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ABSTRACT

Intelligent fault diagnosis has made significant progress with
the advancements in deep learning and big data. However,
the assumption of identical training and testing data distri-
butions often fails in dynamic industrial environments, lead-
ing to performance degradation. To address this issue, we
propose an Adversarial Domain Adaptation Fault Diagno-
sis Model Based on Self-attention Graph Convolutional Net-
work (ADA-SAG). The model employs the k-nearest neigh-
bors algorithm to construct graph structures that capture fault-
instance relationships across source and target domains. A
self-attention enhanced graph convolutional network extracts
critical features, while a dual-classifier framework, combined
with adversarial learning and maximum mean discrepancy
regularization, ensures domain-invariant feature alignment.
Experimental results on two benchmark datasets show that
the proposed model achieves higher accuracy and robustness
compared to existing methods, making it suitable for diverse
operating conditions. Ablation studies further validate the
contributions of each component to the overall effectiveness
of the model.

1. INTRODUCTION

With the increasing complexity of industrial systems, ad-
vanced fault diagnosis algorithms have become essential
to ensure reliability and reduce maintenance costs. Deep
learning has significantly enhanced diagnostic accuracy by
enabling efficient feature extraction(Z. Chen et al., 2023;
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Y. Chen et al., 2023; Tang et al., 2023; Liang, Deng, Yuan,
& Zhang, 2023). However, its effectiveness heavily depends
on stable operating conditions(H. Li et al., 2024; Guo et al.,
2021; Yan et al., 2020). In real-world industrial environ-
ments, frequent variations in equipment states cause signifi-
cant discrepancies between training (source domain) and test-
ing (target domain) data distributions, which severely impact
model performance.

To address domain discrepancies and enhance robustness and
generalizability in fault diagnosis models, researchers have
proposed various domain adaptation methods, broadly cate-
gorized into feature-based and instance-based approaches to
address specific challenges in domain adaptation. This dis-
crepancy undermines the performance of deep learning mod-
els, causing domain distribution discrepancies(L. Chen et al.,
2021; W. Li, Yuan, Sun, & Liu, 2020; Zhao, Liu, Shen,
& Gao, 2021a; Wang, Huang, Wang, Shen, & Zhu, 2022).
Feature-based methods focus on learning domain-invariant
feature representations(Du et al., 2019; C. Chen, Chen, Jiang,
& Jin, 2019; Long, Cao, Wang, & Jordan, 2015). For ex-
ample, Zhao et al.(Zhao, Liu, Shen, & Gao, 2021b) devel-
oped a multi-representation domain adaptation network that
achieves adaptation through domain-invariant feature extrac-
tion. Lu et al.(Lu, Fan, Zeng, Li, & Chen, 2022) intro-
duced a self-supervised domain adaptation approach that ad-
justs the feature distributions of two domains through domain
adversarial training and MMD. Ma et al.(Ma, Zhang, Fan,
& Wang, 2020) developed a diagnostic framework that fo-
cuses on feature-based domain adaptation methods to adapt to
different domains. Instance-based methods reweight source
samples to align with the target domain distribution(Deng et
al., 2022; Gong, Yu, & Xia, 2020). Zhu et al.(Zhu, Shi, Feng,
& Tang, 2023) proposed a domain adaptation method for in-
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telligent bearing fault diagnosis based on cycle-consistent ad-
versarial learning. Chen et al.(Z. Chen, Yu, Ding, Shao, &
Mechefske, 2022) introduced an end-to-end fault diagnosis
network that considers cross-domain discrepancies through
instance-based methods. Liu et al.(Liu, Wang, Chow, & Li,
2022) proposed a deep adversarial subdomain adaptation net-
work to enhance the generalization capability of fault diagno-
sis.

