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ABSTRACT 

Most existing Prognostics and Health Management (PHM) 
systems are developed using supervised learning approaches, 
which depend heavily on labeled failure data.  In practice, 
collecting extensive run-to-failure datasets from real-world 
assets is expensive, risky, and often impossible, particularly 
for safety-critical equipment such as turboshaft engines. This 
limitation makes it difficult for supervised PHM systems to 
maintain accurate models across different operating 
conditions and mission profiles, since they require frequent 
updates with newly labeled data. 

To address these challenges and advance toward fully 
autonomous, on-board PHM, this paper proposes a self-
supervised learning framework that continuously learns from 
abundant unlabeled operational data, adapts to new domains, 
and fuses heterogeneous sensor streams without relying on 
labeled failures.  Self-supervised PHM systems extract 
features that are less domain-specific than those learned 
under supervision, enabling better generalization to unseen 
equipment and operating regimes.  This capability is critical 
for moving from human-assisted PHM to fully autonomous 
decision-making in complex, variable, or inaccessible 
environments. 

We introduce Time Series Bootstrap Your Own Latent 
(BYOL) with Task-Aware Augmentation (TS-BYOL-TAA), 
a novel self-supervised approach tailored for multivariate 
time-series data.  TS-BYOL-TAA incorporates domain-
informed augmentations to preserve task-relevant temporal 
structures while enhancing representation robustness.  The 

method is evaluated in an autonomous PHM pipeline for 
turboshaft engine torque prediction, demonstrating improved 
adaptability and predictive accuracy compared to supervised 
baselines under domain shift and limited-label conditions.  
Results highlight the potential of self-supervised learning as 
a foundation for scalable, cross-platform autonomous PHM 
systems. 

1. INTRODUCTION 

Turboshaft engines are critical components in aerospace 
applications, particularly in rotorcraft, where high power 
density, reliability, and efficiency are essential for heavy-
lifting and mission-critical operations. Modern helicopters, 
such as the Bell 407 equipped with the M250C47B engine, 
exemplify this advantage: delivering up to 804 horsepower 
while weighing only 273 lbs. Despite their robust design, 
these engines inevitably experience performance degradation 
over time due to factors such as compressor fouling, 
corrosion, erosion, and foreign object damage (FOD). 
Compressor fouling alone, caused by airborne contaminants 
adhering to compressor blades, can account for 70–85% of 
performance loss in some engines. Corrosion and erosion 
further compound this degradation, reducing airflow 
efficiency and mechanical integrity. Left undetected during 
operations, such performance loss can pose significant safety 
and mission-completion risks, especially in demanding 
environments. 

Current Prognostics and Health Management (PHM) 
practices for turboshaft engines rely heavily on periodic, 
ground-based checks such as Power Assurance Checks, 
Health Indicator Tests (HIT), and Maximum Power Checks 
(MPC). While these procedures can detect performance 
deviations, they are inherently reactive, labor-intensive, and 
often fail to capture real-time health conditions during flight. 
In military and remote operations, these limitations are 
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further amplified by environmental risks, limited access to 
maintenance personnel, and the operational cost of removing 
equipment from service. Automated, onboard health 
monitoring capable of detecting and predicting degradation 
in real time would not only improve safety and readiness but 
also enable condition-based maintenance scheduling and 
reduced lifecycle costs. 

Most current PHM systems for aerospace engines are 
developed using supervised learning approaches, which 
require large quantities of labeled failure or degradation data. 
However, collecting real-world run-to-failure cases is 
expensive, risky, and sometimes impossible due to the rarity 
of catastrophic failures in modern, well-maintained fleets. 
Furthermore, supervised learning models are inherently 
domain-specific, requiring retraining when operating 
conditions, mission profiles, or engine variants change. This 
makes adaptation to new domains slow and inefficient, 
limiting the scalability of PHM systems across fleets and 
platforms. 

To advance toward autonomous PHM, systems capable of 
self-monitoring, self-diagnosis, self-prognosis, and 
autonomous decision-making, there is a critical need for self-
supervised learning (SSL) approaches. Unlike supervised 
learning, SSL can learn continuously from vast amounts of 
unlabeled operational data, extracting domain-agnostic 
representations that generalize well to unseen equipment and 
new mission scenarios. This capability enables PHM systems 
to adapt in real time to changing operational contexts and to 
fuse heterogeneous sensor streams for robust performance 
prediction. SSL-based PHM modules can thus serve as the 
foundation for moving from human-assisted analysis toward 
fully autonomous, on-board health management and 
decision-making. 

