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ABSTRACT

Most existing Prognostics and Health Management (PHM)
systems are developed using supervised learning approaches,
which depend heavily on labeled failure data. In practice,
collecting extensive run-to-failure datasets from real-world
assets is expensive, risky, and often impossible, particularly
for safety-critical equipment such as turboshaft engines. This
limitation makes it difficult for supervised PHM systems to
maintain accurate models across different operating
conditions and mission profiles, since they require frequent
updates with newly labeled data.

To address these challenges and advance toward fully
autonomous, on-board PHM, this paper proposes a self-
supervised learning framework that continuously learns from
abundant unlabeled operational data, adapts to new domains,
and fuses heterogeneous sensor streams without relying on
labeled failures. Self-supervised PHM systems extract
features that are less domain-specific than those learned
under supervision, enabling better generalization to unseen
equipment and operating regimes. This capability is critical
for moving from human-assisted PHM to fully autonomous
decision-making in complex, variable, or inaccessible
environments.

We introduce Time Series Bootstrap Your Own Latent
(BYOL) with Task-Aware Augmentation (TS-BYOL-TAA),
a novel self-supervised approach tailored for multivariate
time-series data. TS-BYOL-TAA incorporates domain-
informed augmentations to preserve task-relevant temporal
structures while enhancing representation robustness. The
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method is evaluated in an autonomous PHM pipeline for
turboshaft engine torque prediction, demonstrating improved
adaptability and predictive accuracy compared to supervised
baselines under domain shift and limited-label conditions.
Results highlight the potential of self-supervised learning as
a foundation for scalable, cross-platform autonomous PHM
systems.

1. INTRODUCTION

Turboshaft engines are critical components in aerospace
applications, particularly in rotorcraft, where high power
density, reliability, and efficiency are essential for heavy-
lifting and mission-critical operations. Modern helicopters,
such as the Bell 407 equipped with the M250C47B engine,
exemplify this advantage: delivering up to 804 horsepower
while weighing only 273 Ibs. Despite their robust design,
these engines inevitably experience performance degradation
over time due to factors such as compressor fouling,
corrosion, erosion, and foreign object damage (FOD).
Compressor fouling alone, caused by airborne contaminants
adhering to compressor blades, can account for 70-85% of
performance loss in some engines. Corrosion and erosion
further compound this degradation, reducing airflow
efficiency and mechanical integrity. Left undetected during
operations, such performance loss can pose significant safety
and mission-completion risks, especially in demanding
environments.

Current Prognostics and Health Management (PHM)
practices for turboshaft engines rely heavily on periodic,
ground-based checks such as Power Assurance Checks,
Health Indicator Tests (HIT), and Maximum Power Checks
(MPC). While these procedures can detect performance
deviations, they are inherently reactive, labor-intensive, and
often fail to capture real-time health conditions during flight.
In military and remote operations, these limitations are
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further amplified by environmental risks, limited access to
maintenance personnel, and the operational cost of removing
equipment from service. Automated, onboard health
monitoring capable of detecting and predicting degradation
in real time would not only improve safety and readiness but
also enable condition-based maintenance scheduling and
reduced lifecycle costs.

Most current PHM systems for aerospace engines are
developed using supervised learning approaches, which
require large quantities of labeled failure or degradation data.
However, collecting real-world run-to-failure cases is
expensive, risky, and sometimes impossible due to the rarity
of catastrophic failures in modern, well-maintained fleets.
Furthermore, supervised learning models are inherently
domain-specific, requiring retraining when operating
conditions, mission profiles, or engine variants change. This
makes adaptation to new domains slow and inefficient,
limiting the scalability of PHM systems across fleets and
platforms.