Although existing domain adaptation methods have achieved
promising results in fault diagnosis, they often fail to leverage
the spatial structures in the data, which limits their ability to
address domain discrepancies. To address this issue and fur-
ther improve the robustness of the model, this paper proposes
an adversarial domain adaptation fault diagnosis model based
on self-attention graph convolutional network (ADA-SAG),
which consists of a fault sample graph construction module, a
self-attention graph convolutional network module and an en-
hanced domain adaptation module. Finally, the model adopts
a dual-classifier structure and an adversarial learning strategy,
promoting competition between the feature generator and the
classifiers to achieve more precise feature alignment(Saito,
Watanabe, Ushiku, & Harada, 2018; Zhang, Dong, Qaid, &
Wang, 2024).To further reduce the feature distribution dif-
ferences between the source and target domains, the model
integrates an MMD regularization term, strengthening distri-
bution consistency across different domains. The followings
are the key contributions of this paper:

(1) The KNN algorithm is employed to convert raw signals
into fault sample graphs, capturing subtle similarities be-
tween samples and efficiently extracting and utilizing the spa-
tial structure features of the data.

(2) A self-attention enhanced graph convolutional network is
introduced as the feature extractor, enabling more accurate
capture of critical features. (3)The effectiveness and superi-
ority of the ADA-SAG model are demonstrated through com-
parative studies with state-of-the-art methods and ablation ex-
periments on the CWRU and PHM?2009 datasets.

The remainder of this paper is structured as follows: Sec-
tion II provides the problem statement and theoretical back-
ground. Section III describes the proposed method. Experi-
ments and comparative studies are given in Section I'V. Sec-
tion V contains the conclusion of this study.

2. PRELIMINARY
2.1. Problem statement

The domain adaptive fault diagnosis problem aims to develop
a classification model capable of effective transfer between
different operating conditions (source and target domains),
despite significant distributional and feature differences.
The source domain X, is defined as {zf,yf})", where
y; is the label of source sample x7,n, is the number of

source samples.The source domain includes labeled nor-
mal states and various fault types, representing known and
representative working conditions and fault modes. The
source domain dataset contains n categories,denoted as
C = {a,ca,...,c,},where each category corresponds to
a specific fault type or normal state. The target domain X,
consists of unlabeled data,denoted as {x§ };“: ,-The data dis-
tribution, operating conditions, and noise levels in the target
domain differ significantly from the source domain, and ob-
taining sufficient fault labels in the target domain is typically
challenging due to practical constraints. Notably, despite
these differences, the fault types and normal state categories

are identical in both domains.

2.2. Graph Attention Networks

Graph Attention Networks (GAT) extend the capabilities of
traditional GCN by introducing an attention mechanism, al-
lowing for the dynamic weighting of the importance of neigh-
boring nodes during feature aggregation(Velickovié et al.,
2017). This approach is particularly advantageous in fault di-
agnosis, as different time periods or signal features may have
varying relevance when identifying specific fault conditions.

In GAT, the attention mechanism assigns a weight coefficient
to each neighboring node, thereby adjusting its contribution
during the aggregation process. The importance of neighbor-
ing nodes is first determined by calculating the unnormalized
attention score €;; between pairs of nodes, as shown in the
following equation.

e1j = LeakyReLU (a” [Wh;|[Wh;)) S

where W is the weight matrix for feature transformation; h;
and h; are the feature vectors of nodes i and j; || denotes
the concatenation operation of vectors; and « is the learnable
attention weight vector used to calculate the correlation be-
tween nodes.

Next, the softmax function is applied to normalize these
scores so that the sum of attention weights cy;; from node ¢
to all its neighboring nodes j equals 1, as illustrated in the
following Eq. (2).

exp (e;;)
ZkeN(i) exp (€ik)

2

a;; = softmax (e;5) =

where «;; represents the normalized attention weight; and
N (i) represents the set of neighboring nodes of node i.

By performing a weighted sum of the features of neighbor-
ing nodes, the new feature representation A, for node 4 is ob-
tained, as shown in the following Eq. (3):

Wy=o| > ayWh; 3)

JEN(3)
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Figure 1. The model consists of three primary modules: fault sample graph construction, self-attention graph convolutional
network, and enhanced adaptation domain. It incorporates three loss functions: L. for source domain classification, Lywp for
feature distribution alignment, and L4, for adversarial domain adaptation.

3. PROPOSED METHOD

As shown in Fig. 1, the proposed ADA-SAG mainly in-
cludes:fault sample graph construction module, self-attention
graph convolutional network module and enhanced domain
adaptation module.The detailed description of each module
is given as follows.

