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ABSTRACT

The  rapid  digital  transformation  in
engineering,  coupled  with  the  development  of
increasingly  complex  systems,  is  pushing
industries to develop smarter and more efficient
methods  for  system  development.  Major
stakeholders/  industries  are  moving  towards  a
model-based framework for systems engineering,
RAM,  and  safety  analysis  to  manage  growing
system  complexity  while  maintaining  data
consistency and traceability.   

The  convergence  and  consolidation  of
previously  document-based  engineering
approaches  allows  for  the  standardization  and
streamlined  capture  of  knowledge  across
engineering disciplines.  In  this  framework,  data
availability  and  interoperability  can  easily
become  a  bottleneck  without  comparable
innovation  to  tooling  and  processes.  In  more
recent times Artificial Intelligence (AI)  has been
identified as a powerful enabler on this front. AI
can assist engineers in developing RAMS models
more efficiently by leveraging legacy data, such
as  historical  FMECAs,  and  aligning  it  with
standardized  taxonomies  to  automatically  and
rapidly develop system models  for downstream
analysis requirements.

1 INTRODUCTION-CURRENT INDUSTRY
LANDSCAPE

Modern  engineering  systems  become
increasingly  complex  as  the  ever-growing
demand  for  more  functionality  perpetuates  a
software driven evolution of engineering process
and  design.  This  trend  is  prevalent  in  high
velocity sectors such as aerospace, and defense
where  cutting  edge  consistently  contends  with
strict  safety,  regulatory,  and  cost  constraints;
requiring  increasingly  efficient,  necessarily

integrated system analysis and decision making
capabilities.  

System  development  requires  contributions
from a wide range of disciplines, organizations,
and  geographic  locations.  This  distributed
development  environment  frequently  results  in
siloed  activities  and  workflows,  where  different
stakeholders  rely  on  disparate  tools,  data
formats,  and  methodologies.  The  absence  of
centralized  and  standardized/  compatible  data
exacerbates  challenges  such  as  duplication  of
effort,  data  inconsistency,  and  poor  change
management. 

Even  with  many  software  tooling  options
available to  do the heavy lifting in engineering
modelling and analyses, interoperability remains
a  persistent  challenge.  Outputs  from  different
tools  are  often  incompatible,  and  the  lack  of
digital  continuity limits  the ability  to  effectively
reuse  prior  work—leading  to  redundant  efforts
and increased development timelines. 

A  particularly  pronounced  symptom  of  this
actuality is the vast amounts of legacy data in the
form  of  historical  FMEA/  FMECA  reports  which
continue  to  remain  underutilized.  These
documents  contain  critical  engineering insights,
yet  they  are  often  immediately  stored
unmanaged,  unmaintained,  and  under-
referenced,  in  formats  that  are  not  compatible
with modern applications. 

A Digital Twin approach grounded in model-
based engineering offers a promising solution. By
creating  structured,  centralized,  and  machine-
readable  representations  of  systems,
organizations  can  improve  traceability,  enable
cross-disciplinary  collaboration,  and  ensure
consistency  throughout  the  system  lifecycle.
Combining this with AI-powered natural language
processing  (NLP)  techniques,  such  as  large



language  models  (LLMs),  can  enable  the
automated  transformation  and  ingestion  of
legacy documents into structured and centralized
digital  models.  This  not only accelerates model
creation and reduces manual workload but also
helps  preserve  engineering  intent  across  the
system lifecycle.

2 MODEL-BASED APPROACH TO RAMS

A  Digital  Twin  modelling  solution  such  as
MADE  (Maintenance  Aware  Design  Ecosystem)
enables  a  model-based  approach  to  RAMS
(Reliability,  Availability,  Maintainability,  and
Safety) analysis by digitally mirroring aspects of a
system’s  expected  operational  behaviour;
simulating the interdependencies of its functions,
flows, and failures. At its core, this system model
serves as a dependency mapping of components
and  subsystems,  offering  a  structured  and
scalable  process  for  modelling  and  analyzing
system-wide resilience against risk. 

The  model  creation  process  in  MADE  is
typically structured into three key steps: 

 Functional  Definition  –  Each  system
element  (or  item)  is  assigned a  defined
function,  characterized  by  its  input  and
output  flows.  This  allows  for  a  clear
understanding  of  the  system's  intended
behavior and interactions. 

 Failure  Concept  Attribution  –  For  each
item, potential failure causes and modes
are identified. These define how the item
can fail. 

 System  Dependency  Mapping  –
Components  are  then  connected  to  one
another,  establishing  a  dependency that
reflects the system’s overall behavior and
the cascading effects of failures. 

