
A Transfer Learning Framework for Remaining Useful Life
Estimation

Melanie B. Sigl1,Klaus Meyer-Wegener2

1,2 Chair of Computer Science 6 (Data Management),
Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 3, 91058 Erlangen, Germany

melanie.sigl@fau.de
klaus.meyer-wegener@fau.de

ABSTRACT

Training a robust deep learning (DL) model for remaining
useful life (RUL) estimation or fault detection typically re-
quires a large, high-quality labeled dataset. However, such
datasets are often unavailable in practice. Transfer learning is
a solution for smaller labelled datasets. Yet, the effectiveness
of transfer learning heavily depends on selecting an appro-
priate source DL model; an unsuitable choice can result in
negative transfer, where model performance deteriorates sig-
nificantly.

To address this challenge, we introduce REAPER (Reusable
Neural Network Pattern Repository), a framework designed
to assist users in selecting the most suitable DL model for
reuse in transfer learning scenarios. REAPER analyzes and
compares the characteristics of available datasets and em-
ploys a learned ranking model to recommend the optimal
source model. This paper presents the architecture, includ-
ing its dataset characterization, ranking methodology, train-
ing procedure, and practical usage guidance.

1. INTRODUCTION

Remaining useful life (RUL) estimation is a critical task in
predictive maintenance, where data-driven methods – par-
ticularly deep learning (DL) models – are increasingly em-
ployed (Zheng, Ristovski, Farahat, & Gupta, 2017; Huang,
Khorasgani, Gupta, Farahat, & Zheng, 2018; Das, Hussain,
Yang, Habibullah, & Kumar, 2019; Yao, Yang, Liu, & Zheng,
2019; Noot, Martin, & Birmele, 2025). However, the effec-
tiveness of DL-based RUL estimation depends heavily on the
availability of large, high-quality datasets that contain labeled
failure instances (Moradi & Groth, 2020). In many indus-
trial scenarios, such datasets are scarce due to the infrequency
of failures or the high cost of data labeling (Listou Ellefsen,

Melanie B. Sigl et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Bjørlykhaug, Æsøy, Ushakov, & Zhang, 2019). To address
this limitation, a widely adopted strategy is to apply transfer
learning, which reuses a DL model pre-trained on a source
dataset to improve performance in the target dataset (Pan &
Yang, 2010).

By leveraging previously learned knowledge that resides in
the model’s architecture and learned parameters, transfer
learning requires less training samples (Fan, Nowaczyk, &
Rögnvaldsson, 2019; Han, Liu, Wu, & Jiang, 2021) while en-
hancing the model’s performance (Pan & Yang, 2010; Yosin-
ski, Clune, Bengio, & Lipson, 2014). However, it is crucial to
avoid negative transfer learning, characterized by a reduced
performance. Research found that this effect is attributed
to the dissimilarity between the source and target dataset
(Yosinski et al., 2014; Fawaz, Forestier, Weber, Idoumghar,
& Muller, 2018).

Approach: This paper describes a framework to store DL
models, datasets, and their metadata such as performance
metrics to select the best DL model for a transfer learning
scenario. The framework implements our recently proposed
learning-to-rank approach (Sigl & Meyer-Wegener, 2025) for
RUL estimation in a fleet-based setting. This approach uti-
lizes dataset characteristics and performance improvements
of known datasets and their models to generate rankings and
train a ranking model. This paper describes the system behind
the ranking approach for model selection.

Contributions: This paper presents REAPER (Reusable
Neural Network Pattern Repository) – a framework that sup-
ports selecting the best DL models for transfer learning in
low-data regimes, e.g., RUL estimation across fleets of iden-
tical or similar equipment. The core contributions are:

• A scalable architecture for managing and applying trans-
fer learning in fleet-based prognostics and health man-
agement (PHM) settings and beyond.

• A framework for organizing datasets, DL models, and
their relationships.

1



Asia Pacific Conference of the Prognostics and Health Management Society 2025

• An automated workflow for assessing dataset similarity
and guiding model reuse.

This paper is structured as follows: Section 2 introduces rel-
evant background and Section 3 discusses related work. Sec-
tion 4 describes the framework’s goal and relevant use cases,
while Section 5 proposes the architecture and relevant com-
ponents. Evaluation and results are discussed in Section 6.
This paper concludes in Section 7 with a short summary and
future work.

