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ABSTRACT 

Deep Learning (DL) has substantially expanded its role in 

Prognostics and Health Management (PHM), particularly by 

enabling automated feature extraction for Remaining Useful 

Life (RUL) prediction. Despite this progress, existing DL 

models such as Long Short-Term Memory (LSTM) networks 

still face challenges in accurately capturing complete life-

cycle degradation trajectories. To address this limitation, this 

study introduces a hybrid semi-supervised model that 

integrates a Time-Transformer (TT) with a Denoising 

Autoencoder (DAE), termed TT-DAE. The DAE first 

extracts spatial features and suppresses noise through signal 

reconstruction from degraded inputs. These extracted 

features are then separated into source and target domains and 

normalized to a uniform sequence length using a padding 

strategy. Subsequently, the TT module leverages both source 

features and a Sliding Variable-Length Window (SVW) 

mechanism to learn full degradation trajectories. A 

comprehensive experimental evaluation conducted on the C-

MAPSS dataset demonstrates the effectiveness of the 

proposed approach, achieving an average Pearson 

Correlation Coefficient (PCC) of 0.89 between the predicted 

and actual target signals. 

Keywords: Time-Transformer, Denoise Auto-Encoder, 

Turbofan engine, Remaining Useful Life, Complete life cycle 

degradation trajectory learning.  

1. INTRODUCTION 

The cost-effectiveness and reliability of machinery 

maintenance can be significantly improved by Predictive 

Maintenance (PdM). PdM employs Machine Learning (ML) 

models to anticipate the Remaining Useful Life (RUL) for 

scheduling precise maintenance based on multi-sensor life 

cycle data. Comparing PdM to traditional methods, such as 

preventive maintenance, which performs maintenance based 

on expert knowledge, the PdM reduces maintenance 

expenses by 20–30% and machine downtime by 20–50%, as 

reported by carbon collective (Heng et al., 2009). These 

improvements in cost-effectiveness and reliability are 

primarily attributed to the accurate RUL prediction achieved 

through PdM.  

In the realm of RUL prediction, there are two main 

approaches: direct and indirect mapping methods (Yu et al., 

2019). Direct mapping utilizes ML techniques, such as 

Random Forest (RF) and Extreme Learning Machine (ELM), 

to establish an optimal mapping between signal data and 

corresponding RUL values (Thakkar & Chaoui, 2022; Xue et 

al., 2022). However, this method cannot capture the 

degradation features of machinery accurately, especially 

when the signal data are noisy, nonlinear, and non-stationary. 

Conversely, the indirect mapping method involves extracting 

abstract representations of features, referred to as Health 

Indicators (HIs), which are correlated with the machinery 

degradation trajectory (Guo et al., 2017). Once extracted, 

these features are then fed into a predictor to estimate the 

RUL. Notably, due to its superior prediction accuracy, the 

indirect mapping method has garnered more scholarly 

attention compared to the direct mapping method (De 

Beaulieu et al., 2022). 

In the indirect mapping method, similarity, classification, and 

regression approaches can be utilized to categorize it 

effectively (Ahn et al., 2021; Qiao et al., 2025). The similarity 

approach matches a similar HI curve from the HI library (Xia 

et al., 2022). However, the prediction accuracy depends on 

the quantity of HI curves with various operating conditions 
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in the HI library. The classification approach attempts to 

establish a mapping function between representative features 

and RUL values (Ma et al., 2018). However, this approach is 

less interpretable and cannot foresee future degradation 

trajectories. In contrast, the regression approach aims to 

predict the representative features indicative of the time 

remaining until reaching the failure threshold (Jia et al., 2020). 

Figure. 1 demonstrates the difference between the regression 

approach and the classification approach. Where {𝑋𝑡
𝑑}𝑡=𝑖

𝑖+𝑇  

denotes the signals with the length of T, 𝑋𝑖+𝑇
𝑑  is the signals at 

the timestamp 𝑖 + 𝑇 with 𝑑 dimensions, and 𝑅𝑈𝐿𝑖+𝑇−1 is the 

corresponding RUL value at the timestamp 𝑖 + 𝑇 − 1. As a 

result of its inherent interpretability and intuition about the 

degradation trajectory, the regression approach has been 

progressively garnering substantial attention compared to the 

other two approaches in the field of RUL prediction. 

 
Figure. 1. The schematic of: (a) regression, (b) classification 

approach in the indirect mapping method. 