Approaches  such  as  Functional  Causal
Modelling (FCM) or Bond Graph simulation can be
employed  to  model  and  analyze  these
interactions, enabling automated propagation of
failure effects across the architecture. 

The  core  modelling  principle  leverages
standardized taxonomies for functions, flows, and
failure concepts.  Use of common language and
labelling  allows  organization-wide  collaboration,
distribution and reuse of engineering knowledge,
and frictionless integration across toolchains. 

A  critical  enabler  of  this  model-based
approach  is  digital  continuity,  made  possible
through integration interfaces such as APIs  and
structured  import  formats  (e.g.,  Excel).  These
ensure that data remains machine-readable and
centrally  accessible  throughout  the  system
lifecycle. 

Notably,  many legacy FMEA/FMECAs already
include  the  foundational  elements  needed  for

model-based  analysis  (functional  descriptions,
failure modes, causes, and effects). However, this
data  is  often  buried  in  unstructured,  non-
standardized documents that are difficult to reuse
manually.  The  advent  of  advanced  LLM
technology  offers  a  powerful  lifeline.  By  using
LLMs to  extract,  interpret,  and structure legacy
RAMS  data,  organizations  can  accelerate  the
creation  of  Digital  Twins  and  unlock  valuable
engineering insights that would otherwise remain
siloed or inaccessible. 

3 AI ASSISTED LEGACY DATA CONVERSION

Recent  advances  in  machine  and  deep
learning  have  propelled  rapid  progress  in
generative artificial intelligence (AI).  Because of
its  versatility  and  the  breadth  of  knowledge
encoded  in  its  models,  generative  AI  is  not
applied  across  an  ever-widening  range  of
domains. In particular, LLMs have expanded their
influence  beyond  natural  language  tasks  to
motion simulation, music generation, and robotic
control  because  of  their  text  generation
capabilities.

3.1 Potential of Generative AI Applications in 
Systems Engineering 

LLMs  are  rapidly  reshaping  systems
engineering.  Traditionally,  engineers  have
depended  on  manual  design,  simulation  and
analysis to manage the escalating complexity of
modern  systems.  Recent  progress  in  LLM
technology  now  enables  AI  tools  to  generate
technical  artefacts—from detailed diagrams and
executable  code  to  well-formed  system
requirements—with minimal human input [1]. By
combining  rich  systems-engineering  knowledge
bases with  advanced computational techniques,
generative  AI  offers  a  more  efficient  and  less
error-prone  approach  to  both  conceptual  and
practical  engineering  tasks.  Ongoing
breakthroughs  in  multimodal  processing  and
reasoning further broaden this potential, allowing
LLM-based systems to  ingest test,  images,  and
audio concurrently; as a result, they promise to
redefine the efficiency, creativity,  and precision
of engineering solutions [2]. 

A  concrete  use  case  is  automated  content
generation. Engineers can instruct  AI  assistants
to  produce  tailored  documents  for  diverse
stakeholders or to repurpose existing engineering
information for adjacent objectives. For example,
generative  AI  can  partially  automate  the
conversion  of  FMEA  data  into  a  formal  system
model—a  task  that  has  historically  required
labour-intensive, time-consuming manual work by
systems  engineers.  By  delegating  the  initial



model-creation step to AI, engineers can devote
more  time  to  comprehensive  analysis  and
iteration,  thereby  accelerating  the  overall
development cycle [3]. These capabilities herald
not merely the automation of routine tasks, but a
paradigm  shift  in  how  engineers  conceive,
validate, and iterate on design models.