2. BACKGROUND

This section outlines key concepts such as transfer learning
(Section 2.1) and learning to rank (Section 2.2). Following
these, Section 2.3 briefly describes how learning to rank can
be used to rank DL models for transfer learning.

2.1. Transfer Learning

Transfer learning is a technique that adapts a DL model
trained for one dataset to a related dataset (target) (Pan &
Yang, 2010). It involves two main steps. First, a DL model
trained on a large dataset is modified to suit the new task –
such as changing the output layer or resetting parts of the
model for retraining. Second, the model is fine-tuned using
data from the new dataset. During fine-tuning, some layers
may be “frozen” (i.e., kept unchanged) while others are up-
dated based on the new data (Yosinski et al., 2014). This is
especially useful when limited data is available.

2.2. Learning to Rank

Learning to rank (LTR) is a technique for ordering elements
by relevance to a specific query. The goal is to place the
most relevant items at the top (Järvelin & Kekäläinen, 2002).
Early heuristic methods have been largely replaced by ma-
chine learning and DL models (Liu, 2011). LTR methods are
typically grouped into three categories: pointwise, pairwise,
and listwise, each defining the learning objective and training
data structure.

Pointwise methods treat ranking as a regression or classifi-
cation task, predicting relevance scores for individual items
without considering their relationships or overall ranking.
Pairwise methods compare pairs of items to learn which is
more relevant, but may miss broader dependencies within a
query. In contrast, listwise methods directly optimize the en-
tire ranked list, often achieving better accuracy, though they
require more complex computations.

2.3. Learning to Rank DL Models for Transfer Learning

In our previous work (Sigl & Meyer-Wegener, 2025), we in-
troduced a method for selecting DL models for multivariate
time-series by ranking models based on their performance
improvement through transfer learning. This improvement

is measured as the difference between the performance of a
transferred model and one trained from scratch on the target
dataset. Since transfer learning success depends on the sim-
ilarity between source and target datasets, our approach uses
dataset characteristics to guide model ranking.

The approach follows a three-step process:

1. Ranking Ground Truth. We established a ground truth
by training a DL model on each known dataset and trans-
ferring it to all others. Performance improvements were
calculated to rank DL models per target dataset.

2. Dataset Characteristics. We extracted three character-
istics from each dataset: statistical, shape-based, and a
combination of both.

3. Ranking Model. We trained a pairwise LTR model,
RankNet (Burges et al., 2005), to learn how to rank DL
models based on these characteristics, with the goal of
maximizing performance improvement. Using a pair-
wise LTR method allows to order any number of datasets.

The proposed approach (Sigl & Meyer-Wegener, 2025) is ap-
plicable to multivariate and univariate time-series datasets.

3. RELATED WORK

Transfer Learning and Model Selection. The problem of
selecting the most appropriate DL model for transfer is rarely
addressed – particularly for (multivariate) time-series data.
Most existing studies on transfer learning focus on evaluat-
ing how well a specific DL architecture transfers knowledge
from a source to a target dataset (Mao, He, & Zuo, 2020;
Tang, Ma, Yan, Zhu, & Khoo, 2024). Existing approaches
that study the selection problem often target univariate time
series (Fawaz et al., 2018) or simplify multivariate data by
transforming it into a univariate form prior to training (Ye &
Dai, 2021). Research addressing model selection typically
focuses on image data (Istrate et al., 2019) and text (Ruder
& Plank, 2017). For example, Istrate et al. (2019) propose
a system that predicts the performance of DL models to rec-
ommend the best. However, their approach relies on a large
data basis for accurate performance predictions and the sys-
tem’s initialization reportedly took 18 months. Recently, we
(Sigl & Meyer-Wegener, 2025) proposed a method for multi-
variate time-series datasets that robustly recommends the best
DL model even with a small data basis.