 

The prediction accuracy of the regression approach in the 

indirect mapping method heavily relies on performance of the 

features extractor (Qiao et al., 2024). Most feature extractors 

segment the complete life cycle degradation trajectory into 

several windows of length T during the data sampling process, 

referred to as the Sliding Window (SW) technique. However, 

the extracted features utilizing the SW technique do not 

provide an overview information of the complete life cycle 

degradation trajectory. Therefore, this paper does not 

segment the complete life cycle data but inputs the complete 

life cycle data into the features extractor, termed as the 

Sliding Variable-length Window (SVW) technique. The 

extracted features using the SVW technique provide a global 

perspective of the degradation trajectory. The principles of 

proposed SW and SVW are explained below in formula. The 

objective of feature extractor using the SW technique is to 

construct a mapping function between the past signal with the 

length of 𝑇 and next time’s signal, represented as follows:   

  

𝑋𝑇+𝑖
𝑑 = 𝑓(𝑋𝑖

𝑑, 𝑋𝑖+1
𝑑 , … , 𝑋𝑇+𝑖−1

𝑑  ), 𝑤𝑖𝑡ℎ 𝑙 < 𝑖 < 𝑆 − 𝑇, (1) 

where 𝑆 is the working life of the machinery, 𝑇 is the length 

of the window, and 𝑙 is the length of the existing data referred 

to as source features. In contrast, the objective of the feature 

extractor using the SVW technique is to construct a mapping 

function between all past signals and next time’s signal. It is 

described as: 

 

𝑋𝑙+𝑖
𝑑 = 𝑓(𝑋𝑙

𝑑, 𝑋𝑙+1
𝑑 , … , 𝑋𝑙+𝑖−1

𝑑 ), 𝑤𝑖𝑡ℎ 0 < 𝑖

< 𝑆 − 𝑙. 

(2) 

 

In order to further enhance the complete life cycle 

degradation trajectory, the source features are fed into the 

model. The objective of the feature extractor is represented 

as follows, as used in this paper: 

 

𝑋𝑙+𝑖
𝑑 = 𝑓(𝑋0

𝑑 , 𝑋1
𝑑 , … , 𝑋𝑙+𝑖−1

𝑑  ),
𝑤𝑖𝑡ℎ 0 < 𝑖 < 𝑆 − 𝑙. 

(3) 

However, the complete life cycle is often lengthy for 

machinery. Regarding the turbofan engine, the life cycle 

ranges from 182 to 362. This presents a challenge for the 

feature extractor to avoid losing previous information when 

extracting temporal features. Statistical and Deep Learning 

(DL) models are commonly used to extract features for 

regression approach. While statistical model like the 

nonlinear wiener process proposed by Wang Zezhou et al. 

(Wang et al., 2020) is to approximate the degradation 

trajectory of machinery. However, these statistical models 

fail to capture the intricate and varied degradation trajectory. 

In response to these constraints, DL models have emerged as 

a solution. Guo et al. (Guo et al., 2017) introduced the 

Recurrent Neural Network (RNN) to discern degradation 

trajectory for predicting HI up to the failure threshold. 

However, processing long time series data with RNN may 

lead to the loss of long-term dependencies when gradient 

explosion and vanishing occur. To address these issues, a 

variant of RNN, the Long Short-Term Memory (LSTM) 

network, utilizes a forget gate to control which information 

should be discarded from the memory cells, thus mitigating 

gradient explosion and vanishing, as introduced by Zijian Ye 

et al. (Ye et al., 2022).  Despite the LSTM demonstrating the 

capacity on alleviating gradient explosion and vanishing than 

RNN in RUL prediction (Wu et al., 2020), it still struggles 

with the loss of previously provided information in 

processing complete life cycle data (Zhou et al., 2021). 

Inspired by the extreme success of the transformer model in 

Natural Language Process (NLP) and time series prediction, 

this paper employs the transformer model in RUL prediction. 

However, the transformer model exhibits its limitation in 

extracting the spatial features, due to the self-attention 

mechanism to weigh the attention score of data in a sequence. 

In addition, the existing transformer model used in RUL 

prediction (J. Zhang et al., 2023)  direct estimate RUL instead 

of predict next time’s signals.  

In order to address these limitations, this paper proposes a 

hybrid model of the TT-DAE to effectively extract both long-

term temporal and spatial features utilizing the regression 

approach. Specifically, the representative spatial features are 

first extracted by reconstructing the original signals from the 

noisy signals, which are subjected to white noise. 