To advance toward autonomous PHM, systems capable of
self-monitoring,  self-diagnosis,  self-prognosis, and
autonomous decision-making, there is a critical need for self-
supervised learning (SSL) approaches. Unlike supervised
learning, SSL can learn continuously from vast amounts of
unlabeled operational data, extracting domain-agnostic
representations that generalize well to unseen equipment and
new mission scenarios. This capability enables PHM systems
to adapt in real time to changing operational contexts and to
fuse heterogeneous sensor streams for robust performance
prediction. SSL-based PHM modules can thus serve as the
foundation for moving from human-assisted analysis toward
fully autonomous, on-board health management and
decision-making.

In this paper, we propose Time Series Bootstrap Your Own
Latent (BYOL) with Task-Aware Augmentation (TS-BYOL-
TAA), a novel SSL framework specifically designed for
multivariate time-series sensor data. The approach builds
upon the BYOL paradigm but introduces task-aware
augmentations that preserve mission-critical temporal
dependencies while promoting invariance to irrelevant
variations. The learned representations are both robust to
domain shifts and sensitive to task-relevant changes, enabling
accurate predictions even in low-label or cross-domain
settings.

We evaluate TS-BYOL-TAA in the context of autonomous
PHM for turboshaft engine torque prediction. Experimental
results demonstrate that our method outperforms supervised
baselines in predictive accuracy and adaptability, particularly
under domain shift scenarios and with limited labeled data.
These findings highlight the potential of self-supervised
learning to overcome the data scarcity and adaptability
challenges that currently limit the deployment of scalable,
cross-platform autonomous PHM systems.

2. BACKGROUND AND RELATED WORK

2.1. Statistical Methods-Based Engine Power Prediction

In recent years, work on the automation of rotorcraft
turboshaft engine performance monitoring and assessment
using statistical approaches has been reported. Simon and Litt
(2008) proposed a methodology to automate the Engine
Torque Factor (ETF) calculation. Traditionally, the U.S.
Army Black Hawk helicopters perform MPC to determine the
ETF, requiring substantial pilot workload and posing safety
risks in hostile environments. Their proposed method can be
summarized as follows: (1) They primarily use curve-fitting
techniques based on trend analysis. They partition the engine
operating data into steady-state points using a steady-state
data filter. This filter identifies segments of data from Health
and Usage Monitoring Systems (HUMS) that reflect stable
operating conditions, removing transient data that can
introduce noise into performance assessment. (2) They
calculate a residual (difference between actual and nominal
engine performance) at steady-state points and update
performance trends over time using exponential moving
averages. This residual is used to track engine degradation.
(3) To estimate the available power, they apply a least squares
regression to fit the residuals and extrapolate engine
performance at the limiting conditions (i.e., maximum
turbine gas temperature or TGT). Their approach was
applied to the T700-GE-701C engine in UH-60L Black Hawk
helicopters, showing good agreement with manual power
checks but highlighting areas for further validation and
development. Bechhoefer (2024) presented a method for
real-time monitoring of turboshaft engine performance, with
a particular focus on providing engine margin and
contingency power data to pilots in real-time. His method
uses HUMS data to track engine parameters like measured
gas temperature (MGT), torque (TQ), pressure altitude (PA),
and outside air temperature (OAT).  Utilizing these
parameters, the system can alert pilots when the engine is
underperforming, providing critical information for go/no-go
decisions during missions. The statistical method presented
by Bechhoefer (2024) can be summarized as follows: (1)
Bechhoefer (2024) utilizes bicubic splines, a type of
interpolation, to solve the inverse problem of estimating
torque based on measured MGT, PA, and OAT. (2) The
bicubic splines are used to create a model of engine
performance at various operating conditions, interpolating
between measured values to estimate torque. This spline-
based approach allows for estimating power availability in
real time during flight operations. (3) He also uses a linear
regression model as a low-computation alternative to predict
engine performance. This model is designed for real-time
applications on embedded processors with limited
computational resources.