Model Management. Platforms like TensorFlow Hub1,
ModelZoo2, and Hugging Face3 allow sharing DL models,
with Hugging Face also supporting datasets. Systems such
as MLflow4, ModelDB (Vartak et al., 2016), and ModelHub
(Miao, Li, Davis, & Deshpande, 2017) track models, hy-
perparameters, and training data, with basic keyword-based
1https://www.tensorflow.org/hub
2https://modelzoo.co/
3https://huggingface.co/
4https://mlflow.org/

2



Asia Pacific Conference of the Prognostics and Health Management Society 2025

♂
User

DESKTOP
Interface

Dataset Processor Ranking System Database
Model

Dataset

Figure 1. General workflow how a data scientist interacts with the system.

search capabilities. While helpful, keyword search depends
on quality and user familiarity, making it difficult to identify
suitable DL models for positive transfer learning. These sys-
tems do not consider dataset similarity in the search process.

Dataset Management: Store and Capture. Systems like
SciDB (Stonebraker, Brown, Poliakov, & Raman, 2011),
DataHub (Bhardwaj et al., 2015), Decibel (Maddox et al.,
2016), and DataLab (Zhang et al., 2016, 2017) support
dataset versioning and querying, but none offer similarity-
based search for datasets, especially in the context of transfer
learning workflows.

Dataset Management: Discover and Share. GOODS
(Halevy et al., 2016), AURUM (Castro Fernandez et al.,
2018), and Google Dataset Search (Noy, Burgess, & Brick-
ley, 2019) extract metadata from distributed storage to enable
dataset search. While AURUM uniquely supports similarity
queries across relational tables using content and schema pro-
files, these systems do not address transfer-learning-specific
needs.

4. OVERVIEW AND GOALS

The goal of the framework, REAPER, is to help users in se-
lecting the best possible DL model for transfer learning. Fig-
ure 1 gives a general overview on how users interact with
REAPER. A user interacts via an interface and presents a
target datasest, so it serves as a query (dataset) in our sys-
tem. Presenting a dataset triggers the extraction of charac-
teristics (e.g., descriptive statistics, distributional statistics,
time-series characteristics) via the Dataset Processor (Sigl &
Meyer-Wegener, 2025). These characteristics are used in the
Ranking System, a component that employs a trained rank-
ing model (e.g., RankNet) to create an order of all database-
stored datasets and models for the presented query. REAPER
returns the DL model that is ranked highest, i.e. the best
model.

To support users effectively, this section outlines the frame-
work’s requirements (4.1) and essential use cases (4.2).

4.1. Requirements

Our proposed framework satisfies pre-specified requirements
to ensure core functionality to its users:

• Usability & User Interaction. An easy to use, yet sim-
ple and functional interface. Interfaces include a web

user interface (UI) for quick exploration, and a software
development kit (SDK) to be used from within the code,
e.g., Python5 or Jupyter Notebook6.

• Model Recommendation. Suggest the best pre-trained
DL models based on dataset characteristics to increase
model performance.

• Asset Analyzer. Assets such as datasets and DL models
are processed to ensure quick analysis in the web UI and
fast DL model recommendation.

• Data Management. Support structured and unstructured
data formats like (multivariate) time-series datasets, DL
models, and their metadata.

• Modular & Extensible. System components are mod-
ularly designed and extensible: It is easy to extract and
store new dataset characteristics or add a new ranking
model.

4.2. Use Cases

In addition to its core requirements, REAPER is designed to
support four key use cases: importing artifacts, constructing
the ranking ground truth, training the ranking model, and re-
sponding to user queries by recommending the most suitable
DL model.

Use Case 1 : Import Artifacts. Our ranking approach (Sigl
& Meyer-Wegener, 2025) depends on a populated repository
and a trained ranking model, making artifact import the initial
step. As shown in Figure 2, users can import datasets, DL
models, and metadata either automatically via a CI pipeline
(e.g., GitHub Actions7, GitLab CI/CD8) using the SDK, or
manually through the web UI.

REAPER automatically identifies and processes artifacts
based on their data type. Multivariate time-series datasets,
typically stored as comma-separated values (CSV) files, are
handled by the Dataset Processor, which verifies data for-
mat compatibility, file integrity, and sufficient observation
count. It also extracts relevant characteristics, including de-
scriptive statistics, distribution measures, and time-series fea-
tures. Similarly, the Model Processor handles DL models
with tailored validation steps. Once processed, all artifacts
are stored in REAPER’s database.