3.1. Fault sample graph construction module

In the field of intelligent fault diagnosis, due to the lack
of explicit dependency information, constructing association
graphs can effectively reveal the similarity between fault
modes. The K-Nearest Neighbors (KNN) algorithm is ap-
plied to construct fault sample graphs for the source and target
domains. The process of constructing fault sample graph is
shown in Fig. 2. By converting data samples into graph rep-
resentations, the relationships between nodes are explored,
capturing the intrinsic spatial features of the graph structure.
In the fault sample graph, each node represents a fault sam-
ple, and the edges are defined based on the similarity between
samples, with the edge weights indicating the degree of sim-
ilarity. Therefore, the specific process of constructing a fault
sample graph based on KNN is as follows.

In the source domain, the similarity between fault sample z;
and other samples x;(j = 1,2,---n,j # ¢) is measured us-
ing a Gaussian kernel function, as shown in Eq. (4)

| rr(e) P2
Sim (z;,z;) = e~ 207 4)

where o represents the bandwidth parameter of the Gaussian

kernel, || FFT (x;) — FFT (z;)| denotes the Euclidean dis-
tance between the frequency domain features of x; and x;.
The closer Sim (z;, ;) is to 1, the more similar z; is to ;.

For fault sample x;, other fault samples x; are sorted in de-
scending order of similarity Sim(z;,2;). The top K most
similar fault samples are selected as the neighborhood of z;,
constructing the adjacency matrix A. If samples x; and x;
are neighbors, the element A;; in the adjacency matrix is set
to the normalized similarity measure Sim(x;, ;); otherwise,
A;j is set to 0. The construction of the adjacency matrix is
formulated in Eq. (5):

Aij{

where N (i) represents the neighborhood of fault sample z;,
which is the set of the top K most similar fault samples. The
adjacency matrix A represents the edges in the graph, where
a;; denotes the edge weight between x; and ;. Each fault
sample is connected to its K -nearest neighbors, forming the
source domain fault sample graph G (V;, E) and the target
domain fault sample graph G (V;, E;) through identical pro-
cesses.

ZkeN(q‘,) Sim(z;,xk) lfj € N(Z)

otherwise

&)

3.2. Self-attention graph convolutional network module

For accurate fault diagnosis, the self-attention graph convolu-
tional network module integrates GAT and GCN. The mod-
ule employs a GAT layer to capture local feature importance
by assigning dynamic weights to neighboring nodes through
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Figure 2. Schematic diagram of the fault sample graph con-
struction method based on KNN.The circle represents the
fault sample, and the straight line represents the similarity
weight between the two fault samples. Assuming k=4, the
green fault sample is a neighbor of the yellow fault sample,
while the blue fault sample is not.

a self-attention mechanism. This ensures that key neighbor-
ing nodes contribute more significantly to the node’s feature
representation, enabling precise local feature extraction. Sub-
sequently, the GCN layer combines these locally refined fea-
tures across the entire graph to capture global structural infor-
mation. This combination ensures local detail sensitivity and
global integration, enabling the model to adapt to variations
in node influence. The computational process of this module
is as follows.

By sequentially applying Eq. (1), (2), and (3), the feature ma-
trix H' is computed using the adjacency matrix A and the
initial feature matrix H. The new feature representation h/
for each node is then derived. All updated node features are
then aggregated into the new feature matrix H’, as shown in
Eq. (6).

i

= (©)

hn

where H' represents the output feature matrix.

Next, the GCN integrates global information, updating the
node features as shown in Eq. (7) to enhance the representa-
tion of structural dependencies.

H" = ReLU(AH'W) 7

where H" represents the output feature matrix, relu(.) rep-
resents the non-linear activation, and A is the normalized ad-
jacency matrix.

3.3. Enhanced domain adaptation module

The enhanced domain adaptation module applies an adver-
sarial learning strategy to align feature spaces by optimiz-
ing both minimization and maximization strategies, reduc-
ing distributional discrepancies between source and target do-
mains. The self-attention enhanced graph convolutional mod-
ule serves as the feature extractor GG, while C; and Cs classi-
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Figure 3. The classifiers in Step B learn to maximize the dis-
crepancy on the target domain samples, while the generator
in Step C learns to minimize this discrepancy, thereby align-
ing the feature distributions between the source and target do-
mains.

fiers with distinct initializations, designed to capture diverse
feature representations.To effectively achieve this alignment,
we address the problem in three distinct steps.