In this paper, we propose Time Series Bootstrap Your Own 
Latent (BYOL) with Task-Aware Augmentation (TS-BYOL-
TAA), a novel SSL framework specifically designed for 
multivariate time-series sensor data. The approach builds 
upon the BYOL paradigm but introduces task-aware 
augmentations that preserve mission-critical temporal 
dependencies while promoting invariance to irrelevant 
variations. The learned representations are both robust to 
domain shifts and sensitive to task-relevant changes, enabling 
accurate predictions even in low-label or cross-domain 
settings. 

We evaluate TS-BYOL-TAA in the context of autonomous 
PHM for turboshaft engine torque prediction. Experimental 
results demonstrate that our method outperforms supervised 
baselines in predictive accuracy and adaptability, particularly 
under domain shift scenarios and with limited labeled data. 
These findings highlight the potential of self-supervised 
learning to overcome the data scarcity and adaptability 
challenges that currently limit the deployment of scalable, 
cross-platform autonomous PHM systems. 

2. BACKGROUND AND RELATED WORK 

2.1. Statistical Methods-Based Engine Power Prediction 

In recent years, work on the automation of rotorcraft 
turboshaft engine performance monitoring and assessment 
using statistical approaches has been reported. Simon and Litt 
(2008) proposed a methodology to automate the Engine 
Torque Factor (ETF) calculation. Traditionally, the U.S. 
Army Black Hawk helicopters perform MPC to determine the 
ETF, requiring substantial pilot workload and posing safety 
risks in hostile environments. Their proposed method can be 
summarized as follows: (1) They primarily use curve-fitting 
techniques based on trend analysis. They partition the engine 
operating data into steady-state points using a steady-state 
data filter. This filter identifies segments of data from Health 
and Usage Monitoring Systems (HUMS) that reflect stable 
operating conditions, removing transient data that can 
introduce noise into performance assessment. (2) They 
calculate a residual (difference between actual and nominal 
engine performance) at steady-state points and update 
performance trends over time using exponential moving 
averages. This residual is used to track engine degradation. 
(3) To estimate the available power, they apply a least squares 
regression to fit the residuals and extrapolate engine 
performance at the limiting conditions (i.e., maximum 
turbine gas temperature or TGT).  Their approach was 
applied to the T700-GE-701C engine in UH-60L Black Hawk 
helicopters, showing good agreement with manual power 
checks but highlighting areas for further validation and 
development.  Bechhoefer (2024) presented a method for 
real-time monitoring of turboshaft engine performance, with 
a particular focus on providing engine margin and 
contingency power data to pilots in real-time. His method 
uses HUMS data to track engine parameters like measured 
gas temperature (MGT), torque (TQ), pressure altitude (PA), 
and outside air temperature (OAT).  Utilizing these 
parameters, the system can alert pilots when the engine is 
underperforming, providing critical information for go/no-go 
decisions during missions.  The statistical method presented 
by Bechhoefer (2024) can be summarized as follows: (1) 
Bechhoefer (2024) utilizes bicubic splines, a type of 
interpolation, to solve the inverse problem of estimating 
torque based on measured MGT, PA, and OAT. (2) The 
bicubic splines are used to create a model of engine 
performance at various operating conditions, interpolating 
between measured values to estimate torque. This spline-
based approach allows for estimating power availability in 
real time during flight operations. (3) He also uses a linear 
regression model as a low-computation alternative to predict 
engine performance. This model is designed for real-time 
applications on embedded processors with limited 
computational resources.    

While both methods in (Simon and Litt, 2008) and 
(Bechhoefer, 2024) offer significant benefits on 
computationally efficient and simple implementation for 
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real-time applications, they may struggle with complex, non-
linear relationships without significant preprocessing or 
transformation of data.  These methods may potentially have 
a hard time addressing the following issues: (1) Engine-
specific issue: The methods in both papers are highly reliant 
on engine-specific data. Each model is developed from 
scratch for a particular engine, making the systems slow to 
adapt to new engines without extensive data collection. (2) 
Limited generalization issue: The statistical approaches rely 
on local data and are less flexible in transferring insights from 
one engine to another. Each engine has its own performance 
model, and while these models work well for that engine, 
they cannot generalize well across different engines or 
operating conditions.  In summary, while both papers utilize 
effective statistical techniques for their time, the integration 
of modern machine learning approaches could significantly 
enhance predictive accuracy, robustness, and real-time 
performance monitoring capabilities in rotorcraft turboshaft 
engines.   