5https://www.python.org/
6https://jupyter.org/
7https://github.com/features/actions
8https://docs.gitlab.com/ci/pipelines/

3



Asia Pacific Conference of the Prognostics and Health Management Society 2025

♂
User

FILE-CODE
DL Project

Git-Alt
Git

COG
Pipeline

DESKTOP
Interface

(Web UI/SDK)

Identify Project
Artifacts

Dataset Processor

Dataset
Checker

Extract Dataset
Characteristics

Model Processor

Model
Checker

Extract Model
Characteristics

Database

Dataset Model & Performance Metric(s)

Figure 2. Importing artifacts.

Use Case 2 : Building the Ground Truth for Ranking.
After importing artifacts into a newly initialized system, the
ranking ground truth must be established before training a
ranking model. This ground truth is essential for accurately
ranking DL models for a given query dataset.

The creation of the ranking ground truth is a two-step pro-
cess (Sigl & Meyer-Wegener, 2025). First, a selected dataset
from the database is treated as the target, and DL models
trained on other datasets are adapted according to a user-
defined modification specification – e.g., by reinitializing the
output layer. Second, the modified models are fine-tuned on
the target dataset.

Following this brute-force transfer learning, we compute the
performance improvement to assess whether each transfer
was beneficial. The performance improvement is calculated
as (Sigl & Meyer-Wegener, 2025):

∆perf(ψ,ψtransfer) = −ψ − ψtransfer

ψ
,

where ψtransfer is the performance of the transferred model,
and ψ is the performance of a model trained from scratch on
the target dataset, using the same performance metric (e.g.,
mean squared error (MSE)). For metrics where higher values
indicate better performance (e.g., accuracy), the fraction is
multiplied by +1 instead of −1.

Use Case 3 : Train the Ranking Model. Once the ranking
ground truth is established, users can initiate the training of
the ranking model. REAPER currently supports RankNet, a
pairwise LTR model, though other models can be integrated.

To train RankNet, the system generates training, validation,
and test rankings by selecting each dataset once as a query

♂
User

DESKTOP
Interface (SDK)

Dataset Processor

Dataset
Checker

Extract Dataset
Characteristics

Ranking System

Build Prediction
Ranking Dataset

Ranking
Model

Ranked List
Select Top-1

Model

Database

Model

Dataset

Figure 3. Using REAPER to retrieve the best DL model.

DQ and forming all possible pairs Dk, Dl from the remain-
ing datasets. For each pair, the performance improvements
∆perfk and ∆perfl of Dk, Dl, respectively, are compared
with respect toDQ. A binary label is assigned: 1 if ∆perfk ≤
∆perfl, and 0 otherwise. The model is trained using the
dataset characteristics of the triple (DQ, Dk, Dl) as input and
the binary label as output.

Users can configure how database-stored elements are split
into training, validation, and test sets – either randomly or
by explicitly selecting specific datasets. Prior work (Sigl &
Meyer-Wegener, 2025) has shown that even small rankings of
four datasets are sufficient to train an effective ranking model.
The trained model is stored in REAPER’s database for future
use.

Use Case 4 : Retrieve the best DL model for Transfer
Learning. Completing Use Cases 1–3 prepares the system
for use. Once set up, users can submit a query dataset to
retrieve the most suitable DL model. The full workflow is il-
lustrated in Figure 3. As shown, the system first processes the
query dataset by performing a quick validation and extracting
its characteristics. These characteristics are then passed to the
Ranking System, which generates prediction rankings in the
same format as the training and validation data, but without
labels. The trained ranking model uses this input to produce
a ranked list of DL models, from which the highest-ranked
model is returned to the user.

Execution Order of the Use Cases. All use cases must be
executed in the specific order as presented to complete the
system setup. Once the setup is complete, a ranking model
becomes available, and users are free to import artifacts and
retrieve DL models in any order they choose (Use Cases 1
and 4). Similarly, users can train a new ranking model at any
time by executing Use Cases 2 and 3 together.

4



Asia Pacific Conference of the Prognostics and Health Management Society 2025

C
lie

nt
B
us

in
es
s
Lo

gi
c

St
or
ag

e

Dataset Processor Model Processor

RESTful API

DL Learning System Ranking System

Data Access Interface

Web UI SDK

MetadataRepository
Ranking
Model

Figure 4. Architecture.