Step A Initially, Cy , C and G are jointly trained on the
source domain, ensuring correct classification of X through
classification loss minimization. This step corresponds to
Step A in Fig. 3. The goal is to ensure correct classification of
source domain samples by minimizing the classification loss.
The optimization objectives are as follows.

in L.(X.Y.
Gl FoXe ) @
K
Lo (X, Ys) == B, y)—(x..Y) Z Ljg=y.logp1 (y | ws)
=1
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+ ) ey logpa (y | 2)
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where p1(y | xs) and pa(y | xs) denote the predicted
probabilities by C; and Cs for the input source sample
xg,respectively.

Step B In this phase, G is fixed, while C; and C5 are adjusted
to maximize prediction inconsistency on target domain sam-
ples, thus highlighting distributional differences between do-
mains. This step corresponds to Step B in Fig. 3. At the same
time, to maintain high classification accuracy on source do-
main samples during target domain alignment, the classifiers
must also incorporate source domain classification loss in the
optimization process. Furthermore, the MMD regularization
term serves to align feature distributions between source and
target domains, enhancing consistency across domain bound-
aries. The optimization objective is as follows.

énlg Lc (X57 Ys) - Ladv (Xt) + BLMMD (stXt) (10)
1,02

Ladv (Xt) = Eq,—x, [dis (p1(y | ), p2(y [ x))]  (11)

where X, represents the distribution of target domain data;
Loav(X:) represents the classifier difference loss, which is
measured by the maximum absolute difference between the
probability distributions of C; and C5 on the target domain
samples; [ is a hyperparameter controlling the strength of the
MMD regularization.

Step C In the final step, C'; and C remain fixed, while G
is optimized to minimize both the classifier discrepancy loss
and the MMD loss thereby generating features tailored to the
target domain. This step corresponds to Step C in Fig. 3. The
optimization objective is as follows.

mgin Loagw (X¢) + BLymp (Xs, Xy) (12)

By iteratively optimizing these three steps, the model’s funda-
mental performance on the source domain is enhanced, while
class alignment and domain alignment are achieved in the tar-
get domain. The ultimate goal of training G is to develop ro-
bust generalized features, thereby enhancing target domain
performance. The entire process simultaneously addresses
both class and domain alignment, utilizing a strategy that in-
tegrates adversarial learning between the feature extractor and
classifiers with MMD regularization to achieve effective do-
main adaptation. This approach ensures the discriminative
ability and adaptability of the model in the target domain.

4. EXPERIMENTS

The proposed method was evaluated on the Case Western
Reserve University Bearing Dataset and the PHM2009 Data
Challenge Gearbox Dataset to validate its effectiveness and
generalization capabilities. The model was developed in
Python 3.9 using PyTorch 1.12.0 and tested in a computing
environment with an Intel Core i7-7700HQ CPU (2.80 GHz),
an NVIDIA GeForce GTX 2080Ti GPU (12 GB), and 32 GB

Figure 4. CWRU bearing test bench

Table 1. CWRU DATASET INFORMATION

DataSet Class Label 0 I 2 3 45 6 7 8 9
CWRU Fault Type H BF BF BF IF IF IF OF OF OF
Fault Sizemil) 0 7 14 21 7 14 21 7 14 21

Load Ohp, 1hp,2hp,3hp

of RAM. The experimental model employs cross-entropy loss
as the loss function and updates its learnable parameters using
the Adam optimizer.