2.2. Transfer Learning-Based Engine Power Prediction 

He, Bechhoefer, and Hess (2025) proposed a transfer 
learning-based method to automate the real-time prediction 
of turboshaft engine performance for rotorcraft. Traditional 
power checks are manual, often ground-based, and 
insufficient for capturing performance degradation during 
flight. The authors addressed these limitations using HUMS 
data and machine learning (ML) models, specifically transfer 
learning, to continuously estimate engine margin (a ratio of 
predicted vs. modeled torque) across different helicopter 
platforms and engine types.  They used LSTM-based models 
trained on HUMS data and fine-tuned them for new engines 
and operating conditions, demonstrating strong 
generalization with minimal target-domain data. They 
investigated building torque prediction models using KNN, 
DNN, RNN, and LSTM architectures with HUMS inputs 
(e.g., MGT, PA, OAT, etc.) and showed that LSTM gave the 
best performance.  They constructed the engine torque model 
using a deep LSTM trained on digitally extracted data from a 
power assurance check chart.  The proposed method was 
applied to M250C47B engines from Bell 407 helicopters, 
showing that RMSE metrics demonstrated strong 
performance improvements using transfer learning, 
especially when dealing with new operating domains or 
unseen engine data. 

2.3. LLMs for Engine Power Prediction 

Tronconi, He, and Bechhoefer (2025) evaluated the potential 
of Large Language Models (LLMs) for predicting turboshaft 
engine torque, which is essential for helicopter safety and 
reliability. Their study investigated whether general-purpose 
and time-series-specific transformer models can serve as 
effective predictors using HUMS data.  They used HUMS 
data from a Bell 407 turboshaft engine with 7 features (e.g., 
MGT, OAT, PA, IAS, Ng, Np, and torque), totaling 7954 

samples to evaluate the following models: GPT-2 (fine-
tuned), ChatGPT (prompt-based, zero-shot), TimeGPT 
(domain-specific time-series LLM), and standard 
trransformer-based time series model.  Their evaluation 
results showed that while GPT-2 provided the best RMSE 
value, confirming LLMs' potential when fine-tuned on 
numerical data, TimeGPT gave strong RMSE accuracy and 
interpretability via variable importance.  However, ChatGPT 
gave poor prediction RMSE accuracy but decent binary 
classification recall for low-torque conditions.  The time 
series transformer provided a moderate performance. 

2.4. Limitations of Related Work 

In summary, despite their promises, the methods reviewed 
have some limitations when viewed through the lens of 
autonomous PHM.  The model's performance depends 
heavily on the quality and completeness of HUMS data.  
HUMS data may be noisy, incomplete, or inconsistent across 
different platforms, which can limit scalability and reliability 
in real-time autonomy contexts. Though transfer learning 
reduces data requirements, it still requires fine-tuning with 
domain-specific samples.  In a fully autonomous PHM 
setting (e.g., for newly deployed engines), there may be no 
time or opportunity to gather this tuning data.  In general, 
most existing PHM systems are developed using supervised 
learning approaches, which depend heavily on labeled failure 
data.  The challenges faced by these systems are limited 
labeled data for practical applications and inherent domain-
specific models that are hard to generalize across different 
platforms and operating conditions.  These challenges need 
to be addressed for developing an autonomous PHM system.  

 

3. THE METHODOLOGY 

The TS-BYOL-TAA proposed for turboshaft engine power 
prediction should be very similar to the MPC specified in the 
helicopter flight manual.  For a typical MPC, the maximum 
allowable MGT will be manually determined based on the 
flight conditions of the helicopters and compared with the 
measured MGT.  To automate this process, a numerical 
indicator is needed for continuous online monitoring of the 
engine power.  In (Simon and Litt, 2008), ETF was used as 
the indicator of the actual power that an engine can produce 
relative to the rated power of the engine.  Like that in (Simon 
and Litt, 2008), Bechhoefer (2024) used engine margin as the 
indicator, which is computed as the ratio of measured torque 
over the modeled torque at the maximum allowable MGT.  In 
this paper, adapting the engine margin by Bechhoefer (2024) 
as the engine power indicator, TS-BYOL-TAA using HUMS 
data for turboshaft engine torque prediction is proposed.  The 
flowchart of the proposed TS-BYOL-TAA using HUMS data 
for turboshaft engine torque prediction is shown in Figure 1. 
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Figure 1. Flowchart of the proposed methodology. 

 

As shown in Figure 1, unlabeled data collected by HUMS in 
the helicopters will be used to pre-train a TS-BYOL-TAA 
turboshaft torque prediction model.  The purpose of the pre-
training is to force the model to learn features that are 
invariant to data augmentations due to specific platforms or 
task operations.   This results in robust representations that 
generalize better across input variations.  Unlike other self-
supervised contrastive learning frameworks such as Simple 
Framework for Contrastive Learning of Visual 
Representations (SimCLR) (Chen et al., 2020) or Momentum 
Contrast (MoCo) (He et al., 2020), BYOL doesn’t need 
contrastive pairs or negative samples for pre-training.  
Therefore, it is flexible for BYOL to integrate other deep 
learning architectures like LSTM or transformers to improve 
its pre-training performance.  After TS-BYOL-TAA 
pretraining, limited labeled data will be used to fine-tune the 
model for engine torque prediction.   As the pretrained 

features generated from unlabeled data during pre-training 
act as a strong prior, fine-tuning with only a few labeled data 
often achieves better accuracy and faster convergence on 
downstream tasks like prediction.  In the case of autonomous 
PHM applications, a pre-trained TS-BYOL-TAA engine 
torque prediction model can be used as a generalized model 
across multiple engine platforms.  This generalized model 
can be easily adapted to a specific engine type with only a 
few labeled data points or even without any labeled data. 