Subsequently, the extracted spatial features are fed into the 

TT model for temporal feature extraction. In the TT model, 
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the transformer encoder module is integrated with the 

transformer decoder module as a regression approach in the 

indirect mapping method to learn the complete life cycle 

degradation trajectory. The transformer encoder processes 

source features for prediction and sends them to the 

Transformer decoder via the encoder-decoder attention. 

Subsequently, the decoder generates successive features 

(referred to as target features) step by step based on the output 

from the transformer encoder and previously predicted 

features. Finally, the trained TT-DAE is used to predict target 

signals step by step and calculate the RUL. This study makes 

the following primary contributions: 

• The TT-DAE model is first proposed to learn the 

complete life cycle degradation trajectory by 

utilizing the SVW technique, rather than a portion 

of it. 

• The TT-DAE model is employed to calculate the 

RUL by predicting the degradation trajectory 

instead of directly predicting RUL. 

• The efficiency is analyzed between the LSTM 

model and the TT model in handling the complete 

life cycle data. 

The overall organization is described below. Section 2 

provides a detailed introduction to the proposed TT-DAE 

model. Section 3 describes the case study using the 

Commercial Modular Aero-propulsion System Simulation 

(C-MAPSS) dataset and comparison with other state-of-the-

art models. Finally, the conclusion and the future research 

direction are discussed in Section 4.   

2. METHODOLOGY 

In this section, the hybrid TT-DAE model is briefly 

introduced, followed by a detailed description of the DAE 

and TT model. 

2.1. Time-Transformer and denoise autoencoder (TT-

DAE) model architecture 

This section provides an in-depth representation of the 

proposed TT-DAE. The framework involves data pre-

processing, complete life cycle degradation trajectory 

learning, and RUL calculation. Among these steps, the data 

pre-processing technique aims to eliminate irrelevant sensors 

that remain constant over time, normalize the data from 0 to 

1 for faster convergence, and split the data into 90% for 

training and 10% for testing. Subsequently, the complete life 

cycle degradation trajectory learning includes the extraction 

of spatial features by the self-supervised model DAE and the 

degradation trajectory learning by TT using training data. The 

final step is to test the performance of the trained model in 

RUL prediction. This step involves predicting target features 

and converting these features into target signals via the 

decoder in the trained DAE. Following this, RUL calculation 

is performed, as illustrated in Figure. 2. Detailed explanations 

of the DAE and the innovative complete life cycle 

degradation trajectory recognition methods, TT, are provided 

in the remainder of this section. 

2.2. Denoise Auto-Encoder (DAE) 

In Figure. 4, the schematic of the proposed DAE is depicted. 

The DAE is a modification of the auto-encoder, wherein 

white noise is introduced to the input signal to generate a 

noisy signal. Subsequently, the DAE is trained to reconstruct 

the clean output from the noisy signal, ensuring the output 

signal closely matches the input signal. Following this 

reconstruction, latent spatial features are extracted for aiding 

the subsequent learning of complete life cycle degradation 

trajectories. 

Figure. 2. The overall framework of the proposed TT-DAE model for RUL prediction. 
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2.3. Time-Transformer (TT) 

The detailed structure and procedures of the TT model for 

complete life cycle degradation trajectory recognition, is 

shown in Figure. 3. 

Figure. 3. Schematic of the TT model in the entire degradation 

trajectory recognition. 

2.3.1. Separation of source and target features 

The purpose of the TT model in the RUL prediction aims to 

establish the mapping function 𝑓  between the source and 

target features, as expressed in Eq. (3). Therefore, the first 

step in utilizing the TT model is the randomized partition of 

entire multi-sensor run-to-failure data into the source and 

target features, as illustrated in the Figure 5. Herein, the 

source features mean the existing features, and the target 

features imply the predicted features. 

2.3.2. Target features padding 

Figure 5 indicates that the target features possess variable 

lengths as a result of random segmentation operation. To 

overcome this issue, a data padding technique is employed to 

standardize the length of target features. In this study, the 

value representing the end of the cycle is chosen as the 

padding value, which is appended to the end of the target 

features. During training, these padding values are masked in 

the self-attention score calculations because they are 

irrelevant to the degradation trajectories. 

2.3.3. Position encoding  

Position is the order of the multi-sensor run-to-failure data. 