While both methods in (Simon and Litt, 2008) and
(Bechhoefer, 2024) offer significant benefits on
computationally efficient and simple implementation for
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real-time applications, they may struggle with complex, non-
linear relationships without significant preprocessing or
transformation of data. These methods may potentially have
a hard time addressing the following issues: (1) Engine-
specific issue: The methods in both papers are highly reliant
on engine-specific data. Each model is developed from
scratch for a particular engine, making the systems slow to
adapt to new engines without extensive data collection. (2)
Limited generalization issue: The statistical approaches rely
on local data and are less flexible in transferring insights from
one engine to another. Each engine has its own performance
model, and while these models work well for that engine,
they cannot generalize well across different engines or
operating conditions. In summary, while both papers utilize
effective statistical techniques for their time, the integration
of modern machine learning approaches could significantly
enhance predictive accuracy, robustness, and real-time
performance monitoring capabilities in rotorcraft turboshaft
engines.

2.2. Transfer Learning-Based Engine Power Prediction

He, Bechhoefer, and Hess (2025) proposed a transfer
learning-based method to automate the real-time prediction
of turboshaft engine performance for rotorcraft. Traditional
power checks are manual, often ground-based, and
insufficient for capturing performance degradation during
flight. The authors addressed these limitations using HUMS
data and machine learning (ML) models, specifically transfer
learning, to continuously estimate engine margin (a ratio of
predicted vs. modeled torque) across different helicopter
platforms and engine types. They used LSTM-based models
trained on HUMS data and fine-tuned them for new engines
and  operating  conditions, demonstrating  strong
generalization with minimal target-domain data. They
investigated building torque prediction models using KNN,
DNN, RNN, and LSTM architectures with HUMS inputs
(e.g., MGT, PA, OAT, etc.) and showed that LSTM gave the
best performance. They constructed the engine torque model
using a deep LSTM trained on digitally extracted data from a
power assurance check chart. The proposed method was
applied to M250C47B engines from Bell 407 helicopters,
showing that RMSE metrics demonstrated strong
performance improvements using transfer learning,
especially when dealing with new operating domains or
unseen engine data.

2.3. LLMs for Engine Power Prediction

Tronconi, He, and Bechhoefer (2025) evaluated the potential
of Large Language Models (LLMs) for predicting turboshaft
engine torque, which is essential for helicopter safety and
reliability. Their study investigated whether general-purpose
and time-series-specific transformer models can serve as
effective predictors using HUMS data. They used HUMS
data from a Bell 407 turboshaft engine with 7 features (e.g.,
MGT, OAT, PA, IAS, Ng, Np, and torque), totaling 7954

samples to evaluate the following models: GPT-2 (fine-
tuned), ChatGPT (prompt-based, zero-shot), TimeGPT
(domain-specific ~ time-series LLM), and standard
trransformer-based time series model. Their evaluation
results showed that while GPT-2 provided the best RMSE
value, confirming LLMs' potential when fine-tuned on
numerical data, TimeGPT gave strong RMSE accuracy and
interpretability via variable importance. However, ChatGPT
gave poor prediction RMSE accuracy but decent binary
classification recall for low-torque conditions. The time
series transformer provided a moderate performance.

2.4. Limitations of Related Work

In summary, despite their promises, the methods reviewed
have some limitations when viewed through the lens of
autonomous PHM. The model's performance depends
heavily on the quality and completeness of HUMS data.
HUMS data may be noisy, incomplete, or inconsistent across
different platforms, which can limit scalability and reliability
in real-time autonomy contexts. Though transfer learning
reduces data requirements, it still requires fine-tuning with
domain-specific samples. In a fully autonomous PHM
setting (e.g., for newly deployed engines), there may be no
time or opportunity to gather this tuning data. In general,
most existing PHM systems are developed using supervised
learning approaches, which depend heavily on labeled failure
data. The challenges faced by these systems are limited
labeled data for practical applications and inherent domain-
specific models that are hard to generalize across different
platforms and operating conditions. These challenges need
to be addressed for developing an autonomous PHM system.

