
Improved LSTM-Based Battery SOH Estimation with Differential Evolution Hyperparameter
Optimization

Karthickumar Ponnambalam1, B. Sivaneasan2, A. Sharma1, S. S. Lee1

1 Newcastle University, Singapore
k.ponnambalam2@newcastle.ac.uk

anurag.sharma@newcastle.ac.uk szesing.lee@newcastle.ac.uk

2 Singapore Institute of Technology, Singapore
sivaneasan@singaporetech.edu.sg

ABSTRACT

The reliable operation of battery energy storage systems hinges
on prompt and accurate assessment of cell health. This work
proposes a deep learning framework for lithium-ion battery State
of Health (SoH) estimation built on Long Short Term Memory
(LSTM) networks whose hyperparameters are tuned via Differ-
ential Evolution (DE). Using aging datasets from NASA’s Open
Data Portal, we search over key design choices (e.g., batch size,
hidden units, activation, and loss) to obtain robust configurations
without manual trial and error. Building on our prior GA-LSTM
study, which reported Root Mean Square Error (RMSE) reduc-
tions of 12.4% to 76.79% over a Particle Swarm optimized LSTM
(PA-LSTM). This paper replaces the genetic search with DE and
evaluates the resulting DE-LSTM under identical data splits and
metrics. Empirically, DE-LSTM delivers an additional RMSE
reduction of 38% to 91% relative to our GA-LSTM baseline and
consistently improves predictive stability across diverse degra-
dation trajectories. These findings indicate that DE driven hy-
perparameter optimization offers a strong and scalable path to
high precision SoH prediction, advancing beyond both the previ-
ously published PA-LSTM benchmark and our earlier GA-based
optimization.

Index Terms: Battery, energy storage, state-of-health, LSTM,
genetic algorithm, Differential Evolution, hyperparameter opti-
mization, prediction.

1. INTRODUCTION

Historically, estimation of the State of Health (SoH) and Remain-
ing Useful Life (RUL) of Li-ion batteries has relied on physics
based models. Approaches grounded in battery operating princi-
ples such as equivalent circuit and electrochemical models have
been used to predict degradation trajectories and infer SoH [1].
However, the coupled, nonlinear physico chemical processes in
Li-ion cells make accurate mechanistic modeling difficult and
often device specific [2]. As a result, data driven methods that
do not require explicit aging dynamics have attracted significant
attention. A range of machine learning techniques including sup-
port vector machines (SVM), Gaussian process regression (GPR),
monotonic echo state networks (MONESNs), dynamic Bayesian
networks (DBNs), and recurrent neural networks such as long
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short term memory (LSTM) have been explored for SoH/RUL
prediction.

Motivated by this shift toward learning based solutions, this pa-
per proposes a Differential Evolution (DE) tuned LSTM for bat-
tery SoH estimation. In the proposed framework, DE acts as a
population based hyperparameter optimizer that searches over
architectural and training choices (e.g., hidden units, learning rate,
dropout, batch size) to improve predictive accuracy and efficiency
without manual trial and error. The resulting DE-LSTM aims to
provide a practical, data efficient alternative for battery health
monitoring under diverse operating conditions.

2. LITERATURE REVIEW

2.1. Degradation Prediction

Extensive work has examined how lithium-ion batteries age over
time. Broadly, degradation mechanisms are grouped into two cate-
gories calendar aging and cycle aging [3]. Calendar aging reflects
time dependent loss that occurs even when a cell is not cycled; it is
strongly influenced by temperature and the average state of charge
(SoC). In contrast, cycle aging is driven by charge/discharge use
and depends on factors such as temperature, SoC, current (or
C-rate), and depth of discharge. Prior studies report that calendar
aging often follows a non linear progression, whereas cycling
induced aging can appear approximately linear with respect to
accumulated throughput [4].