4.1. Data description

(1) Case Western Reserve University Dataset(Smith & Ran-
dall, 2015): The first dataset was obtained from the Bearing
Data Center of Case Western Reserve University (CWRU).
The layout of the test bench is shown in Fig .4, consist-
ing of a 2-horsepower motor (left), a torque sensor (cen-
ter), and a testing machine (right). Vibration signals are col-
lected from the drive end of the motor at four motor loads
and speeds: Ohp/1797rmp, 1hp/1772rmp, 2hp/1750rmp, and
3hp/1730rmp. There are four bearing health states in this
dataset for each operating condition, including normal state
(H), inner ring failure (IF), outer ring failure (OF), and rolling
element failure (RF). Each fault state has 3 damage sizes (7,
14, and 21 inches (mils)). Each sample consists of 1024 sam-
pling points. The detailed information of CWRU is shown
in Tablel. In order to construct a domain adaptation prob-
lem, two conditions were randomly selected from the above
four conditions, one as the source domain and the other as the
target domain, forming twelve domain adaptation problems.

(2) PHM2009 dataset: This dataset is an experimental dataset
used for gearbox diagnosis research and can be obtained on
the PHM (Data Analysis Competition PHM Society) official
website. The variable speed device is shown in Fig .5, in-
cluding three shafts, four gears, and six bearings. The vibra-
tion signals were collected at five axis speeds of 30, 35, 40,
45, and 50Hz, forming five different operating domains. The
sampling frequency is 66.67kHz and the collection time is 4
seconds. There are six different health states under each op-
erating condition, including normal state and five fault states.
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Figure 5. PHM2009 dataset setup fig(a) gearbox, fig(b) gear-
box interior

Table 2. PHM2009 Dataset Information

DataSet  Label Gear Bearing Shaft
Others  Input Shaft: Idler Shaft: ~ Others Input Output
Output Side  Output side
PHM2009 0 Good Good  Good Good Good  Good Good
1 Chipped Good  Good Good Good  Good Good
2 Broken  Good  Combination Inner Good  Bent Shaft  Good
3 Good Good  Combination  Ball Good  Imbalance  Good
4 Broken  Good  Good Inner Good  Good Good
5 Good Good  Good Good Good  Bent Shaft  Good

Divide the vibration signal of each axis speed into segments
with a length of 6144 sampling points. The detailed informa-
tion of PHM2009 is shown in Table2. The experimental setup
of this dataset involves randomly selecting two operating con-
ditions from five different scenarios, one of which is consid-
ered as the source domain and the other as the target domain,
and constructing twenty domain adaptation problems.

4.2. Analysis and discussion

To verify the effectiveness and superiority of the proposed
ADA-ASG model, several state-of-the-art methods were
compared to measure performance differences between the
model and other domain adaptation strategies. These methods
cover 1D-CNN baseline models trained using a single source
domain data (directly applied to the target domain) and other
domain adaptive methods. These methods adjust the distri-
bution differences between the source domain and the target
domain through different strategies. The detailed information
of the comparison methods is as follows:

1D-CNN: As a baseline model, it is trained directly on the
source domain data and applied directly to the target domain
without any domain adaptation steps, with the aim of verify-
ing the contribution of adversarial steps to improving model
performance.

MK-MMD(Gretton et al., 2012) and CORAL: These methods
narrow the differences between the source and target domains
by adjusting and matching statistical features between them.

DANN(Ganin & Lempitsky, 2015): By introducing a domain
discriminator to distinguish different domains and adopting
a domain obfuscation training strategy, the feature extractor
learns domain-invariant features.

MCD(Saito et al., 2018): Using a dual classifier adversarial

Table 3. The accuracy of domain adaptation tasks on the
CWRU dataset using different methods

OHP—THP — 98.67 99.67 9833 9933 100 T00 100

OHP—2HP 97 99.67 98.33 100 100 100 100
OHP—3HP 90 94.67 93.67 92,67 93.33 95.67 100
IHP—OHP 94.33 99.00 98.33 99.67 100 100 100
IHP—2HP 93 99.00 100 100 100 100 100
1HP—3HP 95.71 99.33 99.67 98.33  99.33 99.67 100
2HP—(OHP 90.67 98.33 99.00 98.33  99.33 99.67 100
2HP—1HP 95.67 99.67 99.67 100 100 100 100
2HP—3HP 89 99.00 100 100 100 100 100
3HP—OHP 91.33 94.33 92.33 93.33  92.00 94.33 100
3HP—1HP 94 99.00 92.00 94.00 100 99.67 100
3HP—2HP 96 99.67 99.67 98.67 100 100 100

Average 93.79 98.45 97.58 97.86  98.67 99.08 100

mechanism, the inconsistency in predicting unlabeled sam-
ples in the target domain is maximized, thus adjusting the fea-
ture distribution and reducing prediction differences between
classifiers.