3. THE METHODOLOGY

The TS-BYOL-TAA proposed for turboshaft engine power
prediction should be very similar to the MPC specified in the
helicopter flight manual. For a typical MPC, the maximum
allowable MGT will be manually determined based on the
flight conditions of the helicopters and compared with the
measured MGT. To automate this process, a numerical
indicator is needed for continuous online monitoring of the
engine power. In (Simon and Litt, 2008), ETF was used as
the indicator of the actual power that an engine can produce
relative to the rated power of the engine. Like that in (Simon
and Litt, 2008), Bechhoefer (2024) used engine margin as the
indicator, which is computed as the ratio of measured torque
over the modeled torque at the maximum allowable MGT. In
this paper, adapting the engine margin by Bechhoefer (2024)
as the engine power indicator, TS-BYOL-TAA using HUMS
data for turboshaft engine torque prediction is proposed. The
flowchart of the proposed TS-BYOL-TAA using HUMS data
for turboshaft engine torque prediction is shown in Figure 1.
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Figure 1. Flowchart of the proposed methodology.

As shown in Figure 1, unlabeled data collected by HUMS in
the helicopters will be used to pre-train a TS-BYOL-TAA
turboshaft torque prediction model. The purpose of the pre-
training is to force the model to learn features that are
invariant to data augmentations due to specific platforms or
task operations. This results in robust representations that
generalize better across input variations. Unlike other self-
supervised contrastive learning frameworks such as Simple
Framework for Contrastive Learning of Visual
Representations (SimCLR) (Chen et al., 2020) or Momentum
Contrast (MoCo) (He et al., 2020), BYOL doesn’t need
contrastive pairs or negative samples for pre-training.
Therefore, it is flexible for BYOL to integrate other deep
learning architectures like LSTM or transformers to improve
its pre-training performance. After TS-BYOL-TAA
pretraining, limited labeled data will be used to fine-tune the
model for engine torque prediction.  As the pretrained

features generated from unlabeled data during pre-training
act as a strong prior, fine-tuning with only a few labeled data
often achieves better accuracy and faster convergence on
downstream tasks like prediction. In the case of autonomous
PHM applications, a pre-trained TS-BYOL-TAA engine
torque prediction model can be used as a generalized model
across multiple engine platforms. This generalized model
can be easily adapted to a specific engine type with only a
few labeled data points or even without any labeled data.

Engine torque will be predicted by the fine-tuned TS-BYOL-
TAA turboshaft torque prediction model. = The engine
margin, as the engine performance indicator, will be
computed as the ratio of the predicted torque to the modeled
engine torque obtained from the engine power assurance
check chart.

BYOL is a classic SSL method introduced by DeepMind in
2020 (Grill et al, 2020). Since then, it has been successfully
applied to various self-learning problems (Feichtenhofer et
al., 2021; Tian et al., 2021). It learns by matching two
augmented views of the same sample using an online network
and a target network. In BYOL, two augmented views of the
same data are passed through an encoder and a projector. The
goal is to make their embeddings similar. In SSL, labels are
only used later, e.g., for fine-tuning in downstream tasks such
as regression or classification.

Up to today, most of the BYOL applications have been
focused on image or video representations. Limited
application on multi-variant time series data is reported in the
literature. In this paper, we introduce TS-BYOL-TAA, a
novel BYOL-based framework specifically designed for
multivariate time-series sensor data with task-aware
augmentation. The structure of the TS-BYOL-TAA is
presented in Figure 2.
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Figure 2. The structure of the TS-BYOL-TAA.
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The time series task-aware augmentation of the raw input in
the TS-BYOL-TAA model is implemented by integrating 3
commonly used data augmentation techniques for time series
data: Gaussian noise, dropout-style masking, and time
warping. Let x be the raw input data. Then x can be
perturbed by adding noise € as:

X =x + €, where e~N(0,02) (1)

o is the standard deviation of the noise and controls the noise
scale. So, it is also called the noise scale. Perturbing the raw
input data with Gaussian noise simulates input uncertainty
and pushes the encoder to learn robust embeddings.