Because the underlying electrochemical pathways are complex
and vary across chemistries, data driven approaches have become
a practical alternative for analyzing and forecasting degradation
without detailed priors on cell physics. These methods learn re-
lationships between measured signals and capacity loss directly
from data and can therefore be applied across battery types [5].
A typical workflow extracts features from voltage, current, and
temperature measurements, identifies temporal trends or health
indicators, and then fits a regression model to predict capacity or
SoH [6]. Algorithms explored in the literature include support vec-
tor machines (SVM), relevance vector machines (RVM), dynamic
Bayesian networks (DBN), hidden Markov models (HMM) [7],
and artificial neural networks (ANN) [8]. More recently, deep
neural networks particularly recurrent architectures are favored
for their ability to learn informative representations and adapt to
non stationary operating conditions, making them well suited for
battery degradation prediction.
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2.2. State of Health

The state of health (SoH) is the most common metric for assessing
lithium-ion battery ageing, defined as the ratio of a cell’s usable
capacity to its initial capacity [9]. In this work, SoH at cycle p is
given by:

SoHp =
Cp

C0
, (1)

where Cp is the measured capacity at cycle p and C0 the baseline
capacity. SoH is often expressed as a percentage (100× SoHp).
While resistance or power based definitions exist, this study adopts
the capacity ratio for consistency with the NASA datasets and
prior studies.

2.3. Evaluation of Predictive Models for Battery SoH

Battery state of health (SoH) forecasting has been studied using
diverse machine learning methods, each with advantages and lim-
itations [10]. Below we summarize commonly used approaches:

• Linear regression: Simple and effective for near-linear
trends, but performs poorly with the nonlinear effects of
electrochemical ageing [11].

• Decision trees: Capture nonlinear splits and feature interac-
tions, yet often overfit noisy, high dimensional data and show
weak generalization [12].

• Random forests: Improve robustness over single trees but
fail to model the long range temporal dependencies in degra-
dation sequences [13].

• CNNs: Strong in extracting spatial features, but less suited to
sequential SoH data unless transformed into time frequency
representations [14].

• LSTMs: Unlike regression or tree-based models that strug-
gle with sequential dependencies, and CNNs that require data
transformation, LSTMs are explicitly designed for time series
analysis. They capture both short and long term temporal
patterns directly from sensor streams, reducing reliance on
handcrafted features and consistently providing more accu-
rate SoH/RUL predictions [15].

2.4. Optimization of Predictive Models

Designing and training neural networks effectively is key to reli-
able performance, typically measured by accuracy and F1 score in
classification or RMSE/MAE in regression. For battery SoH pre-
diction, the main challenge is ensuring robust generalization under
noisy and limited data. This is essential for safe operation, main-
tenance planning, and extending battery life. Our work addresses
this through systematic hyperparameter tuning to minimize error
and stabilize performance across diverse conditions.

• LSTM Hyperparameter Tuning: LSTM models are highly
sensitive to hyperparameters such as learning rate, hidden
size, depth, dropout, sequence length, and batch size. Many
of these are discrete or conditional, for example, adding
layers activates additional parameters. In practice, factors
like limited training budgets, gradient clipping, and early
stopping make the outer optimization problem non smooth,
which reduces the effectiveness of gradient based tuning.
Evolutionary optimization offers a strong alternative because
it (i) does not rely on outer gradients, (ii) can handle mixed
discrete and continuous search spaces, (iii) preserves diversity
within the population to balance exploration and exploitation,
and (iv) remains robust against noise and local minima. These

properties make evolutionary methods well suited for LSTM
hyperparameter and architecture search.

• Population based optimizers considered in this study: We
focus on three well established algorithms: Particle Swarm
Optimization (PSO), referred to here as PA for consistency
with the manuscript [16], along with Genetic Algorithms
(GA) and Differential Evolution (DE).

– PA (Particle Swarm Optimization): PA models each
solution as a “particle” that moves through the search
space by combining inertia, a pull toward its own best
position, and attraction to the swarm’s global best. This
cooperation often yields rapid early gains, and PA is
straightforward to parallelize. However, it can converge
prematurely without diversity-preserving mechanisms
(e.g.velocity damping) and may stall on rugged land-
scapes [17]. PA-LSTM has previously been applied to
battery SoH prediction [16].

– GA (Genetic Algorithms): GAs evolve a population
of solutions through selection, crossover, and mutation.
Fitter candidates are favored for reproduction, while
genetic operators introduce diversity to explore new
regions [18]. This approach has proven effective for
neural network hyperparameter search [19], and in our
earlier work GA–LSTM achieved notable improvements
over PA–LSTM for SoH prediction [20].

– DE (Differential Evolution): DE generates new solu-
tions by adding a scaled difference between two popu-
lation vectors to a base vector, followed by crossover
and greedy selection [21]. With only a few parameters
and strong balance between exploration and exploita-
tion, DE converges reliably and efficiently. It has been
widely applied to neural network optimization [22] and
has shown promise as a robust alternative to GA for
LSTM tuning [23].