Engine torque will be predicted by the fine-tuned TS-BYOL-
TAA turboshaft torque prediction model.   The engine 
margin, as the engine performance indicator, will be 
computed as the ratio of the predicted torque to the modeled 
engine torque obtained from the engine power assurance 
check chart. 

BYOL is a classic SSL method introduced by DeepMind in 
2020 (Grill et al, 2020).  Since then, it has been successfully 
applied to various self-learning problems (Feichtenhofer et 
al., 2021; Tian et al., 2021). It learns by matching two 
augmented views of the same sample using an online network 
and a target network. In BYOL, two augmented views of the 
same data are passed through an encoder and a projector.  The 
goal is to make their embeddings similar.  In SSL, labels are 
only used later, e.g., for fine-tuning in downstream tasks such 
as regression or classification. 

Up to today, most of the BYOL applications have been 
focused on image or video representations.  Limited 
application on multi-variant time series data is reported in the 
literature.  In this paper, we introduce TS-BYOL-TAA, a 
novel BYOL-based framework specifically designed for 
multivariate time-series sensor data with task-aware 
augmentation.  The structure of the TS-BYOL-TAA is 
presented in Figure 2. 

 

 
 

Figure 2.  The structure of the TS-BYOL-TAA. 
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The time series task-aware augmentation of the raw input in 
the TS-BYOL-TAA model is implemented by integrating 3 
commonly used data augmentation techniques for time series 
data: Gaussian noise, dropout-style masking, and time 
warping.  Let 𝑥𝑥  be the raw input data.  Then 𝑥𝑥  can be 
perturbed by adding noise 𝜖𝜖 as: 

𝑥𝑥� = 𝑥𝑥 + 𝜖𝜖,  where 𝜖𝜖~𝒩𝒩(0,𝜎𝜎2)         (1) 

𝜎𝜎 is the standard deviation of the noise and controls the noise 
scale.  So, it is also called the noise scale.  Perturbing the raw 
input data with Gaussian noise simulates input uncertainty 
and pushes the encoder to learn robust embeddings. 

Dropout-style feature masking randomly set some feature 
values to zero to simulate missing or occluded data.  It 
enforces feature-level invariance, i.e., the model should still 
align representations even when partial data is missing. It also 
helps prevent the model from relying on a small set of 
dominant features.  Let 𝑀𝑀 ∈ {0, 1} be a random binary mask 
(Bernoulli).  Then 𝑥𝑥�, the augmented 𝑥𝑥, can be expressed as: 

𝑥𝑥� = 𝑥𝑥⨀𝑀𝑀, where 𝑀𝑀~Bernoulli(𝑝𝑝)        (2) 

In Eq. (2), 𝑝𝑝 = 1 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , is defined as the keep 
probability and ⨀ is the elementwise (Hadamard) product.   

Time warping stretches or compresses the time axis in 
different regions of the signal, simulating temporal variation 
(like speed fluctuations in speech or machine behavior).  Let 
the original time series be: 𝑥𝑥(𝑡𝑡) ∈ ℝ𝐹𝐹 , 𝑡𝑡 = 1, … ,𝑇𝑇 .  Time 
warping applies a smooth, nonlinear mapping 𝜙𝜙(𝑡𝑡) to the 
time indices: 

𝑥𝑥�(𝑡𝑡) = 𝑥𝑥�𝜙𝜙(𝑡𝑡)�    (3) 

𝜙𝜙(𝑡𝑡) is a monotonic warping function (ensures time doesn't 
go backward).  The warped signal 𝑥𝑥�(𝑡𝑡) has the same length 
𝑇𝑇.  But the samples come from warped time steps.  Since 
𝜙𝜙(𝑡𝑡) is usually non-integer, we use interpolation (e.g., linear 
or cubic) to compute 𝑥𝑥�(𝑡𝑡): 

𝑥𝑥�(𝑡𝑡) = Interproate �𝑥𝑥,𝜙𝜙(𝑡𝑡)�  (4) 

This creates regions of temporal stretching (slowdown) and 
compression (speedup). 