Dropout-style feature masking randomly set some feature
values to zero to simulate missing or occluded data. It
enforces feature-level invariance, i.e., the model should still
align representations even when partial data is missing. It also
helps prevent the model from relying on a small set of
dominant features. Let M € {0, 1} be a random binary mask
(Bernoulli). Then ¥, the augmented x, can be expressed as:

X = xOM, where M~Bernoulli(p) 2)

In Eq. (2), p =1 —dropout rate, is defined as the keep
probability and © is the elementwise (Hadamard) product.

Time warping stretches or compresses the time axis in
different regions of the signal, simulating temporal variation
(like speed fluctuations in speech or machine behavior). Let
the original time series be: x(t) € RF,t =1,..,T. Time
warping applies a smooth, nonlinear mapping ¢(t)to the
time indices:

() = x(¢@®) 3)

¢ (t) is a monotonic warping function (ensures time doesn't
go backward). The warped signal Z(t) has the same length
T. But the samples come from warped time steps. Since
¢ (t) is usually non-integer, we use interpolation (e.g., linear
or cubic) to compute X(t):

%(t) = Interproate (x, ¢(t)) “

This creates regions of temporal stretching (slowdown) and
compression (speedup).

Now, we can integrate these 3 time series augmentation
techniques as follows. Applying a time-warping function
¢(t), we obtain x(¢(t)). Perturbing each feature in
x(d)(t)) with Gaussian noise €(t)~N(0,02), we generate
x(¢())+e(t) .  Finally, applying a binary mask
M (t)~Bernoulli(p) to simulate missing features, we obtain
the augmented time series as:

#6) = (x(6(0) + e(®)) OM(®) )

In general, the noise scale ¢ is fixed in TS-BYOL-TAA
pretraining. However, this may limit the power of TS-

BYOL-TAA. This is because in most applications of time
series prediction, different features may have vastly different
scales or variances. Adding fixed noise may overwhelm
small-variance features and under-perturb large-variance
ones. One strategy to overcome this limitation is the use of
adaptive noise to scale perturbation proportionally to feature
variability and maintain structure. In our integrated
augmentation method, we set the noise scale as a learnable
parameter of the TS-BYOL-TAA model to let the model
learn per-feature noise scaling during training. In this way,
our integrated time series data augmentation becomes the
task-aware self-supervised augmentation.

As shown in Figure 2, the parameter set 6 in encoder fj,
projector gg, and predictor qg in the online network is
updated through backpropagation using a negative cosine
similarity loss function between the online network output
vector p and another target network output z as:

Ligss = L(p1,2,) + L(pzle)
where L(p,z) = d

“liplllizl
(6)

The parameter set ¢ in encoder f; and projector g; in the

target network is updated through exponential moving
average (EMA) as:

18+ (1-1)0 (7
In Eq. (7), T € [0.99,0.999] is a momentum coefficient.

4. THE APPLICATION CASE STUDY

4.1. The M250C47B Turboshaft Engine Data

In this paper, the real-world data from the Rolls-Royce
M250C47 engine (Bechhoefer, 2024) is used to demonstrate
the application of the developed methodology. The data was
recorded by the HUMS in the Bell 407 helicopters. The
HUMS data available to check the engine turbine health
include OAT, MGT, PA, and TQ. According to the Bell 407
rotorcraft flight manual (Bell Helicopter-Textron, 2002), a
power assurance check for the engine can be manually
performed by a power assurance check chart (Figure 3) using
these measurements to determine the maximum allowable
MGT. The chart indicates the maximum allowable MGT for
an engine meeting minimum Rolls-Royce specifications. The
engine must develop the required torque without exceeding
the chart MGT in order to meet the performance data
contained in the chart.
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Figure 3. Power assurance check chart for M250C47 engine
(Bell Helicopter-Textron, 2002).

The power assurance check chart in Figure 3 may be used to
periodically monitor the engine performance.