Relative to PA and GA, DE’s difference vector mutation
adapts step sizes to the population’s current diversity, natu-
rally balancing exploration and exploitation with minimal
tuning [24, 25]. It operates natively in continuous domains
and accommodates integer/binary decisions via simple en-
codings [26]. These traits suit the multi modal, noisy ob-
jectives common in LSTM hyperparameter and architecture
search, where diversity aware proposals help avoid premature
convergence and deliver stable improvements with modest
effort [27].

2.5. Look-back Training for Incremental Learning
Traditional approaches often train on pooled data from many
cells, which can be computationally expensive and may ob-
scure the distinct ageing behavior of individual batteries.
Incremental learning provides a more efficient alternative by
updating the model only with newly acquired data, reducing
computation and allowing real-time adaptation [28]. Within
this framework, look-back training uses a fixed window of
each battery’s past cycles to capture its specific degradation
trajectory. This approach supports more tailored modeling
and enhances the precision of long-term state-of-health esti-
mation [29].
This approach aligns well with time series SoH prediction.
By using each cell’s historical sequences, the model learns
evolving dependencies and drift, which enhances the accu-
racy of future health estimates [30]. Within our framework,
look-back training complements DE based hyperparameter
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optimization by supplying consistent, cell specific temporal
context while the optimizer selects robust LSTM configura-
tions.

2.6. Research Gap
Recent advancements in battery health prediction have im-
proved accuracy and performance; however, notable gaps
remain. Current models often struggle to balance predic-
tive precision with computational efficiency, and there is an
increasing demand for data efficient approaches that can gen-
eralize effectively across diverse battery chemistries, designs,
and operating conditions [31]. While transfer learning and
domain adaptation techniques have shown potential in bridg-
ing performance gaps between different battery devices, their
integration into practical battery management systems (BMS)
is still limited.
One of the critical shortcoming lies in the absence of
lightweight, data driven BMS solutions that can be easily
tailored to specific battery types while requiring minimal
training data. Additionally, few existing methods support
real time predictive analytics capable of continuous State
of Health (SoH) monitoring and timely decision making in
operational environments. This is particularly important for
applications where rapid detection of degradation patterns
can prevent failures and optimize battery usage.
To address these challenges, novel strategies such as Look-
back training [29] which enables models to leverage his-
torical sequences for capturing temporal dependencies and
optimization techniques like Differential Evolution [32] offer
promising directions. These methods can improve adaptabil-
ity, enhance generalization, and sustain high performance
even in data constrained settings. There is a pressing need
for a unified machine learning framework that combines tem-
poral sequence modeling with robust optimization to enable
domain adaptation, efficient learning, and real-time appli-
cability. Integrating look-back training with evolutionary
optimization not only addresses current limitations in live
battery system training but also facilitates continuous adapta-
tion to dynamic battery behavior, ultimately advancing the
capabilities of State of Health (SoH) prediction models in
real world scenarios.

3. METHODOLOGY
Our approach is structured into three sequential phases as
shown in Fig.1: (1) Data Process, (2) SOH Prediction, and
(3) Differential Evolution Optimization.

3.1. Data Process
Commonly used sources of battery degradation data include
the NASA PCoE Battery Data Repository [33], the University
of Maryland’s Center for Advanced Life Cycle Engineering
(CALCE), and the Oxford Battery Degradation Dataset. In
this study, the NASA dataset was selected. Specifically, three
Li-ion cells with serial numbers B0005, B0006, and B0018
were used. These are 18650 format batteries with a nominal
capacity of 2 Ah. The cells were subjected to three operating
modes: (1) charging, (2) discharging, and (3) electrochemical
impedance spectroscopy, each performed under different tem-
perature conditions. Testing continued until the end-of-life
(EOL) criterion was reached, defined as a 30% reduction in
rated capacity, from 2 Ah down to 1.4 Ah.

3.2. Data Analysis and Preprocessing
In this paper, the capacity dataset from NASA, facilitates
manual SoH calculation, which is used to train the model.