Figure 5. Web interface to analyse datasets and their meta-
data.

5. ARCHITECTURE & COMPONENTS

REAPER is designed as a modular three-tier architecture con-
sisting of a client layer, a business logic layer, and a storage
layer (see Figure 4). Each layer exposes well-defined inter-
faces, allowing for independent development and potential in-
terchangeability. Figure 4 also names the key components
within each layer.

All layers are currently implemented in Python to ensure
seamless integration, reduce language-related overhead, and
simplify development and maintenance.

Listing 1. Python script to find and download a DL model.
1 from reaper.backend import Backend
2 from reaper.dataset import Characteristics
3 from reaper.model import Model
4 from reaper.ranking import RankingModel
5
6 # Initialize and connect with REAPER’s
7 # backend via a configuration file
8 backend = Backend.from_config()
9

10 # Extract characteristics from a local dataset
11 characteristics = Characteristics.from_file(
12 path="./dataset/train.csv"
13 )
14
15 # Find and fetch a DL model using REAPER’s
16 # default ranking model
17 model = backend.find_model_for_transfer(
18 characteristics=characteristics
19 )
20
21 # Find and fetch a DL model using a specific
22 # ranking model
23 ranking_model = RankingModel.get_by_id(
24 backend=backend, id=42
25 )
26 model = backend.find_model_for_transfer(
27 characteristics=characteristics,
28 ranking_model=ranking_model
29 )
30 model.download(path="./model/")

5.1. Client Layer

The client layer implements two interfaces: a web UI and an
SDK.

The web UI provides a graphical interface to REAPER, al-
lowing users to browse available datasets and DL models, in-
spect their attributes, and view reuse history of models. As
shown in Figure 5, users can also access detailed metadata for
each stored dataset. In addition, users can initiate re-training
of the ranking model (see Use Cases 2 and 3).

The SDK offers a programmatic interface to REAPER, en-
abling similar functionality through code. As illustrated
in Listing 1, users can interact with REAPER from within
Python to search for and download the most suitable DL
model for transfer learning.

5.2. Business Logic Layer

The business logic layer, also referred to as the backend, pro-
vides interfaces to both the client and storage layers. It encap-
sulates key components shown in Figures 2 and 4, including
the Dataset Processor, Model Processor, and Ranking Sys-
tem. Additionally, it contains the DL Learning System, which
is responsible for generating the ranking ground truth and
training the ranking model. Communication with the client
layer is handled through a RESTful API, offering a stateless
and uniform interface (Fielding, 2000), while interaction with
the storage layer is managed via a dedicated Data Access In-
terface.

5



Asia Pacific Conference of the Prognostics and Health Management Society 2025

5.3. Storage Layer

The storage layer manages all artifacts – datasets, DL mod-
els, and their metadata – handling both structured and un-
structured data. It comprises three components: a repository
for datasets and DL models, a datastore for trained ranking
models, and a relational database for metadata.

Datasets, DL models, and ranking models are stored in their
original file formats on the file system, while metadata is
maintained in PostgreSQL9, a relational database. This meta-
data database organizes information including dataset char-
acteristics, model details, performance metrics, and training
relationships. Specifically, it supports:

• Provenance and Ownership: Record ownership, con-
tact, origin, and file system paths for each database-
stored artifact pair, linked to a single DL project. This
supports traceability and accountability for datasets and
models.

• Dataset Characteristics: Store extracted dataset fea-
tures to support ranking and enable dataset exploration
via the web UI.

• DL Model Metadata: Include model type, architecture,
and output activation function to support task-based fil-
tering (e.g., classification, forecasting).

• Dataset–Model Relationships: Capture links between
datasets and DL models, including project affiliation and
model performance.

• Model Lineage: Track DL model provenance to identify
common origins of transferred models.

• File Paths: Maintain file system paths for all artifacts
and ranking models to enable retrieval and reproducibil-
ity.

• Ranking Model Metadata: Identify DL projects used
to build the ranking dataset, specify the active ranking
model, and store its file path.