3.2 Use of LLMs Toward Model Generation

Generative AI is permeating not only systems
engineering  but  a  growing  array  of  other
disciplines,  and  its  use-cases  are  poised  to
multiply  rapidly.  This  diversification  is  being
matched  by  a  wave  of  inventive  technical
approaches. Therefore,  understanding key  skills
in LLMs are crucial since importance of skills are
increasing  and,  they  can’t  be  used  properly
without  knowing,  so  a  few skills  are  described
follows: 
 Prompt  engineering  is  the  deliberate  design  of  input
instructions that  steer  a  LLM toward a  verifiable, use  case
specific  result.  In  workflow  presented  in  this  paper,  each
prompt is partitioned into three explicitly labelled blocks: task
—a  concise  statement  of  the  exact  work  to  be  performed,
criteria—bullet-point constraints that the model must observe,
output  format—a  schema  that  the  model’s  reply  must
replicate 
 LLMs fall into two categories: proprietary frontier models
—such  as  GPT  o4-mini,  GPT  o3,  GPT  4o,  Gemini,  and
Claude—that lead in performance, scalability, and multimodal
integration, and open-source alternatives like Llama and Phi,
which can be deployed locally for  greater  data  privacy and
security.  Factors  such  as  model  size,  tokenization  strategy,
prompt  complexity,  and  decoding  method  influence  both
response  fidelity  and runtime,  so  choosing  the  right  model
requires  balancing  these  trade-offs.  For  example,  when
extracting  insights  from  FMEA  data,  Llama  3  offered
enhanced  control  and  confidentiality  but  produced  largely
unsatisfactory outputs, whereas GPT o1and o3-mini generated
acceptable results. In creating MADE models—where precise
interpretation  of  complex  inputs  is  vital—minimizing
hallucinations and maximizing accuracy are paramount. 
 Fine-tuning  and  retrieval-augmented  generation  (RAG)
enhance  LLMs  by  incorporating  domain-specific  data,
enabling  them  to  deliver  more  accurate,  context-aware
outputs. There are multiple ways to apply these methods. For
fine-tuning, a dataset that correctly maps FMEA data to the
MADE taxonomy can be used to adapt a pre-trained model.
RAG  is  appropriate  when  engineering  manuals  or  case-
specific  documentation  (e.g.,  rocket-engine  maintenance
guides)  are available. By integrating these resources, LLMs
can produce substantially more precise and reliable responses.

3.3 Description of Solution Architecture

To  automate  system-model  creation  with
LLMs,  the  processing pipeline must  be  explicit,
modular,  and  repeatable.  The  workflow  below
balances data-engineering pragmatism with LLM-

centric best practices are listed in Table 1 below: 

Table 1 – Solution Architecture for LLMs
Application

Paragraph Stage Purpose & Design
Notes

Legacy-data 
ingestion

Collect requirements 
documents, FMEA 
tables, etc. Convert 
every source to a 
machine-readable 
format 
(CSV/JSON/markdown)

Domain-taxonomy 
injection

Supply a controlled 
vocabulary (flow 
properties, functions) 
as a constraint so the 
model can generate 
consistent outputs and
support 
interoperability

Deterministic feature
extraction

Pre-compute 
information that is 
obvious from the data 
e.g., item hierarchy

Structured 
prompting 

Craft prompt the 
embed a clear task 
with ideal formats 

Optional adaption 
layer 

Fine tuning or RAG can
be used for LLMs for 
better outputs 

Human-in-the-loop 
validation

Present the draft 
outputs to 
engineers/users for 
verification and 
feedback

Result serialization &
integration

Export final structure 
to the certain formats 
e.g., JSON

Figure 1 – Flowchart for a subsystem-level

4 CASE STUDY

There  are  significant  challenges  in  creating
RAMS  models  for  the  MADE  digital-twinning
process, primarily  because of  the  high up-front
time  and  resource  requirements.  A  case  study



was developed using an existing FMEA of a rocket
engine, to demonstrate the potential advantages
of an LLM seeded modelling approach. The FMEA
dataset, sourced from a legacy system, includes
text-based  fields  such  as  LCN,  item
nomenclature, item function, failure mode, local
effect,  next  effect,  and end effect. The dataset
contains a wide range of failure modes that vary
in  specificity.  Typical  examples  include  failures
related to fuel delivery (e.g., fails to supply fuel,
fails  to  increase  fuel  flow)  mechanical  power
transmission  (e.g.,  fails  to  create  rotational
motion),  filtration  (e.g.,  fails  to  remove
contaminants  from  air/fuel).  This  variability
reflects common inconsistencies found in legacy
FMEA sources and presents a realistic challenge
for  automated  model  generation,  particularly
when  mapping  unstructured  text  to  structured
MADE model concepts.

Following the process and workflow described
in the previous section, our approach aimed to
significantly  reduce the time and manual  effort
required  for  transformation,  making  legacy-
system integration more efficient and accessible
while  also  synergizing  with  human  expert
knowledge. More specifically, the objective of this
case study was  to  generate  a fully  serviceable
MADE model  using only FMEA data as input.  A
serviceable  MADE  model  must  include  item
dependencies,  item  functions,  flows,  and  flow
properties, as these are essential for the model-
creation process. These outputs are visualized in
Figure 2.

4.1 Data Injection and Feature Extraction

When the FMEA dataset is  ‘loaded’ the first
major step is to enrich the FMEA dataset with a
predefined  set  of  model  concept  definition
taxonomies  (i.e.  functions,  failures,  flow
properties).  This  is  provided  as  a  text  file
alongside  the  source  FMEA,  the  taxonomical
language  therein  acting  as  the  targets  for
mapping  natural  language  artefacts  to.  This
ensures  that  all  items,  hierarchy,  and  failure
definitions are fully recovered. 