Figure 1. Methodology

Initially, the correlation between capacity and cycle data
were examined. As shown in Fig2, battery capacity declines
with increasing cycle numbers, with capacities falling below
1.4Ah after approximately 163 cycles, mirroring a consistent
trend across all NASA Li-ion batteries.
As SoH is derived from capacity as given by (1), it can also
be observed from Fig. 3 that the SOH reduces as the number
of cycle increases.
Most existing studies on battery degradation rely on pooled
data from multiple cells, which is computationally demand-
ing. In this work, we adopt an incremental (or look-back)
learning approach, where model parameters are updated as
new data arrive, improving efficiency with less data and com-
putational power [28]. A generic function was implemented
to generate look-back datasets from NASA’s raw discharge
time series data. Look-back training uses a fixed window of
past observations (e.g., the last 30 cycles) to predict the next
value, such as degradation or state of health, thereby captur-
ing temporal patterns that improve forecasting accuracy. As
new data arrive, the window shifts forward and the model
refines its predictions, enabling it to adapt to evolving behav-
iors, for example, learning that frequent high discharge cycles
accelerate capacity fading. Continuous updates enable the
model to use past data for forecasting upcoming cycles, offer-

Figure 2. Cycle Vs Capacity
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Figure 3. Cycle Vs SoH

ing actionable insights for battery management. Algorithm 1
presents the look-back dataset generation process.

Algorithm 1 Construction of Look-Back Training Dataset

Require: Time series data batteryData, look-back window size
windowSize

Ensure: Input sequences X , target values Y
1: Initialize X ← [], Y ← []
2: for i = 0 to len(batteryData)− windowSize do
3: sequence← batteryData[i : (i+ windowSize)]
4: Append sequence to X
5: label← batteryData[i+ windowSize]
6: Append label to Y
7: end for
8: return X,Y

Algorithm 1 Construction of Look-Back Training Dataset
constructs training samples by pairing short sequences of
past observations with the next expected value. Given a time
series and a chosen window length, it iteratively collects
subsequences of length windowSize and stores them in X .
For each subsequence, the element that immediately follows
is stored in Y as its target. In this way, X contains the
input sequences representing recent state-of-health (SoH)
history, while Y holds the corresponding SoH values for
the subsequent cycle. Adjusting the window size controls
how much historical information is included, enabling the
model to learn degradation patterns and improve predictive
accuracy.

3.3. SOH Prediction
Model Development: In this work, a Long Short-Term Mem-
ory (LSTM) network is combined with a fully connected mul-
tilayer neural network. During training, input sequences are
passed through successive transformations (both linear and
nonlinear) in a process referred to as forward propagation.
The resulting prediction is then compared against the true
label using a loss function, which quantifies the prediction
error. To reduce this error, we apply gradient descent opti-
mization, where each trainable weight parameter is iteratively
updated. The update rule is defined as:

Wt = Wt−1 − η∇L(Wt−1) (2)

Here, η represents the learning rate, L(Wt−1) denotes
the loss function evaluated at the previous weights, and
∇L(Wt−1) is its gradient. Parameters are adjusted in the
opposite direction of the gradient vector, if the gradient com-

ponent is negative, the weight is increased, while a positive
gradient leads to a reduction. This iterative process, known
as backpropagation, gradually tunes the weights to minimize
the loss and improve prediction accuracy.
For implementation, the Keras API is employed to define
LSTM layers, specify input dimensions, and configure train-
ing. The selection of hyperparameters such as the number of
LSTM layers, learning rate, batch size, and training epochs,
strongly influences model performance. However, manual
tuning is computationally expensive due to the large search
space. To overcome this challenge, we introduce a Differen-
tial Evolution (DE) based strategy that automatically explores
hyperparameter configurations, thereby improving both train-
ing efficiency and predictive performance [34].
Training: The proposed model employs an incremental learn-
ing strategy, where parameters are updated as new battery
degradation data become available while preserving knowl-
edge from earlier cycles. The LSTM network is first trained
on an initial portion of the dataset and subsequently refined
by incorporating additional data, avoiding the need to re-
train on the entire history. This enables real-time adaptation
to changing battery conditions and supports more accurate
SoH forecasting. By continually updating its internal repre-
sentation, the LSTM model improves its understanding of
degradation dynamics and provides a foundation for predic-
tive maintenance.
Testing: Experimental evaluation is conducted on three cells
from the NASA battery dataset: B0005, B0006, and B0018.
For each cell, look-back sequences are prepared and par-
titioned into training and testing sets. A generic training
function, parameterized by multiple hyperparameters, is used
to fit the model with a chosen fraction of the data, where
train x represents the input sequences and train y the corre-
sponding targets. The remaining portion (test x) is employed
to generate predicted SoH values (ŷ). Model accuracy is then
assessed by comparing these predictions against the ground
truth (test y) using the Root Mean Squared Error (RMSE)
metric.