Unlike the RNN which inherently takes the order of multi-

sensor run-to-failure data into account, the TT model needs 

to insert the positional encoding block to make sure the 

source and target features include the temporal information 

before feeding them to the self-attention mechanism.  Below 

is the detailed method for the positional encoding. 

Let 𝑝𝑡⃗⃗  ⃗ ∈ ℝ𝑑 is the corresponding positional encoding. Where 

the 𝑡  is the desired position within an input sequence of 

length ℕ , and 𝑑  is the encoding dimension (also the 

dimension of spatial features). Then 𝑓: ℕ → ℝ𝑑  is the 

function that produces the positional encoding vector 𝑝𝑡⃗⃗  ⃗ and 

it is defined as follows: 

 

𝑝𝑡⃗⃗  ⃗
(𝑖)

= 𝑓(𝑡)(𝑖) ≔ {
sin(𝜔𝑗  . 𝑡),  𝑖𝑓 𝑖 = 2𝑗,

cos(𝜔𝑗 . 𝑡) , 𝑖𝑓 𝑖 = 2𝑗 + 1.   
 

 

(4) 

 

where,  

𝜔𝑗 =
1

100002𝑗/𝑑,  

and 𝑖, 𝑗  are the position of the input sequence, 0 ≤ 𝑖, 𝑗 <
ℕ/2. 

2.3.4. Time-Transformer (TT) encoder 

The TT encoder is the vital part of the proposed TT to extract 

the temporal features based on the self-attention mechanism 

and output the temporal features to the transformer decoder 

for further processing. The TT encoder includes the 𝑁𝑥 

encoder layer to extract dive temporal features.  Each encoder 

layer primarily comprises multi-head attention and feed-

Figure. 4. The architecture of the DAE. 
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forward layer, which are elaborated individually in the 

subsequent sections 

The multi-head attention layer includes the multi-head 

attention and a residual layer to mitigate the vanishing 

gradient problem. The multi-head attention concatenates 

several scaled dot-product attentions running in parallel, as 

shown in Figure. 6. 

Figure. 6. (left) Scaled Dot-Product Attention. (right) Multi-Head 

Attention consists of several attention layers running in 

parallel.(Vaswani et al., 2017) 

The scaled dot-product attention takes its inputs 𝑋𝑡
𝑑  in the 

form of three represented vectors query 𝑄, key 𝐾, and value 

𝑉, which are obtained by the product of learnable weight 𝑊𝑞, 

𝑊𝑘 , and 𝑊𝑣  and its inputs 𝑋𝑡
𝑑 . Its calculation process is as 

follows: 

 

𝑄 = 𝑋𝑡
𝑑𝑊𝑞 ,

𝐾 =  𝑋𝑡
𝑑𝑊𝑘 ,

𝑉 =  𝑋𝑡
𝑑𝑊𝑣 .

 

 

(5) 

 

Then, the dot-product attention matrix is computed as: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉, 
 

(6) 

where the 𝑑𝑘 is the dimension of the key vectors. The multi-

head attention projects the query, key, and value ℎ times and 

concatenates the ℎ attention matrix. The purpose of multi-

head attention is to learn attention mechanisms for different 

operating scenarios. 

Subsequently, the result of the multi-attention layer passes to 

the feed-forward layer, sending its output (referred to as 

memory) to the subsequent encoder or decoder layers. The 

feed-forward layer operates with the residual connection as 

its primary components, transforming linear temporal 

features into nonlinear temporal features. 

2.3.5. Time-Transformer (TT) decoder 

The TT decoder tries to predict the target features based on 

the memory fed from the TT encoder. Therefore, each TT 

decoder layer includes the masked multi-head attention layer, 

the encoder-decoder attention layer, and the feed-forward 

layer, as shown in Figure. 3. 

The masked multi-head attention layer consists of the masked 

multi-head attention and residual network. The mask 

mechanism is utilized in multi-head attention to prevent 

attached future features when predicting subsequent time 

steps. Following this, the output of the masked multi-head 

attention layer is passed to the encoder-decoder attention 

layer. As the vital component in the encoder-decoder 

attention layer, encoder-decoder attention is a variant of 

multi-head attention. The query 𝑄 in target features queries 

all the key K and value 𝑉 in memory instead of querying the 

key K and value 𝑉 in target features again, resulting in the 

output attention value taking into account the information of 

the source features.  Finally, the output from the encoder-

decoder attention layer is passed to the feed-forward layer, 

which is the same layer in the TT encoder to convert the linear 

temporal features to the non-linear temporal features.  