Now, we can integrate these 3 time series augmentation 
techniques as follows.  Applying a time-warping function 
𝜙𝜙(𝑡𝑡) , we obtain 𝑥𝑥�𝜙𝜙(𝑡𝑡)� .  Perturbing each feature in 
𝑥𝑥�𝜙𝜙(𝑡𝑡)� with Gaussian noise 𝜖𝜖(𝑡𝑡)~𝒩𝒩(0,𝜎𝜎2), we generate 
𝑥𝑥�𝜙𝜙(𝑡𝑡)� + 𝜖𝜖(𝑡𝑡) .  Finally, applying a binary mask 
𝑀𝑀(𝑡𝑡)~Bernoulli(𝑝𝑝) to simulate missing features, we obtain 
the augmented time series as: 

𝑥𝑥�(𝑡𝑡) = �𝑥𝑥�𝜙𝜙(𝑡𝑡)� + 𝜖𝜖(𝑡𝑡)�⨀𝑀𝑀(𝑡𝑡)  (5) 

In general, the noise scale 𝜎𝜎  is fixed in TS-BYOL-TAA 
pretraining.  However, this may limit the power of TS-

BYOL-TAA.  This is because in most applications of time 
series prediction, different features may have vastly different 
scales or variances.  Adding fixed noise may overwhelm 
small-variance features and under-perturb large-variance 
ones.  One strategy to overcome this limitation is the use of 
adaptive noise to scale perturbation proportionally to feature 
variability and maintain structure.  In our integrated 
augmentation method, we set the noise scale as a learnable 
parameter of the TS-BYOL-TAA model to let the model 
learn per-feature noise scaling during training.  In this way, 
our integrated time series data augmentation becomes the 
task-aware self-supervised augmentation.   

As shown in Figure 2, the parameter set 𝜃𝜃  in encoder 𝑓𝑓𝜃𝜃 , 
projector 𝑔𝑔𝜃𝜃 , and predictor 𝑞𝑞𝜃𝜃  in the online network is 
updated through backpropagation using a negative cosine 
similarity loss function between the online network output 
vector 𝑝𝑝 and another target network output 𝑧𝑧 as: 

ℒ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ℒ(𝑝𝑝1, 𝑧𝑧2) + ℒ(𝑝𝑝2, 𝑧𝑧1)  
where ℒ(𝑝𝑝, 𝑧𝑧) = − 𝑝𝑝∙𝑧𝑧

‖𝑝𝑝‖‖𝑧𝑧‖
  

  (6) 

The parameter set 𝜉𝜉  in encoder 𝑓𝑓𝜉𝜉  and projector 𝑔𝑔𝜉𝜉  in the 
target network is updated through exponential moving 
average (EMA) as: 

𝜉𝜉 ← 𝜏𝜏𝜏𝜏 + (1 − 𝜏𝜏)𝜃𝜃         (7) 

In Eq. (7), 𝜏𝜏 ∈ [0.99, 0.999] is a momentum coefficient. 

 

4. THE APPLICATION CASE STUDY  

4.1. The M250C47B Turboshaft Engine Data 

In this paper, the real-world data from the Rolls-Royce 
M250C47 engine (Bechhoefer, 2024) is used to demonstrate 
the application of the developed methodology.  The data was 
recorded by the HUMS in the Bell 407 helicopters.  The 
HUMS data available to check the engine turbine health 
include OAT, MGT, PA, and TQ.  According to the Bell 407 
rotorcraft flight manual (Bell Helicopter-Textron, 2002), a 
power assurance check for the engine can be manually 
performed by a power assurance check chart (Figure 3) using 
these measurements to determine the maximum allowable 
MGT.  The chart indicates the maximum allowable MGT for 
an engine meeting minimum Rolls-Royce specifications. The 
engine must develop the required torque without exceeding 
the chart MGT in order to meet the performance data 
contained in the chart.   
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Figure 3. Power assurance check chart for M250C47 engine 
(Bell Helicopter-Textron, 2002). 

The power assurance check chart in Figure 3 may be used to 
periodically monitor the engine performance.  

To perform a power assurance check, all sources of bleed air, 
including engine anti-icing, will be turned off.  A level flight 
at an airspeed of 85 to 105 KIAS or VNE, whichever is lower, 
will be established. A check may also be conducted in a hover 
prior to takeoff, depending on ambient conditions and gross 
weight (Bell Helicopter-Textron, 2002).  For example, using 
the following recorded measurements: Hp = 6000 feet, OAT 
= 10°C, MGT = actual reading, TQ = 70%, one can enter the 
power assurance check chart at observed TORQUE (70%), 
proceed vertically down to intersect HP (6000 feet), follow 
horizontally to intersect indicated OAT (10°C), then drop 
vertically to read maximum allowable MGT of 675°C.  If 
actual MGT is less than or equal to 675°C, engine 
performance equals or exceeds the minimum specification, 
and performance data contained in the flight manual can be 
achieved.  The solid line in Figure 3 indicates the example 
power assurance check.  