3.4. Differential Evolution Optimization
The training and testing workflow is driven by a Differential
Evolution (DE) algorithm, which is used to automatically
tune key hyperparameters of the LSTM model for battery
SoH prediction. These hyperparameters include the num-
ber of LSTM layers, learning rate, dropout rate, batch size,
and other structural or training-related parameters. DE is a
population based evolutionary algorithm that maintains a set
of candidate hyperparameter configurations, which evolve
across successive generations to improve model performance.
As illustrated in Fig.4, the process begins with the random
initialization of a population of candidate solutions. In each
generation, DE performs a mutation step, where a new can-
didate (mutant vector) is created by combining the weighted
difference of two randomly selected solutions with a third
solution. Next, during the crossover step, elements of this
mutant vector are recombined with the current candidate (tar-
get vector) to form a trial solution. The trial solution is then
evaluated by training and validating the LSTM model, and its
performance (fitness) is measured using error metrics such
as RMSE or MAE.
Finally, in the selection step, the trial solution replaces the
target if it achieves lower validation error. This procedure is
repeated for all individuals in the population, ensuring that
each new generation either maintains or improves the quality
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of solutions. The cycle of mutation, crossover, and selection
continues until a stopping criterion is reached, such as a
predefined number of generations or achieving the desired
validation accuracy.

3.4.1. Search Space Definition for DE-LSTM
To ensure clarity and reproducibility, Table 1 lists the key
hyperparameters optimized by Differential Evolution (DE)
along with their explored ranges.

Table 1. Search Space for DE-LSTM Hyperparameters

Parameter Range / Set
H {8, 16, 32, 64, 128, 256}
W 1–30
B GPU: 32–512; CPU: 8–128
wp1, wp2 [–0.05, 0.05]

Abbreviations and Notes: H – number of LSTM hidden
units controlling model capacity. W – look-back window
size (number of previous cycles). B – batch size, which
affects training speed and gradient stability. wp1, wp2 – op-
tional small weight perturbations for regularization. These
ranges were empirically determined to balance accuracy, con-
vergence stability, and computational efficiency during DE
optimization.

3.4.2. Operational form (DE-LSTM)
At generation g, let {x(g)

i }NP
i=1 denote candidate hyperparam-

eter vectors (e.g., units, learning rate, batch size, epochs),
and let J̄(·) be the validation error (RMSE/MAE) to min-
imize. A common and effective instantiation is DE/best/1
with binomial crossover:

Mutation: v
(g)
i = x(g)

∗ + F
(
x(g)
r1 − x(g)

r2

)
, (3a)

Crossover: u
(g)
i,j =

{
v
(g)
i,j , randj ≤ CR or j = jrand,

x
(g)
i,j , otherwise,

(3b)

Selection: x
(g+1)
i =

{
u
(g)
i , J̄

(
u
(g)
i

)
≤ J̄

(
x
(g)
i

)
,

x
(g)
i , otherwise.

(3c)

Notes. x
(g)
i is the i-th candidate hyperparameter vector at

generation g; x(g)
∗ is the current best; r1 ̸= r2 ̸= i are distinct

random indices. F ∈ (0, 2) is the differential weight (step
size scale) and CR ∈ [0, 1] is the crossover probability. v(g)

i

is the mutant; u(g)
i the trial. J̄(·) is the validation error (e.g.,

RMSE/MAE) minimized during selection.
Explanation: In each generation, Differential Evolution
(DE) maintains a population of LSTM hyperparameter candi-
dates x(g)

i and the current best solution x
(g)
∗ . A mutant v(g)

i

is created by perturbing the best solution with a scaled dif-
ference of two other candidates, where the factor F ∈ (0, 2)
controls step size, larger F explores broadly, smaller F re-
fines locally. A trial u(g)

i is then formed by combining the
mutant and the current candidate gene by gene with crossover
probability CR ∈ [0, 1], determining how much mutant infor-
mation is introduced. The trial is trained and validated, and
DE applies greedy selection: if the trial performs no worse
than the current candidate (based on error metrics such as
RMSE or MAE), it replaces it. Through repeated mutation,
crossover, and selection, validation error decreases across
generations, producing tuned hyperparameters. The final

Figure 4. DE Optimization Process for LSTM

LSTM is then retrained with these optimized settings and
tested for SoH prediction.