2.3.6. Target features prediction 

As the final step in the proposed TT model, the output of the 

TT decoder is fed into one-layer linear neural network to 

Figure 5. Schematic of the separation of the source and target features from complete life cycle data. 
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predict the target features. To ensure the predicted target 

features align closely with the actual target features via 

minimizing the Mean Absolute Error (MAE) between the 

predicted and actual target features during training. It is 

described as follows: 

 

MAE =  
1

𝑛
∑ |𝑋𝑡

𝑑̂ − 𝑋𝑡
𝑑|

𝑛

𝑖=1
, 𝑤𝑖𝑡ℎ 𝑡

= (𝑇 + 1, 𝑇 + 2,… , 𝑆𝑖). 

(7) 

3. CASE STUDY 

To validate the prediction accuracy of RUL and the 

degradation trajectory, the proposed TT-DAE model 

employed the turbofan engine dataset, named C-MAPSS, 

which was  published by NASA (Saxena et al., 2008). Firstly, 

the dataset is described in detail. Following this, detailed 

preliminary processes were conducted, including data 

preprocessing and features extraction. In the features 

extraction, a hybrid model of TT-DAE is proposed. The DAE 

model extracts the representative spatial features by 

reconstructing the original data, then the TT model was 

applied for recognizing the complete life cycle degradation 

trajectory. Finally, the superiority of our proposed TT model 

was justified through a comprehensive comparison with 

existing transformer-based RUL prediction models. 

3.1. Dataset description 

The C-MAPSS dataset consists of simulated multi-sensor 

run-to-failure data from turbofan jet engines generated using 

the C-MAPSS dynamic model (Frederick et al., 2007). The 

C-MAPSS dataset is divided into four subsets, FD001, 

FD002, FD003, and FD004, according to the operating 

conditions and fault modes, as described in Figure 7. 

Moreover, each subset encompasses three operating settings 

and 21 monitored sensor signals, including temperature, 

pressure, speed signals, et al. to monitor the degradation 

trajectory, as depicted in Figure 7. 

Table 1. Description of the C-MAPSS dataset. 

3.2. Data pre-processing 

Data pre-processing techniques are crucial for selecting 

dependable attributes that convey degradation information. It 

is apparent that certain monitored signals are discounted as 

they fail to carry any insight into degradation due to their 

constancy throughout the entire life cycle (C. Zhang et al., 

2017). Based on the observation, the sensor signals such as 

‘Total temperature at fan inlet’, ‘Pressure at fan inlet’, 

‘Engine pressure ratio (P50/P2)’, ‘Burner fuel-air ratio’, 

‘Demanded fan speed’, ‘Demanded corrected fan speed’ 

were removed, due to their consistent values throughout the 

entire life cycle, as illustrated in Figure 7. Finally, the data 

are normalized to a range of 0 to 1 using the min–max 

normalization method, as described below: 

 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

, 
(8) 

where 𝑋 is the data before normalization, 𝑋′ denotes the data 

after normalization, 𝑋𝑚𝑖𝑛 is the minimum value of the 𝑋, and 

𝑋𝑚𝑎𝑥  is the maximum value of the 𝑋. 

3.3. Features extraction  

3.3.1. Representative spatial features extraction 

The selected signals remain contaminated with white noise 

and exhibit high dimensionality, posing challenges for 

accurate prediction (Saxena et al., 2008). This approach also 

addresses the limitations of Transformer-based models in 

spatial feature extraction. Consequently, we propose the 

DAE extract representative spatial features while eliminating 

noise. 

As a self-supervised model, the DAE introduces white noise 

to the original signals, creating noisy inputs, and is trained to 

reconstruct the clean signals. The features extracted through 

this process demonstrate strong representativeness, 

particularly when the evaluation metric—the Mean Absolute 

Error (MAE) loss between the reconstructed and original 

signals—is minimized. The representative spatial features 

extracted by the optimized DAE, as illustrated in Figure 8, 

achieve a dimensionality reduction from 14 signals to 8 

features. 

3.3.2. Complete life cycle degradation trajectory learning 

The TT model recognizes complete life-cycle degradation 

trajectories by constructing the mapping function outlined in 

Eq. (3). In this study, the length of the source features, 

denoted as 𝑙 , is set to 30. To meet its operational 

requirements, data separation and padding techniques were 

implemented prior to training. Furthermore, to enhance the 

TT model's performance in degradation trajectory 

recognition, the Hyperband algorithm—a hyperparameter 

optimization method identical to that employed in the DAE—

was utilized. 