4.2. The Results 

4.2.1. Performance of the Encoders 

As mentioned earlier, BYOL-based self-learning is flexible 
in that it can take any deep learning architecture as its encoder 
since it doesn’t need contrastive pairs or negative samples for 
pre-training.  In our proposed TS-BYOL-TAA, while the 
projector and the predictor are a Multi-Layer Perceptron 
(MLP), the encoder can be either LSTM or GPT-2 because 
both LSTM and GPT-2 have been shown to be effective for 
time series prediction (He, Hess, and Bechhoefer, 2025; 
Tronconi, He, and Bechhoefer, 2025). 

The effectiveness of LSTM and GPT-2 as the encoder in TS-
BYOL-TAA was tested.   

The LSTM encoder can be described as follows (He, 
Bechhoefer, and Hess, 2025).  Define: 

𝑿𝑿 ∋ 𝐑𝐑𝑇𝑇×𝑑𝑑: the input sequence where T is the number of 
data points and d is the number of parameters at each 
data point 

ℎ𝑡𝑡
(𝑙𝑙): hidden state at data point t for layer 𝑙𝑙 = 1, … , 𝐿𝐿 

𝑐𝑐𝑡𝑡
(𝑙𝑙): cell state at data point t for layer 𝑙𝑙 = 1, … , 𝐿𝐿 

𝑾𝑾𝑓𝑓 ,𝑾𝑾𝑖𝑖 ,𝑾𝑾𝑜𝑜,𝑾𝑾𝑐𝑐 : weight matrices for the forget gate, 
input gate, output gate, and cell gate, respectively 

𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖 , 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐: biases for the respective gates 

𝑦𝑦: the target variable to be predicted 

𝑦𝑦�: the predicted value of the target variable 

At each layer l, for each data point t, the LSTM operates with 
the following equations.  

Compute the forget state value to decide which information 
to discard from the cell gate: 

𝑓𝑓𝑡𝑡
(𝑙𝑙) = 𝜎𝜎�𝑊𝑊𝑓𝑓

(𝑙𝑙)�ℎ𝑡𝑡−1
(𝑙𝑙) , 𝑥𝑥𝑡𝑡� + 𝑏𝑏𝑓𝑓

(𝑙𝑙)�        (8) 

Compute the input gate value to decide what information to 
store in the cell state: 

𝑖𝑖𝑡𝑡
(𝑙𝑙) = 𝜎𝜎�𝑊𝑊𝑖𝑖

(𝑙𝑙)�ℎ𝑡𝑡−1
(𝑙𝑙) , 𝑥𝑥𝑡𝑡� + 𝑏𝑏𝑖𝑖

(𝑙𝑙)�                   (9) 

Compute the candidate values of the cell state: 

𝑐̃𝑐𝑡𝑡
(𝑙𝑙) = tanh�𝑊𝑊𝑐𝑐

(𝑙𝑙)�ℎ𝑡𝑡−1
(𝑙𝑙) , 𝑥𝑥𝑡𝑡� + 𝑏𝑏𝑐𝑐

(𝑙𝑙)�                 (10) 

Update cell state by combining forget gate and input 
gate: 

𝑐𝑐𝑡𝑡
(𝑙𝑙) = 𝑓𝑓𝑡𝑡

(𝑙𝑙) ⊙ 𝑐𝑐𝑡𝑡−1
(𝑙𝑙) + 𝑖𝑖𝑡𝑡

(𝑙𝑙) ⊙ 𝑐̃𝑐𝑡𝑡
(𝑙𝑙)                 (11) 

where ⊙ denotes element-wise multiplication 

After processing all the data points through the two 
LSTM layers, the last hidden state from the last layer ℎ𝑇𝑇

(𝐿𝐿) 
is passed through a fully connected layer to make the 
final prediction as: 

𝑦𝑦� = 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑇𝑇
(𝐿𝐿) + 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜                       (12) 

where 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜  is the weight matrix of the output layer and 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜  the bias. 
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To update the weight matrices of the LSTM network, the 
root mean square error (RMSE) is used as the loss 
function as: 

RMSE = �1
𝑇𝑇
∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2𝑇𝑇
𝑡𝑡=1      (13)

   

In addition to the LSTM encoder, the Generative Pre-trained 
Transformer 2 (GPT-2) was also implemented as an encoder 
in the TS-BYOL-TAA model.  GPT-2 with a transformer 
structure is a state-of-the-art pre-trained language model that 
has achieved impressive results in many Natural Language 
Processing (NLP) benchmarks (Radford et al., 2018; Radford 
et al., 2019; Brown et al., 2020).  The structure of the GPT-2 
encoder is provided in Figure 4.   