3.4.3. Computational Complexity
While Differential Evolution (DE) improves predictive per-
formance, it also introduces additional computational over-
head by evaluating multiple LSTM configurations across
generations. The overall cost scales approximately as
O(NP × G × Ttrain), where NP is the population size, G
the number of generations, and Ttrain the average training
time for one configuration. In this work, DE was executed
with NP = 20 and G = 30, which provided stable conver-
gence without excessive computation. The framework was
first validated on the free version of Google Colab (NVIDIA
T4 GPU, 16 GB RAM) and later extended to a university’s
Linux server with an 8-core Xeon CPU (16 threads), NVIDIA
RTX 2080 Ti GPU (11 GB VRAM), 128 GB RAM, and
SSD storage. Under this configuration, the complete DE
LSTM optimization, including training and testing for all
three NASA cells (B0005, B0006, B0018) and three training
fractions (30%, 50%, 70%) required approximately 12 hours
of continuous execution.
After identifying the optimal hyperparameters, a final LSTM
model was rebuilt using those values to form the optimized
DE–LSTM network. This model can then be deployed on
standard hardware for further look-back training or real time
inference without the need for high end computation, as
all weights and hyperparameters are already tuned. Conse-
quently, while the DE search phase is computationally inten-
sive, the resulting model remains lightweight and practical
for Battery Management System (BMS) applications.

4. RESULTS

This study evaluates the effectiveness of Differential Evo-
lution tuned LSTM (DE–LSTM) models for predicting bat-
tery state-of-health (SoH). The evaluation is conducted on
the same NASA degradation datasets used in prior bench-
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marks, including PA–LSTM[16] and our earlier GA–LSTM
approach[20]. Table2 summarizes the root mean squared
error (RMSE) values obtained across three training fractions
(30%, 50%, and 70%) for batteries B0005, B0006, and B0018.
Baseline comparisons include simple LSTM, simple RNN,
and relevance vector machine (RVM).
Overall, DE–LSTM consistently outperforms the plain base-
lines and provides remarkable improvements over PA–LSTM
across most training scenarios. At the 70% training condi-
tion, DE–LSTM achieves RMSEs of 0.00055, 0.00070, and
0.00163 for B0005, B0006, and B0018, respectively. These
values correspond to error reductions of 90.9%, 91.2%, and
86.9% compared with PA–LSTM. Relative to our previously
reported GA–LSTM results, DE–LSTM further lowers the
error by 89.6% (B0005), 86.1% (B0006), and 38.1% (B0018)
under the same 70% training condition. Similarly, For the
30% and 50% training fractions, DE–LSTM continues to
demonstrate robust performance, showing improvements over
PA–LSTM in nearly all cases.
Fig 5 present the outcomes under 70% look-back training
condition. In this plot, the black curve denotes the observed
SoH during the training phase, the green curve represents the
true degradation trajectory for the remaining cycles, and the
blue curve corresponds to the DE–LSTM prediction. The
close match between predicted and actual values highlights
the ability of DE-based hyperparameter tuning to stabilize
training and accurately capture long-term degradation be-
havior. These findings confirm that, particularly in data-rich
settings, DE–LSTM provides more reliable and precise SoH
predictions compared to GA–LSTM and PA–LSTM.

5. CONCLUSION
This paper presented a Differential Evolution optimized
LSTM (DE–LSTM) framework combined with a novel look-
back training strategy for state-of-health (SoH) prediction
in lithium-ion batteries. The proposed approach not only
identifies optimal LSTM hyperparameters and enhances pre-
diction accuracy, but also introduces domain interoperability:
instead of relying on pooled datasets from multiple batteries,
the model learns from each battery’s own degradation history,
enabling efficient and transferable forecasts of remaining
useful life (RUL) across similar battery types. Evaluations
on NASA datasets demonstrated significant error reductions
compared with baseline models, including simple LSTM,
RNN, RVM, GA–LSTM, and PA–LSTM with improvements
of up to 91% in data rich settings. Looking ahead, our future
work will focus on deploying this method within real-time
Battery Management Systems (BMS) and validating its ef-
fectiveness through experiments on physical battery cells.
By collecting in-house degradation data and extending eval-
uation to diverse chemistries and operating conditions, we
aim to further establish the generalizability of the framework
and support its adoption in next generation energy storage
applications.
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