5.4. Scalability To Support Use Cases 2 and 3

The business logic layer is modular and supports transfer
learning and ranking model training, which may require
GPU-equipped machines depending on stored DL models.
Creating the ranking ground truth involves fine-tuning models
on multiple datasets, which can be time-consuming if done
sequentially. To address this, the backend operates in two
modes (see Figure 6): a server – simply called REAPER in
the figure – providing a REST API and managing storage,
and a worker designed to run on a compute cluster. When
training is triggered 1 , tasks are created and sent via Rab-
bitMQ10 to worker nodes 2 , which process them in parallel
and return results through the backend 4 . This workflow

9https://www.postgresql.org/
10https://www.rabbitmq.com/

COGS

Node 1

Compute Cluster

COGS

Node 2
… COGS

Node 𝑛

COGS Node 𝑖

REAPER
Learning

SLIDERS-H

Configuration2

SERVER
Business Logic Layer

1

3

REAPER

Database
Storage Layer

Figure 6. REAPER’s two execution modes to scale for Use
Cases 2 and 3.

ensures the business logic layer remains responsive and sup-
ports a loosely coupled, scalable system architecture.

Note that Figure 6 omits the client layer for simplicity.

6. EVALUATION AND RESULTS

The model ranking component integrated into REAPER is
based on our previously proposed LTR approach for se-
lecting DL models in transfer learning scenarios (Sigl &
Meyer-Wegener, 2025). This method was empirically vali-
dated using NASA’s publicly available battery dataset (Saha
& Goebel, 2007), which contains sensory information of 34
lithium-ion cells that have been aged in a controlled environ-
ment to show degradations.

In that evaluation, long short-term memory (LSTM) models
trained on selected source datasets were transferred to target
datasets representing different battery usage profiles. As can
be seen in Figure 7, the model selection process, guided by
dataset characteristics and performance history, consistently
identified models suitable for positive transfer learning (up to
95% using statistical dataset characteristics). The evaluation
metric used in this analysis is the NDCG at position 1. The

4 6 8 10 12 14

Set Size

0.80

0.85

0.90

0.95

N
D

C
G

@
1

Characteristics
Statistical Shape Both

Figure 7. Normalised discounted cumulative gain
(NDCG)@1 of RankNet training with varying train rankings.

6



Asia Pacific Conference of the Prognostics and Health Management Society 2025

dots in this figure correspond to the fix-sized train rankings,
while the lines correspond to the varying-sized train ranking.
As shown, experiments with varying ranking set sizes demon-
strate that even small training rankings consisting of only four
datasets confirm the robustness and generalization capability
of the learned ranking model.

In addition, Figure 8 shows that the trained ranking model
consistently places the best-performing DL model for posi-
tive transfer learning at rank 1, while assigning lower ranks
to models with poorer performance or negative transfer learn-
ing values across all characteristics – statistical, shape-based,
and combined. The error band around the blue line represents
the standard deviation.

0 5 10 15 20 25

Rank

5

10

15

20

#I
m

pr
ov

em
en

ts

Train Rankings
Variable training set size Fixed training set size

(a) Statistical characteristic.

0 5 10 15 20 25

Rank

5

10

15

20

#I
m

pr
ov

em
en

ts

Train Rankings
Variable training set size Fixed training set size

(b) Shape-based characteristic.

0 5 10 15 20 25

Rank

5

10

15

20

#I
m

pr
ov

em
en

ts

Train Rankings
Variable training set size Fixed training set size

(c) Combination of statistical and shape-based characteristics.

Figure 8. Number of improvements per rank.

These results demonstrate that the ranking model employed
within REAPER is capable of identifying highly transferable
models based solely on dataset-level features. While the ex-
perimental details and benchmarking are fully described in
our earlier work, their inclusion in REAPER enables the sys-
tem to provide practical, data-driven support for model reuse
in fleet-based PHM applications. Practical use cases include
ion mill fault diagnosis (TV, Gupta, Malhotra, Vig, & Shroff,
2018), as well as integration into digital twin environments
aimed at optimizing product quality in large-scale industrial
systems such as air separation units (Blum et al., 2021).