 

Figure 4.  The structure of GPT2 (Wikipedia). 

To pre-train the TS-BYOL-TAA model, HUMS data 
collected from two M250C47 engines in the Bell 407 
helicopters were used.  The dataset for each engine contains 
a total of 7954 data points, and each data point contains 
values for each of the 7 parameters: Engine Torque, OAT, 
MGT, PA, Indicated Airspeed (IAS), Gas Generator Speed 
(Ng), and Power Turbine Speed (Np).  The ranges of the 
values for these parameters in the datasets are provided in 
Table 1.   

 

Table 1.  The HUMS dataset parameters and value range. 

Parameter Unit Range 

Engine Torque % [0.102, 93.445] 

OAT °C [-2.086, 15.684] 

MGT °C [454.633, 812.562] 

PA feet [3348.425, 8699.112] 

IAS knot [-0.186, 147.156] 

Ng rpm [68.499, 99.889] 

Np rpm [41.030, 102.988] 

 

To pre-train and fine-tune the TS-BYOL-TAA models for 
predicting the engine torque using inputs OAT, MGT, PA, 
KIAS, Ng, and Np, 70% of the dataset was used for pre-
training, 10% for fine-tuning the prediction head, and 20% 
for validation.  The validation RMSE for each trained model 
is provided in Table 2. 

Table 2.  The RMSE of two different encoders. 

Encoder RMSE 

LSTM 
encoder 

0.0802 

GPT-2 
encoder 

1.0666 

 

4.2.2. The Feature Embeddings of TS-BYOL-TAA 

TS-BYOL-TAA is basically a self-supervised representation 
learning method.  During pretraining, it learns to produce 
useful embeddings by matching augmented views of the 
same input.  To see how well the TS-BYOL-TAA model 
organizes the data in its latent space, we can visualize the 
feature embeddings learned by the TS-BYOL-TAA model 
after pretraining and compare them with the features of the 
raw input data.  Figure 5 shows the comparison of the t-SNE 
embedding feature map after pretraining the TS-BYOL-TAA 
using LSTM encoder with that of the raw input data.   
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Figure 5.  The t-SNE feature maps: top - embedding feature 
map after pretraining TS-BYOL-TAA with LSTM encoder; 

bottom - feature map of raw input data 

From Figure 5, we can see that the latent features encode 
patterns related to the target, the engine torque.  Here are the 
key observations: (1) Smooth color gradient.  
On the right‐hand side (Component 1 ≈ 20–40), the points 
transition from green to yellow as the true label increases 
(≈50→90). On the left (Component 1 ≈ –50 to –30), the 
colors stay in the darker purples (≈10–20). That smooth 
change in hue tells us that nearby points in latent space tend 
to share similar target values. (2) Cluster formation.   
We can also see distinct “islands” of points, each island 
having a fairly tight color range. Those clusters suggest the 
backbone has learned to group inputs whose labels lie in the 
same range.  (3) Implications for prediction.   
Because the embeddings already arrange themselves in a way 
that mirrors the target, our linear regression head should have 
a relatively simple mapping to learn, often leading to better 
generalization and faster convergence. 

Note that quantitative summaries such as the Pearson 
correlation coefficient ( 𝑟𝑟 ) and Spearman correlation 
coefficient (𝜌𝜌) are also included for each t-SNE map in Figure 
5.  Basically, 𝑟𝑟  and 𝜌𝜌  give a numerical measure of how 
strongly the t-SNE components are related to the true target, 
engine torque.  𝑟𝑟 takes a value between +1 and -1.  𝑟𝑟 = +1 
indicates a perfect positive linear correlation, 𝑟𝑟 = 0 indicates 
no linear correlation, and 𝑟𝑟 = −1 indicates a perfect negative 
linear correlation.  𝜌𝜌 measures a monotonic relationship (not 

necessarily linear) and takes values between +1 and -1.  𝜌𝜌 
takes a similar interpretation as 𝑟𝑟 , but based on the rank 
ordering of values.  The quantitative summaries in Figure 4 
indicate that the TS-BYOL-TAA backbone pretraining 
features correlate with the target, the engine torque more 
strongly than the raw input features.  This confirms the 
effectiveness of the TS-BYOL-TAA method on the 
turboshaft engine torque data.     

 

4.2.3. Domain Adaptation Performance  

The major motivation to use TS-BYOL-TAA for turboshaft 
engine power performance prediction is to address the 
challenges faced by supervised learning-based PHM systems: 
limited labeled data and inherent domain-specific models.  It 
is desired that the TS-BYOL-TAA model can predict 
performance degradation without requiring vast amounts of 
labeled data specific to each individual engine type. This 
allows for a more generalized model that can be applied 
across different helicopter platforms and engine 
configurations, significantly improving its practicality and 
scalability.  To test the domain adaptation performance of the 
TS-BYOL-TAA model, we conducted two types of analysis: 
(1) We investigated how the TS-BYOL-TAA engine torque 
prediction model performs when the target domain shifts 
from one engine to another.  (2) We investigated how the TS-
BYOL-TAA engine torque prediction model performs when 
the target domain does not overlap with the source domain.     