To perform a power assurance check, all sources of bleed air,
including engine anti-icing, will be turned off. A level flight
at an airspeed of 85 to 105 KIAS or VNE, whichever is lower,
will be established. A check may also be conducted in a hover
prior to takeoff, depending on ambient conditions and gross
weight (Bell Helicopter-Textron, 2002). For example, using
the following recorded measurements: Hp = 6000 feet, OAT
= 10°C, MGT = actual reading, TQ = 70%, one can enter the
power assurance check chart at observed TORQUE (70%),
proceed vertically down to intersect HP (6000 feet), follow
horizontally to intersect indicated OAT (10°C), then drop
vertically to read maximum allowable MGT of 675°C. If
actual MGT is less than or equal to 675°C, engine
performance equals or exceeds the minimum specification,
and performance data contained in the flight manual can be
achieved. The solid line in Figure 3 indicates the example
power assurance check.

4.2. The Results

4.2.1. Performance of the Encoders

As mentioned earlier, BYOL-based self-learning is flexible
in that it can take any deep learning architecture as its encoder
since it doesn’t need contrastive pairs or negative samples for
pre-training. In our proposed TS-BYOL-TAA, while the
projector and the predictor are a Multi-Layer Perceptron
(MLP), the encoder can be either LSTM or GPT-2 because
both LSTM and GPT-2 have been shown to be effective for
time series prediction (He, Hess, and Bechhoefer, 2025;
Tronconi, He, and Bechhoefer, 2025).

The effectiveness of LSTM and GPT-2 as the encoder in TS-
BYOL-TAA was tested.

The LSTM encoder can be described as follows (He,
Bechhoefer, and Hess, 2025). Define:

d . .
X5 R™“ the input sequence where T is the number of
data points and d is the number of parameters at each
data point

hgl): hidden state at data point ¢ for layerl = 1, ..., L
Ct(l)l cell state at data point ¢ for layer [ = 1, ..., L

We W, W, W,.: weight matrices for the forget gate,
input gate, output gate, and cell gate, respectively

bs, by, by, b,: biases for the respective gates
y: the target variable to be predicted
¥ the predicted value of the target variable

At each layer /, for each data point ¢, the LSTM operates with
the following equations.

Compute the forget state value to decide which information
to discard from the cell gate:

£ = oW 2y x] + b) (8)

Compute the input gate value to decide what information to
store in the cell state:

i = oW OTh®,, %] + b") ©)

Compute the candidate values of the cell state:

éP = tanh(W P[P, x.] + b)) (10)
Update cell state by combining forget gate and input
gate:

P=fPo +iPoc (11)

where () denotes element-wise multiplication

After processing all the data points through the two
LSTM layers, the last hidden state from the last layer h;L)

is passed through a fully connected layer to make the
final prediction as:

9 = Wouch$ + by (12)

where W,,,; is the weight matrix of the output layer and
by the bias.
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To update the weight matrices of the LSTM network, the
root mean square error (RMSE) is used as the loss
function as:

RMSE = [1S7,(y, - 9,)? (13)

In addition to the LSTM encoder, the Generative Pre-trained
Transformer 2 (GPT-2) was also implemented as an encoder
in the TS-BYOL-TAA model. GPT-2 with a transformer
structure is a state-of-the-art pre-trained language model that
has achieved impressive results in many Natural Language
Processing (NLP) benchmarks (Radford et al., 2018; Radford
et al., 2019; Brown et al., 2020). The structure of the GPT-2
encoder is provided in Figure 4.
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Figure 4. The structure of GPT2 (Wikipedia).

To pre-train the TS-BYOL-TAA model, HUMS data
collected from two M250C47 engines in the Bell 407
helicopters were used. The dataset for each engine contains
a total of 7954 data points, and each data point contains
values for each of the 7 parameters: Engine Torque, OAT,
MGT, PA, Indicated Airspeed (IAS), Gas Generator Speed
(Ng), and Power Turbine Speed (Np). The ranges of the
values for these parameters in the datasets are provided in
Table 1.

Table 1. The HUMS dataset parameters and value range.