7. CONCLUSION AND FUTURE WORK

This paper presented REAPER, a framework designed to
support the selection and reuse of DL models for transfer
learning, particularly in fleet-based PHM applications. Built
upon our previously proposed learning-to-rank approach,
REAPER leverages dataset characteristics and historical per-
formance improvements to train a ranking model that guides
DL model selection. REAPER introduces a scalable architec-
ture, an automated workflow for assessing dataset similarity
and enabling model reuse, and stores datasets, DL models,
their metadata, and trained ranking models. We described
the key use cases and requirements that shape REAPER,
and detailed its architecture and core components to facil-
itate the selection of DL models for transfer learning. By
supporting selecting the best DL models for transfer learn-
ing, REAPER offers a practical and scalable solution in real-
world PHM settings. Future work will focus on expanding the
dataset characteristics and evaluating REAPER across addi-
tional datasets.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable com-
ments. Melanie B. Sigl also thanks Shofiyati Nur Karimah
for her helpful advice in the early stages of this work.

REFERENCES

Bhardwaj, A. P., Bhattacherjee, S., Chavan, A., Deshpande,
A., Elmore, A. J., Madden, S., & Parameswaran, A. G.
(2015). DataHub: Collaborative Data Science &
Dataset Version Management at Scale. In CIDR.

Blum, N., Krespach, V., Zapp, G., Oehse, C., Rehfeldt, S., &
Klein, H. (2021, 11). Investigation of a Model-Based
Deep Reinforcement Learning Controller Applied to
an Air Separation Unit in a Production Environment.
Chemie Ingenieur Technik, 93(12), 1937–1948.

Burges, C. J. C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N., & Hullender, G. N. (2005). Learning
to Rank Using Gradient Descent. In L. D. Raedt &
S. Wrobel (Eds.), ICML (Vol. 119, pp. 89–96). ACM.

Castro Fernandez, R., Abedjan, Z., Koko, F., Yuan, G., Mad-

7



Asia Pacific Conference of the Prognostics and Health Management Society 2025

den, S., & Stonebraker, M. (2018, 4). Aurum: A Data
Discovery System. ICDE.

Das, A., Hussain, S., Yang, F., Habibullah, M. S., & Kumar,
A. (2019). Deep Recurrent Architecture with Attention
for Remaining Useful Life Estimation. IEEE Region 10
Conference (TENCON).

Fan, Y., Nowaczyk, S., & Rögnvaldsson, T. S. (2019).
Transfer learning for Remaining Useful Life Prediction
Based on Consensus Self-Organizing Models. CoRR,
abs/1909.07053.

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., &
Muller, P. (2018). Transfer Learning for Time Series
Classification. In IEEE international conference on big
data (pp. 1367–1376).

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures (Unpublished
doctoral dissertation). University of California, Irvine.

Halevy, A., Korn, F., Noy, N. F., Olston, C., Polyzotis, N.,
Roy, S., & Whang, S. E. (2016). Goods: Organizing
Google’s Datasets. SIGMOD.

Han, T., Liu, C., Wu, R., & Jiang, D. (2021). Deep Transfer
Learning with Limited Data for Machinery Fault Diag-
nosis. Applied Soft Computing, 103, 107150.

Huang, W., Khorasgani, H., Gupta, C., Farahat, A., & Zheng,
S. (2018). Remaining Useful Life Estimation for Sys-
tems with Abrupt Failures. Proceedings of the Annual
Conference of the PHM Society, 10(1).

Istrate, R., Scheidegger, F., Mariani, G., Nikolopoulos, D. S.,
Bekas, C., & Malossi, A. C. I. (2019). TAPAS: Train-
Less Accuracy Predictor for Architecture Search. In
AAAI (pp. 3927–3934).

Järvelin, K., & Kekäläinen, J. (2002). Cumulated Gain-Based
Evaluation of IR Techniques. ACM Transactions on
Information Systems, 20(4), 422–446.

Listou Ellefsen, A., Bjørlykhaug, E., Æsøy, V., Ushakov, S.,
& Zhang, H. (2019, 3). Remaining Useful Life Pre-
dictions for Turbofan Engine Degradation Using Semi-
supervised Deep Architecture. , 183, 240–251.

Liu, T. (2011). Learning to Rank for Information Retrieval.
Springer.