MWDAN(Song et al., 2021): An innovative multi-weight do-
main adversarial network that distinguishes and adapts source
and target domains with partially shared label spaces by im-
plementing weight mechanisms at the class and instance lev-
els.

Table 3 shows the performance comparison of the proposed
ADA-SAG model with other domain adaptation techniques,
using the CWRU dataset. The experiment includes 12 load
change migration tasks, representing different workload con-
ditions (OHP, 1HP, 2HP, and 3HP), to evaluate the perfor-
mance of the model under different operating conditions.

The ADA-SAG model outperformed all the compared meth-
ods, achieving 100% diagnostic precision in migration tasks
due to its robust graph-based feature extraction and effec-
tive domain adaptation strategies. These strategies enable
the model to capture intricate spatial relationships in fault
data and align feature distributions between source and tar-
get domains more effectively. In contrast, traditional CNN
models have average performance in reducing distribution
differences between the source and target domains. When
combined with methods based on distribution distance con-
straints such as MK-MMD and CORAL, its performance is
improved, further verifying the importance of reducing inter-
domain differences in improving model performance. In ad-
dition, although the DANN, MCD, and WMDAN methods
based on adversarial learning have improved classification ef-
ficiency, their accuracy significantly decreases when there is a
significant difference between the two domains (such as from
3HP to OHP), which has been verified in experiments. These
comparative experimental results not only validate the effec-
tiveness of the proposed ADA-SAG model, but also highlight
its ability to maintain high accuracy under various working
conditions.

In order to further evaluate its generalization performance, the
experimental scope was extended to the PHM2009 dataset.
Unlike the relatively single fault type in the CWRU dataset,
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Table 4. The accuracy of domain adaptation tasks on the
PHM2009 dataset using different methods

as| - -] A A-
30hz—35hz 52.01 52.71 61.11 69.44 9243 98.82 100
30hz—40hz 49.31 54.86 56.25 63.19 7743 97.22 98.61
30hz—45hz 41.67 46.39 50 53.96 70.83 85.76 87.43
30hz—50hz 27.78 45.9 52.15 64.58  66.67 85.71 86.04
35hz—30hz 53.96 51.32 459 50.83 92.5 96.53 98.68
35hz—40hz 52.08 69.1 66.74 7292 88.89 92.57 98.61
35hz—45hz 48.61 57.64 55.9 59.72 8333 86.04 89.58
35hz—50hz 25.42 41.67 4597 50.35  73.61 80.56 82.64
40hz—30hz 41.67 50.35 46.04 52.08 7722 83.33 87.22
40hz—35hz 46.25 65.97 62.5 67.92  93.64 98.54 99.3
40hz—45hz 50.14 69.31 66.74 68.4 86.8 92.36 94.44
40hz—50hz 34.72 69.38 67.92 65.97  76.39 86.81 87.43
45hz—30hz 26.94 47.78 48.61 63.33.  73.61 83.33 86.04
45hz—35hz 29.38 59.03 55.56 63.89  77.22 99.3 100
45hz—40hz 48.61 66.67 62.15 65.28 78.13 90.27 92.71
45hz—50hz 55.56 61.67 67.92 66.74 8299 96.53 97.22
50hz—30hz 23.06 50.07 61.8 66.67  68.06 72.92 73.33
50hz—35hz 24.38 47.22 61.88 68.06 67.36 76.39 79.17
50hz—40hz 40.97 53.96 67.5 70.83  77.15 84.72 85.07
50hz—45hz 53.96 59.72 69.38 73.61 8542 86.11 89.58

Average 41.32 56.04 58.6 63.89 7948 88.69 90.66

the multi class mixed fault of PHM2009 presents a more chal-
lenging diagnostic scenario.