In the first analysis, we first tested how the TS-BYOL-TAA 
model pre-trained with engine 1 data to predict the torque of 
engine 2 performs and vice versa in comparison with 
supervised learning.  In this test, only 10% of the labeled data 
was used for training in supervised learning and for fine-
tuning for TS-BYOL-TAA model.  The results of this test are 
provided in Table 3. 
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Table 3.  Test results for the first analysis. 

Models 
RMSE 

Eng1 -> Eng2 Eng2 -> Eng1 

TS-BYOL-TAA 
with LSTM 

encoder 

0.0728 0.0646 

TS-BYOL-TAA 
with GPT-2 

encoder 

0.7812 0.7917 

Supervised 
LSTM  

0.0977 0.1121 

Supervised  
GPT-2 

1.2931 1.9358 

 

As one can see from the results in Table 3, with the same 
small amount of labeled data, the TS-BYOL-TAA models 
gave better domain adaptation performance than the 
supervised learning-based counterparts.   

In the second analysis, we tested how TS-BYOL-TAA 
models and the supervised learning models perform using the 
source domain data to predict the engine torque that is outside 
the source domain, i.e., the target domain.  Figure 6 shows 
the plot of engine torque vs. MGT for engine 1 and the data 
portion of the source domain and target domain.  As shown 
in Figure 6, the source domain data portion is inside the area 
specified by the red rectangular frame, i.e., all the data points 
that satisfy the following conditions will be used as the source 
domain data: Engine torque ≥ 20% and MGT ≥ 500 °C. 

 

Figure 6.  Engine torque vs. MGT plot for engine 1. 

In this analysis, the TS-BYOL-TAA models were first pre-
trained using the unlabeled source domain data and then were 
fine-tuned with 10% of the target domain data to predict the 

engine torque in the target domain.  For the supervised 
learning models, 10% of the labeled data was used for 
training the models.  The test results are provided in Table 4. 

Table 4.  Test results for the second analysis. 

Models RMSE 

TS-BYOL-TAA  
with LSTM encoder 

0.6533 

TS-BYOL-TAA  
with GPT-2 encoder 

1.5233 

Supervised LSTM 1.7147 

Supervised GPT-2 2.1326 

 

As one can see from Table 4, again with the same small 
amount of labeled data, the TS-BYOL-TAA models gave 
better domain adaptation performance than the supervised 
learning-based counterparts.   

 

5. CONCLUSIONS 

This work presented TS-BYOL-TAA, a novel self-
supervised learning framework for autonomous PHM in 
turboshaft engines, with a focus on torque prediction under 
domain shift and limited-label conditions. By integrating 
task-aware augmentations, i.e., Gaussian noise, dropout-style 
masking, and time warping, into a BYOL-based architecture, 
the method effectively preserved mission-critical temporal 
structures while improving robustness to irrelevant 
variations. 

Applied to HUMS data from M250C47B turboshaft engines, 
TS-BYOL-TAA demonstrated clear advantages over 
supervised baselines. The learned representations exhibited 
stronger correlation with target variables, enabling more 
accurate torque prediction with significantly fewer labeled 
samples. Across both domain adaptation scenarios, cross-
engine transfer and extrapolation beyond the source 
operating domain, the proposed framework consistently 
outperformed supervised LSTM and GPT-2 models, 
highlighting its capacity for generalized, cross-platform 
deployment. 

The flexibility of TS-BYOL-TAA to incorporate different 
encoder architectures, such as LSTM or GPT-2, broadens its 
applicability to diverse time-series prediction tasks in 
aerospace PHM. Importantly, its ability to learn from 
abundant unlabeled operational data makes it a promising 
foundation for fully autonomous, on-board health monitoring 
systems that can adapt in real time to evolving operational 
environments without costly retraining. 

0
20
40
60
80

100

0 200 400 600 800 1000

En
gi

ne
 T

or
qu

e

MGT

Engine Torque vs. MGT

Target
domain 

data

Source 
domain 

data 



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025 

10 

 

Future work will focus on extending the approach to multi-
modal sensor fusion, incorporating decision-making logic for 
autonomous maintenance actions, and validating 
performance across larger and more heterogeneous fleets. 
These advancements will further position self-supervised 
learning as a cornerstone technology for scalable, resilient, 
and intelligent PHM systems in safety-critical aerospace 
applications. 
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