Parameter Unit Range
Engine Torque % [0.102, 93.445]
OAT °C [-2.086, 15.684]
MGT °C [454.633, 812.562]
PA feet | [3348.425, 8699.112]
IAS knot [-0.186, 147.156]
Ng rpm [68.499, 99.889]
Np pm [41.030, 102.988]

To pre-train and fine-tune the TS-BYOL-TAA models for
predicting the engine torque using inputs OAT, MGT, PA,
KIAS, Ng, and Np, 70% of the dataset was used for pre-
training, 10% for fine-tuning the prediction head, and 20%
for validation. The validation RMSE for each trained model
is provided in Table 2.

Table 2. The RMSE of two different encoders.

Encoder RMSE
LSTM 0.0802
encoder
GPT-2 1.0666
encoder

4.2.2. The Feature Embeddings of TS-BYOL-TAA

TS-BYOL-TAA is basically a self-supervised representation
learning method. During pretraining, it learns to produce
useful embeddings by matching augmented views of the
same input. To see how well the TS-BYOL-TAA model
organizes the data in its latent space, we can visualize the
feature embeddings learned by the TS-BYOL-TAA model
after pretraining and compare them with the features of the
raw input data. Figure 5 shows the comparison of the t-SNE
embedding feature map after pretraining the TS-BYOL-TAA
using LSTM encoder with that of the raw input data.
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Figure 5. The t-SNE feature maps: top - embedding feature
map after pretraining TS-BYOL-TAA with LSTM encoder;
bottom - feature map of raw input data

From Figure 5, we can see that the latent features encode
patterns related to the target, the engine torque. Here are the
key  observations: (1) Smooth color gradient.
On the right-hand side (Component 1 =~ 20—40), the points
transition from green to yellow as the true label increases
(=50—90). On the left (Component 1 =~ —50 to —30), the
colors stay in the darker purples (=10-20). That smooth
change in hue tells us that nearby points in latent space tend
to share similar target values. (2) Cluster formation.
We can also see distinct “islands” of points, each island
having a fairly tight color range. Those clusters suggest the
backbone has learned to group inputs whose labels lie in the
same range. (3) Implications for prediction.
Because the embeddings already arrange themselves in a way
that mirrors the target, our linear regression head should have
a relatively simple mapping to learn, often leading to better
generalization and faster convergence.

Note that quantitative summaries such as the Pearson
correlation coefficient ( r ) and Spearman correlation
coefficient (p) are also included for each t-SNE map in Figure
5. Basically, r and p give a numerical measure of how
strongly the t-SNE components are related to the true target,
engine torque. 7 takes a value between +1 and -1. r = +1
indicates a perfect positive linear correlation, r = 0 indicates
no linear correlation, and r = —1 indicates a perfect negative
linear correlation. p measures a monotonic relationship (not

necessarily linear) and takes values between +1 and -1. p
takes a similar interpretation as r, but based on the rank
ordering of values. The quantitative summaries in Figure 4
indicate that the TS-BYOL-TAA backbone pretraining
features correlate with the target, the engine torque more
strongly than the raw input features. This confirms the
effectiveness of the TS-BYOL-TAA method on the
turboshaft engine torque data.

4.2.3. Domain Adaptation Performance

The major motivation to use TS-BYOL-TAA for turboshaft
engine power performance prediction is to address the
challenges faced by supervised learning-based PHM systems:
limited labeled data and inherent domain-specific models. It
is desired that the TS-BYOL-TAA model can predict
performance degradation without requiring vast amounts of
labeled data specific to each individual engine type. This
allows for a more generalized model that can be applied
across different helicopter platforms and engine
configurations, significantly improving its practicality and
scalability. To test the domain adaptation performance of the
TS-BYOL-TAA model, we conducted two types of analysis:
(1) We investigated how the TS-BYOL-TAA engine torque
prediction model performs when the target domain shifts
from one engine to another. (2) We investigated how the TS-
BYOL-TAA engine torque prediction model performs when
the target domain does not overlap with the source domain.