 FD001 FD002 FD003 FD004 

Number of 

engines in the 

training set 

100 260 100 249 

Number of 

engines in the test 

set 

100 259 100 248 

Training samples  17,731 48,819 21,820 57,522 

Testing samples 100 259 100 248 

Operating 

conditions  

1 6 1 6 

Fault modes 1 1 2 2 
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Figure 7. Visualization of signals within the FD001 dataset. 
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3.4. Assessment and comparison of the hybrid Time-

Transformer and Denoise Auto-Encoder (TT-DAE)  

Performing a testing stage on unknown testing turbofan 

engine data is essential to comprehensively assess the 

performance of trained TT model in recognizing complete 

life cycle degradation trajectories. In this section, the 

evaluation of the predicted target signals was conducted 

using the Pearson Correlation Coefficient (PCC) as shown in 

step 3 in Figure. 3. 
 

Hyperparameter  Value 

Number of attention heads in encoder 4 

Neurons of feedforward layers in encoder 230 

Number of encoder layers  4 

Dropout 0.1 

Number of decoder layers 4 

Neurons of feedforward layers in decoder 330 

Learning rate 1e-3 

Batch size 512 

Neurons of linear layer 230 

Table 2. Optimized hyperparameter configuration of the TT model. 

3.4.1. Assessment of target signals prediction 

The predicted target signals generated by the TT-DAE model, 

as depicted in Figure 9, demonstrate that the predicted signals 

(solid red line) closely align with the actual target signals 

(solid blue line), achieving an average Pearson Correlation 

Coefficient (PCC) of 0.89. In comparison, the Transformer 

Encoder-Denoising Autoencoder (TE-DAE) hybrid model 

yields an average PCC of 0.80, while the Long Short-Term 

Memory-Denoising Autoencoder (LSTM-DAE) hybrid 

model attains a score of 0.61. Both TE-DAE and LSTM-DAE 

employed the Sliding Window (SW) technique for data 

sampling, in contrast to the Sliding Variable-Length Window 

(SVW) technique utilized by TT-DAE. 

Both TT-DAE and TE-DAE exhibit superior prediction 

accuracy over LSTM-DAE, highlighting the effectiveness of 

self-attention mechanisms compared to LSTM for the 

regression approach. Notably, TT-DAE outperforms TE-

DAE (represented by the solid cyan line). Initially, the 

predicted degradation trajectory from TE-DAE follows the 

actual trajectory, but it eventually deviates because TE-DAE 

learns only a portion of the complete life-cycle degradation 

trajectory. By contrast, the TT-DAE's predicted trajectory 

remains consistently close to the actual one. This 

demonstrates that learning the complete life-cycle 

degradation trajectory is more effective than focusing on a 

Figure 8. Visualization of extracted features in the FD001 dataset. 
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single portion, resulting in greater accuracy for predicting 

target signals. 

In summary, the proposed TT-DAE model demonstrates 

superiority in complete life cycle degradation trajectory 

learning, evident in its heightened prediction accuracy in both 

target signals and RUL values. 

Figure 9. Comparison of target signals predictions: TT-DAE Model, TE-DAE, and LSTM-DAE versus actual target signal in the FD001 

dataset. 
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4. CONCLUSION 

This paper primarily addresses the problem of recognizing 

complete life-cycle degradation trajectories using an indirect 

mapping method with a regression approach. In this study, 

we introduce the TT-DAE model for predicting target signals 

and estimating RUL. Specifically, the DAE first extracts 

spatial features and mitigates signal noise by reconstructing 

signals from noisy inputs. These features are then partitioned 

into source and target domains and standardized to uniform 

lengths via padding. Subsequently, the TT module 

reconstructs the mapping function between source and target 

features to recognize degradation trajectories. To validate its 

effectiveness, the TT-DAE model was applied to the C-

MAPSS dataset, yielding an average Pearson Correlation 

Coefficient (PCC) of 0.89 between predicted and actual target 

signals. This performance surpasses that of the TE-DAE, 

LSTM-DAE, and Transformer-DAE models, highlighting 

the TT-DAE's superior ability to capture entire degradation 

trajectories. Looking ahead, the TT-DAE framework could 

form the basis for diverse multivariate time-series prediction 

applications, such as traffic flow forecasting. Future research 

will prioritize evaluating the TT model's performance across 

varied datasets for RUL prediction. 
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