Maddox, M., Goehring, D., Elmore, A. J., Madden, S.,
Parameswaran, A., & Deshpande, A. (2016, 5). Deci-
bel: The Relational Dataset Branching System. Pro-
ceedings of the VLDB Endowment, 9(9), 624–635.

Mao, W., He, J., & Zuo, M. J. (2020, 4). Predicting
Remaining Useful Life of Rolling Bearings Based on
Deep Feature Representation and Transfer Learning.
IEEE Transactions on Instrumentation and Measure-
ment, 69(4), 1594–1608.

Miao, H., Li, A., Davis, L. S., & Deshpande, A. (2017,
4). ModelHub: Deep Learning Lifecycle Management.
ICDE.

Moradi, R., & Groth, K. M. (2020). On the Application of
Transfer Learning in Prognostics and Health Manage-

ment. CoRR, abs/2007.01965.
Noot, J.-P., Martin, M., & Birmele, E. (2025). LSTM

and Transformers based methods for Remaining Use-
ful Life Prediction considering Censored Data. IJPHM,
16(2).

Noy, N. F., Burgess, M., & Brickley, D. (2019). Google
Dataset Search: Building a search engine for datasets
in an open Web ecosystem. In The world wide web
conference (pp. 1365–1375).

Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning.
IEEE Transactions on Knowledge and Data Engineer-
ing, 22(10), 1345–1359.

Ruder, S., & Plank, B. (2017). Learning to select data
for transfer learning with Bayesian Optimization. In
M. Palmer, R. Hwa, & S. Riedel (Eds.), EMNLP (pp.
372–382). Association for Computational Linguistics.

Saha, B., & Goebel, K. (2007). Battery Data Set. Retrieved
2022-05-09, from https://www.nasa.gov/
intelligent-systems-division/
discovery-and-systems-health/pcoe/
pcoe-data-set-repository/

Sigl, M. B., & Meyer-Wegener, K. (2025). Towards Learning
to Rank Deep-Learning Models for Multivariate Time-
Series Transfer Learning. In DEEM (pp. 2:1–2:9).

Stonebraker, M., Brown, P., Poliakov, A., & Raman, S.
(2011). The Architecture of SciDB. In SSDBM (pp.
1–16).

Tang, S., Ma, J., Yan, Z., Zhu, Y., & Khoo, B. C. (2024). Deep
Transfer Learning Strategy in Intelligent Fault Diagno-
sis of Rotating Machinery. Engineering Applications
of Artificial Intelligence, 134, 108678.

TV, V., Gupta, P., Malhotra, P., Vig, L., & Shroff, G. (2018,
9). Recurrent Neural Networks for Online Remain-
ing Useful Life Estimation in Ion Mill Etching System.
Proceedings of the Annual Conference of the PHM So-
ciety, 10(1).

Vartak, M., Subramanyam, H., Lee, W.-E., Viswanathan, S.,
Husnoo, S., Madden, S., & Zaharia, M. (2016). Mod-
elDB: A System for Machine Learning Model Man-
agement. In Proceedings of the workshop on human-
in-the-loop data analytics (pp. 14:1–14:3).

Yao, Q., Yang, T., Liu, Z., & Zheng, Z. (2019). Remain-
ing Useful Life Estimation by Empirical Mode Decom-
position and Ensemble Deep Convolution Neural Net-
works. ICPHM.

Ye, R., & Dai, Q. (2021). Implementing transfer learn-
ing across different datasets for time series forecasting.
Pattern Recognition, 109, 107617.

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014).
How transferable are features in deep neural net-
works? In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances
in neural information processing systems (pp. 3320–
3328). Curran Associates, Inc.

8



Asia Pacific Conference of the Prognostics and Health Management Society 2025

Zhang, Y., Xu, F., Frise, E., Wu, S., Yu, B., & Xu, W. (2016).
DataLab: A Version Data Management and Analytics
System. In BIGDSE (pp. 12–18). ACM.

Zhang, Y., Zhang, T., Jia, Y., Sun, J., Xu, F., & Xu, W. (2017).
DataLab: Introducing Software Engineering Thinking

into Data Science Education at Scale. In ICSE-SEET
(pp. 47–56). IEEE Computer Society.

Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017).
Long Short-Term Memory Network for Remaining
Useful Life Estimation. ICPHM.

9