Table4 shows the comparison of experimental results between
the proposed method and other methods on the PHM2009
dataset. The ADA-SAG model achieved 100% performance
in tasks 30Hz — 35Hz and 45Hz — 35Hz. In tasks 30hz —
40hz, 30hz — 45hz, and 30hz — 50hz, the performance of the
ADA-SAG model was 98.61%, 87.43%, and 86.04%, respec-
tively. These performances are still the highest compared to
other models, especially compared to the baseline 1D-CNN
model, demonstrating significant improvements. For other
migration tasks, such as 35Hz — 30Hz, 35Hz — 40Hz, etc.,
the performance of the ADA-SAG model has remained above
89.58%, with most tasks exceeding 90%. This demonstrates
its stability and efficiency in handling more challenging tasks.
In relatively difficult tasks such as SO0Hz — 30Hz, 50Hz —
35Hz, 50Hz — 40Hz, and S0Hz — 45Hz, the performance of
ADA-SAG has decreased, but still remains between 73.33%
and 89.58%. This means that even in these more challeng-
ing tasks, the ADA-SAG model still has good generalization
ability. In summary, the ADA-SAG model performs better
than other models on the PHM2009 dataset, demonstrating
its superior cross domain fault diagnosis ability.

4.3. Feature visualization

The performance of the proposed method was visually vali-
dated through feature visualization, as shown in Fig. 5. In
Fig. 6(a), the visualization displays tightly clustered intra-
class points and clear inter-class separations, demonstrating
effective feature alignment for minor domain discrepancies
(e.g., OHP — 1HP). Fig. 6(b) shows similar trends, with in-
creased load differences (two units), where the model main-
tains distinct class boundaries and consistent intra-class clus-
tering. In Fig. 6(c), despite the significant load differences
(three units), the ADA-SAG model continues to exhibit robust
feature alignment, with high intra-class cohesion and inter-
class separations. These results highlight the model’s stability
and adaptability to varying domain discrepancies. The distri-
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Figure 6. Visualization Results of Migration Tasks on the
CWRU Dataset. (a), (b), and (c) represent the feature visual-
ization results of load differences. (a) Task OHP — 1HP. (b)
Task OHP — 2HP. (c¢) Task OHP — 3HP.

bution between categories indicates that the model can main-
tain accurate feature representation in the face of increasing
load changes, which reflects the model’s ability to adapt to
different working conditions under dynamic changes.

For the PHM2009 dataset, Fig. 7 shows the distribution of
migration task characteristics with speed differences of 5hz,
10hz, 15hz, and 20hz. From Fig. 7 (a) to (d), it can be
observed that under a speed difference of SHz, the distribu-
tion of feature points exhibits high clustering and clear in-
ter class boundaries, reflecting the effectiveness of the model
under slight speed changes. When the speed difference in-
creases to 10Hz, 15Hz, or even 20Hz, although the overlap of
feature distributions slightly increases, the model still main-
tains a high degree of classification ability. Especially at a
speed change of 20Hz, although there is some overlap be-
tween classes, clusters with high separation can still be ob-
served, indicating that even under significant speed changes,
the model has good feature discrimination and adaptability.

4.4. Ablation study

In order to comprehensively verify the effectiveness of the
proposed model (ADA-SAG), this chapter conducted sys-
tematic ablation experiments on the CWRU dataset and the
PHM?20009 dataset, respectively. Evaluate the impact of MMD
loss in the fault sample graph construction module, self at-
tention mechanism enhanced GCN, and domain adaptation
enhancement module on model performance by constructing
three different model variants. The following is a detailed
description and analysis of each variant:

ADA-SAG-NoGraph: This variant explores the performance
of removing the fault sample graph construction module from
the model, where the model only utilizes frequency domain
data for domain adaptation through CNN.

ADA-SAG-NoAttention: In this variant, the self attention
mechanism enhanced GCN is replaced with the traditional
GCN architecture.