In the first analysis, we first tested how the TS-BYOL-TAA
model pre-trained with engine 1 data to predict the torque of
engine 2 performs and vice versa in comparison with
supervised learning. In this test, only 10% of the labeled data
was used for training in supervised learning and for fine-
tuning for TS-BYOL-TAA model. The results of this test are
provided in Table 3.
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Table 3. Test results for the first analysis.

engine torque in the target domain. For the supervised
learning models, 10% of the labeled data was used for

RMSE training the models. The test results are provided in Table 4.
Models
Engl -> Eng2 Eng2 -> Engl Table 4. Test results for the second analysis.
TS-BYOL-TAA 0.0728 0.0646 Models RMSE
with LSTM
encoder TS-BYOL-TAA 0.6533
with LSTM encoder
TS-BYOL-TAA 0.7812 0.7917
with GPT-2 TS-BYOL-TAA 1.5233
encoder with GPT-2 encoder
Supervised 0.0977 0.1121 Supervised LSTM 1.7147
LSTM
Supervised GPT-2 2.1326
Supervised 1.2931 1.9358
GPT-2

As one can see from the results in Table 3, with the same
small amount of labeled data, the TS-BYOL-TAA models
gave better domain adaptation performance than the
supervised learning-based counterparts.

In the second analysis, we tested how TS-BYOL-TAA
models and the supervised learning models perform using the
source domain data to predict the engine torque that is outside
the source domain, i.e., the target domain. Figure 6 shows
the plot of engine torque vs. MGT for engine 1 and the data
portion of the source domain and target domain. As shown
in Figure 6, the source domain data portion is inside the area
specified by the red rectangular frame, i.e., all the data points
that satisfy the following conditions will be used as the source
domain data: Engine torque = 20% and MGT = 500 °C.

. Source
Engine Torque vs. MGT domain
100 data
g 80
g Target
}9 60 domain
.g 40 data
2 20
(NN
0
0 200 400 600 800 1000

MGT

Figure 6. Engine torque vs. MGT plot for engine 1.

In this analysis, the TS-BYOL-TAA models were first pre-
trained using the unlabeled source domain data and then were
fine-tuned with 10% of the target domain data to predict the

As one can see from Table 4, again with the same small
amount of labeled data, the TS-BYOL-TAA models gave
better domain adaptation performance than the supervised
learning-based counterparts.

5. CONCLUSIONS

This work presented TS-BYOL-TAA, a novel self-
supervised learning framework for autonomous PHM in
turboshaft engines, with a focus on torque prediction under
domain shift and limited-label conditions. By integrating
task-aware augmentations, i.c., Gaussian noise, dropout-style
masking, and time warping, into a BYOL-based architecture,
the method effectively preserved mission-critical temporal
structures while improving robustness to irrelevant
variations.

Applied to HUMS data from M250C47B turboshaft engines,
TS-BYOL-TAA demonstrated clear advantages over
supervised baselines. The learned representations exhibited
stronger correlation with target variables, enabling more
accurate torque prediction with significantly fewer labeled
samples. Across both domain adaptation scenarios, cross-
engine transfer and extrapolation beyond the source
operating domain, the proposed framework consistently
outperformed supervised LSTM and GPT-2 models,
highlighting its capacity for generalized, cross-platform
deployment.

The flexibility of TS-BYOL-TAA to incorporate different
encoder architectures, such as LSTM or GPT-2, broadens its
applicability to diverse time-series prediction tasks in
acrospace PHM. Importantly, its ability to learn from
abundant unlabeled operational data makes it a promising
foundation for fully autonomous, on-board health monitoring
systems that can adapt in real time to evolving operational
environments without costly retraining.
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Future work will focus on extending the approach to multi-
modal sensor fusion, incorporating decision-making logic for
autonomous  maintenance actions, and  validating
performance across larger and more heterogeneous fleets.
These advancements will further position self-supervised
learning as a cornerstone technology for scalable, resilient,
and intelligent PHM systems in safety-critical aerospace
applications.
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