model imposes a limit on the number of
tokens (words or word-pieces) per request.
Exceeding this limit causes early parts of the
prompt or conversation to be truncated,
hindering coherence. Techniques like chain-
of-thought prompting or dynamic
summarization can mitigate—but not
eliminate—this issue.

e Lack of Deep Knowledge

While LLMs excel at general language tasks,
they often lack the specialized knowledge
needed for certain engineering domains. This
limitation is exacerbated when insufficient
domain data is available for fine-tuning or
retrieval-augmented generation (RAG).

6. CONCLUSION

Generative Al has demonstrated its capacity
to transform model-based engineering by
automating the extraction, structuring, and
validation of complex, often ‘freehand’ system
data—thereby allowing practitioners to redirect
effort from routine processing to strategic design
and trade-off analysis. In this paper we
showcased a practical, end-to-end example:
using large language models to convert legacy
rocket-engine FMEA/FMECA data into a review-
ready Digital Twin within the MADE framework.
The case study illustrates how Al-driven
generation of item functions, dependencies,
flows, and flow properties can cut model-building
time by orders of magnitude while preserving
engineering intent and traceability. As these
methodologies continue to evolve, their accuracy
and robustness will steadily improve, addressing
today’s limitations in reliability, scalability, and
domain specificity. Crucially, the ongoing
maturation of generative techniques promises
not only to enhance the precision of system
models but also to simplify engineers’ workflows,
reducing cognitive load and streamlining
collaboration. Future research will therefore focus
on refining on-demand knowledge injection
mechanisms and human-in-loop  validation
strategies to ensure that Al-generated outputs
remain both accurate and actionable, further
integrating generative Al into every phase of the
systems engineering lifecycle.
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