ADA-SAG-NoMMD: The variant after removing MMD loss
aims to evaluate the role of this loss in domain adaptation.
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Figure 7. Visualization Results of Migration Tasks on the
PHM2009 Dataset. (a), (b), (c) and (d) show the feature visu-
alization results of speed differences. (a) Task 30hz — 35hz.
(b) Task 30hz — 40hz. (c) Task 30hz — 45hz. (d) Task 30hz
— 50hz.
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Figure 8. Comparison of Visualization Results of CWRU
Dataset in OHP — 3HP Ablation Experiments. (a) Visualiza-
tion result of ADA-SAG NoGraph. (b) Visualization result
of ADA-SAG-NoAttention. (c) Visualization result of ADA-
SAG-NoMMD. (d) Visualization result of complete model.

The visualization results in Fig. 8(a) and Fig. 9(a) show that
without the support of the ADA-SAG NoGraph, the bound-
aries between categories are blurred, and there is a lack of
tight clustering within each category, reflecting the limita-
tions of CNN in independently capturing complex relation-
ships between samples. Fig. 8(b) and Fig. 9(b) show the vi-
sualization results of replacing the self attention mechanism
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Figure 9. Comparison of Visualization Results of PHM2009
Dataset in 30hz — 35hz Ablation Experiments. (a) Visual-
ization result of ADA-SAG NoGraph. (b) Visualization result
of ADA-SAG-NoAttention. (¢) Visualization result of ADA-
SAG-NoMMD. (d) Visualization result of complete model.

enhanced GCN with the traditional GCN architecture, where
category clustering is tighter, but compared to the complete
model, there is still a certain separation between the source
domain and the target domain, indicating that the importance
of the self attention mechanism lies in its enhanced model’s
capture of key information. Fig. 8(c) and 9(c) show the visu-
alization results after removing the MMD loss. Although the
boundaries between categories are relatively clear, the intra
class cohesion is not as good as the complete model, proving
the significant role of MMD loss in reducing the differences
between source and target domains and improving the gener-
alization ability of the target domain. Finally, Fig. 8(d) and
Fig. 9(d) show the feature distribution after domain adapta-
tion in the complete model. It was observed that data points
of different categories exhibit significant clustering, and the
boundaries between categories are very clear. In contrast,
other variant models perform worse than the complete model
in these aspects.

The comparison of experimental results is shown in Fig. 10
and Fig. 11, which respectively demonstrate the accuracy per-
formance of different model variants and the complete model
on all transfer tasks on the CWRU and PHM2009 datasets. It
can be observed that the complete model achieved the highest
accuracy in the vast majority of migration tasks, verifying its
strong adaptability and excellent fault diagnosis performance.
In contrast, the accuracy of each variant model has decreased
in certain tasks, which further confirms the important role of
the fault sample graph construction module, the self attention
mechanism enhanced GCN, and the MMD loss in the domain
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Figure 10. Comparison of accuracy of ablation experiments
for various migration tasks in the CWRU dataset
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Figure 11. Comparison of accuracy of ablation experiments
for various migration tasks in the PHM2009 dataset

adaptation enhancement module in improving the model do-
main adaptation ability and fault diagnosis accuracy.

5. CONCLUSION

This study introduces an adaptive fault diagnosis method us-
ing self-attention graph convolutional networks to address
data distribution differences between source and target do-
mains. The method employs KNN and Gaussian kernel
similarity to construct a fault sample graph, enhancing fea-
ture representation by capturing sample relationships. By
integrating a self-attention mechanism enhanced GCN as a
feature extractor, the model captures critical features effec-
tively, improving diagnostic accuracy and robustness. The
use of MMD loss and adversarial training further aligns fea-
ture distributions between source and target domains, miti-
gating domain transfer challenges. Validated on two bench-
mark datasets, CWRU and PHM2009, the ADA-SAG model
demonstrates superior diagnostic accuracy and outperforms
existing methods. In complex scenarios with drastic changes
in load and speed, the model shows remarkable stability and

efficiency, achieving over 90% accuracy on average, with
some tasks reaching 100%. Ablation experiments validate the
necessity and effectiveness of each module in the ADA-SAG
model, confirming the rationality of the overall design. How-
ever, current research assumes data balance, which is often
unrealistic in practical applications where normal state data
far exceeds fault data. Future research could focus on ap-
proaches like data augmentation, cost-sensitive learning, or
class imbalance handling to optimize the proposed model for
imbalanced datasets, enhancing its practicality in real-world
applications.
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