The emphasis on item hierarchy is essential
for the top-down generation process: we begin by
producing outputs at the system level and then
use  those  results  to  guide  the  generation  of
subsystem-level outputs. Figure 1 illustrates the
generation process,  which is applicable to  both
system-level and all  subsystem-level generation
processes.  

As  an  example,  the  case  study  dataset
defines five system-level items—A1 (Fuel Tank),
A2 (Diesel Engine), A3 (Coupling), A4 (Alternator
Unit),  and  A5  (Control  Unit)—and  multiple

subsystem  items  under  A2,  such  as  A20001
(Coupling  1),  A20002  (Air  Filter),  A20003
(Engine),  and  so  forth.  By  identifying  and
processing  A2  at  the  top  level,  we  can
subsequently generate precise outputs for each
of  its  subordinate  items.  This  hierarchical
strategy  preserves  structural  consistency  and
enhances  the  accuracy  and  relevance  of  our
feature-extraction pipeline.

Figure 2 – Sample Outputs from LLMs

4.2 Structured Prompting 

In  this  phase,  we  employ  LLM-based
methodologies to  guide and refine our outputs.
First,  we  empirically  optimize  each  prompt  to
elicit  the  desired  format  and  context.  Because
even  minor  prompt  variations  can  produce
dramatically  different  responses,  multiple
iterations are required to  converge on an ideal
prompt  structure.  We  evaluate  leading  GPT
architectures—namely 4o, o1, and o3-mini—both
for  their  cutting-edge  performance  and
scalability.  Each  model  is  prompted identically,
then  its  outputs  are  compared  in  terms  of
consistency,  accuracy,  and  relevance  to
determine which delivers the best results. 

Second, we integrate Chain-of-Thought (CoT)
prompting [4] to decompose complex generation
tasks into smaller, more manageable steps. Our
application must produce three distinct outputs—
item functions, inter-item flow names, and flow
properties—and  CoT  enables  the  model  to



generate  intermediate  reasoning  for  each
subtask. By passing these intermediate outputs
along  the  pipeline,  we  both  improve  overall
accuracy  and  more  closely  mimic  human
problem-solving

4.3 Human-in-the-loop Validation

Once the  model  has generated  its  outputs,
users may review each result and is  given the
opportunity  to  provide  feedback  on  its
acceptability.  If  any  aspect  of  the  generated
information  is  incomplete  or  insufficiently
detailed,  users  request  additional  content  from
the model. Through this iterative feedback loop—
beginning  with  system-level  outputs  and
cascading  into  subsystem-level  validation—the
MADE  model  gradually  becomes  both  more
comprehensive  and more  concise.  Because the
LLM occasionally misinterpreted or inconsistently
mapped these failure modes, a simple human-in-
the-loop correction step was used. Through the
UI,  engineers  were  shown  the  model’s  output
along with a set of valid options for each element
(function,  flow  or  property).  If  the  model’s
selection  was  incorrect,  the  user  could  quickly
replace it with the correct option. 

4.4 Result Integration

After  the  generation  and  validation  phases
are complete, all  approved outputs are mapped
into  the  MADE  API’s  data schema.  In  this  final
integration  step,  item  dependencies,  item
functions,  flows,  and  flow  properties  are
organized  according  to  the  API  specification,
producing a fully structured dataset that is ready
for deployment in the digital-twinning process.

4.5 System Model Diagrams Comparison 

Table 2 – Processing Times (s)

Mo
del

Functi
ons

Syste
m

Bound
aries

Depend
encies

Flow
Prope
rties

Tot
al

o3-
min

i
192 104 264 900

14
60

o1 510 315 1056 1503
33
84

4o 84 98 287 504
97
3

Table 3 – Task Completion

Task Completion (%)
Generating 87.83

Functional Failure
Analysis Model

(FMECA)
Constructing

Baseline RAMS
model

67.95

Identify Source
Failure Modes

100

Table 4 – LLM & Engineer Modelling Times

Modelled by Time to Complete (hr)
o3-mini 0.41

o1 0.94
4o 0.27

Engineer 20

In this study, accuracy (5) for each task was
calculated as the number of correctly generated
artefacts  divided  by  the  total  number  of
generated  artefacts  for  that  task.  As  per  the
results,  current  LLM  capabilities  have  the
potential to reduce the amount of time required
to construct a MADE model from legacy FMEA’s
by up to  95%, It  must  also be noted that  this
significant reduction in time does not introduce
significant inaccuracies or errors into the model.
Although early generation LLM’s such as GPT-4o
were prone to  hallucinations and unsatisfactory
outputs,  the  latest  models  employ  advanced
reasoning techniques that dramatically enhance
the  accuracy  of  outputs.  When  assessing  the
relevant  accuracy  scores  for  replicating  a
complex  system model,  from the  latest  model,
GPT-o1, the results were as follows: 

Table 5 – Accuracy Scores

Task Accuracy (%)
Designating Function 90.00
System Boundaries 95.00

Mapping
Dependencies

89.32

Designating Flows 80.00

These results indicate a good understanding
of  the  system-level  boundaries  and  functions,
allowing  the  LLM  to  generate  the  lower-level
system items with the relevant context required
to generate an accurate and serviceable MADE
model.  Overall,  these  results  reaffirm  the
potential for LLM’s to drastically reduce modelling
time,  without  sacrificing  accuracy  of  a  similar
magnitude. The figures below illustrate expected
output  results,  compared to  the  original  MADE
model: 

Figure 3 – Original Subsystem



Figure 4 –Subsystem Generated by LLM

5 BENEFITS AND RISKS ASSESSMENT

5.1 Benefits and Opportunities

As  illustrated  in  the  case  study  above,
leveraging  an LLM integrated modelling workflow
has the potential to significantly accelerate and
enhance  the  engineering  system‐model
development  process—While  the  case  study
focused  rather  narrowly  on  the  scenario  of
utilizing a relatively unpolished, ‘freehand’ data
source  to  build  scalable  engineering  system
model,  this  method  is  easily  augmented  to
enhance modelling beyond this use case. An AI-
driven  approach  dramatically  reduces
development time and scales effortlessly: models
can  be  generated  rapidly  and  expanded  on
demand.  Looking  ahead,  AI  won’t  merely
automate  routine  tasks  but  will  also  spur
innovation  by  enabling  creative  and  technical
applications.  Furthermore,  ongoing advances  in
AI—along  with  the  continual  upgrade  of  pre-
trained models such as GPT-3 and GPT-4-Mini—
promise  ever-better  quality  and  more  capable
responses.

5.2 Limitations and Risks

Despite these benefits and rapid technical 
progress, significant challenges remain: 

 Hallucination and Reliability 
LLMs can produce seemingly plausible but 
factually incorrect outputs. This makes human
oversight essential: every model-generated 
artifact must be vetted, and one should never 
rely on the model’s response without review. 

 Implementation Complexity 
Effective use of LLMs requires prompt 
engineering and programming expertise. 
Involving subject-matter experts in prompt 
design is crucial to guide the model in the 
right direction and extract the needed 
features for the MADE model. 

 Token Constraints 

Each model imposes a limit on the number of 
tokens (words or word-pieces) per request. 
Exceeding this limit causes early parts of the 
prompt or conversation to be truncated, 
hindering coherence. Techniques like chain-
of-thought prompting or dynamic 
summarization can mitigate—but not 
eliminate—this issue. 
 Lack of Deep Knowledge 
While LLMs excel at general language tasks, 
they often lack the specialized knowledge 
needed for certain engineering domains. This 
limitation is exacerbated when insufficient 
domain data is available for fine-tuning or 
retrieval-augmented generation (RAG).

6. CONCLUSION

Generative AI has demonstrated its capacity
to  transform  model-based  engineering  by
automating  the  extraction,  structuring,  and
validation  of  complex,  often  ‘freehand’  system
data—thereby  allowing  practitioners  to  redirect
effort from routine processing to strategic design
and  trade-off  analysis.  In  this  paper  we
showcased  a  practical,  end-to-end  example:
using large language models  to  convert  legacy
rocket-engine  FMEA/FMECA  data  into  a  review-
ready Digital  Twin within the MADE framework.
The  case  study  illustrates  how  AI-driven
generation  of  item  functions,  dependencies,
flows, and flow properties can cut model-building
time  by  orders  of  magnitude  while  preserving
engineering  intent  and  traceability.  As  these
methodologies continue to evolve, their accuracy
and robustness will steadily improve, addressing
today’s  limitations  in  reliability,  scalability,  and
domain  specificity.  Crucially,  the  ongoing
maturation  of  generative  techniques  promises
not  only  to  enhance  the  precision  of  system
models but also to simplify engineers’ workflows,
reducing  cognitive  load  and  streamlining
collaboration. Future research will therefore focus
on  refining  on-demand  knowledge  injection
mechanisms  and  human-in-loop  validation
strategies  to  ensure  that  AI-generated  outputs
remain  both  accurate  and  actionable,  further
integrating generative AI into every phase of the
systems engineering lifecycle. 
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