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ABSTRACT

Deep Learning (DL) has substantially expanded its role in
Prognostics and Health Management (PHM), particularly by
enabling automated feature extraction for Remaining Useful
Life (RUL) prediction. Despite this progress, existing DL
models such as Long Short-Term Memory (LSTM) networks
still face challenges in accurately capturing complete life-
cycle degradation trajectories. To address this limitation, this
study introduces a hybrid semi-supervised model that
integrates a Time-Transformer (TT) with a Denoising
Autoencoder (DAE), termed TT-DAE. The DAE first
extracts spatial features and suppresses noise through signal
reconstruction from degraded inputs. These extracted
features are then separated into source and target domains and
normalized to a uniform sequence length using a padding
strategy. Subsequently, the TT module leverages both source
features and a Sliding Variable-Length Window (SVW)
mechanism to learn full degradation trajectories. A
comprehensive experimental evaluation conducted on the C-
MAPSS dataset demonstrates the effectiveness of the
proposed approach, achieving an average Pearson
Correlation Coefficient (PCC) of 0.89 between the predicted
and actual target signals.

Keywords: Time-Transformer, Denoise Auto-Encoder,
Turbofan engine, Remaining Useful Life, Complete life cycle
degradation trajectory learning.

1. INTRODUCTION

The cost-effectiveness and reliability of machinery
maintenance can be significantly improved by Predictive
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Maintenance (PdM). PAM employs Machine Learning (ML)
models to anticipate the Remaining Useful Life (RUL) for
scheduling precise maintenance based on multi-sensor life
cycle data. Comparing PdM to traditional methods, such as
preventive maintenance, which performs maintenance based
on expert knowledge, the PdM reduces maintenance
expenses by 20-30% and machine downtime by 20-50%, as
reported by carbon collective (Heng et al., 2009). These
improvements in cost-effectiveness and reliability are
primarily attributed to the accurate RUL prediction achieved
through PdM.

In the realm of RUL prediction, there are two main
approaches: direct and indirect mapping methods (Yu et al.,
2019). Direct mapping utilizes ML techniques, such as
Random Forest (RF) and Extreme Learning Machine (ELM),
to establish an optimal mapping between signal data and
corresponding RUL values (Thakkar & Chaoui, 2022; Xue et
al., 2022). However, this method cannot capture the
degradation features of machinery accurately, especially
when the signal data are noisy, nonlinear, and non-stationary.
Conversely, the indirect mapping method involves extracting
abstract representations of features, referred to as Health
Indicators (HIs), which are correlated with the machinery
degradation trajectory (Guo et al., 2017). Once extracted,
these features are then fed into a predictor to estimate the
RUL. Notably, due to its superior prediction accuracy, the
indirect mapping method has garnered more scholarly
attention compared to the direct mapping method (De
Beaulieu et al., 2022).

In the indirect mapping method, similarity, classification, and
regression approaches can be utilized to categorize it
effectively (Ahn et al., 2021; Qiao et al., 2025). The similarity
approach matches a similar HI curve from the HI library (Xia
et al., 2022). However, the prediction accuracy depends on
the quantity of HI curves with various operating conditions
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in the HI library. The classification approach attempts to
establish a mapping function between representative features
and RUL values (Ma et al., 2018). However, this approach is
less interpretable and cannot foresee future degradation
trajectories. In contrast, the regression approach aims to
predict the representative features indicative of the time
remaining until reaching the failure threshold (Jia et al., 2020).
Figure. 1 demonstrates the difference between the regression
approach and the classification approach. Where {X&}itT
denotes the signals with the length of 7, X{ ; is the signals at
the timestamp i + T with d dimensions, and RUL; ,r_; is the
corresponding RUL value at the timestamp i + T — 1. As a
result of its inherent interpretability and intuition about the
degradation trajectory, the regression approach has been
progressively garnering substantial attention compared to the
other two approaches in the field of RUL prediction.

(b)

Figure. 1. The schematic of: (a) regression, (b) classification
approach in the indirect mapping method.

The prediction accuracy of the regression approach in the
indirect mapping method heavily relies on performance of the
features extractor (Qiao et al., 2024). Most feature extractors
segment the complete life cycle degradation trajectory into
several windows of length T during the data sampling process,
referred to as the Sliding Window (SW) technique. However,
the extracted features utilizing the SW technique do not
provide an overview information of the complete life cycle
degradation trajectory. Therefore, this paper does not
segment the complete life cycle data but inputs the complete
life cycle data into the features extractor, termed as the
Sliding Variable-length Window (SVW) technique. The
extracted features using the SVW technique provide a global
perspective of the degradation trajectory. The principles of
proposed SW and SVW are explained below in formula. The
objective of feature extractor using the SW technique is to
construct a mapping function between the past signal with the
length of T and next time’s signal, represented as follows:

X& = f(XE XA, X ) withl<i<S—-T, (D
where S is the working life of the machinery, T is the length
of the window, and [ is the length of the existing data referred
to as source features. In contrast, the objective of the feature
extractor using the SVW technique is to construct a mapping
function between all past signals and next time’s signal. It is
described as:

X{p1, e, XPio) witho < i (2)
<S—1

X?+i = f(X‘lil

In order to further enhance the complete life cycle
degradation trajectory, the source features are fed into the
model. The objective of the feature extractor is represented
as follows, as used in this paper:

Xt = fxd, x4, X)), (©)
with0 <i<S§—L

However, the complete life cycle is often lengthy for
machinery. Regarding the turbofan engine, the life cycle
ranges from 182 to 362. This presents a challenge for the
feature extractor to avoid losing previous information when
extracting temporal features. Statistical and Deep Learning
(DL) models are commonly used to extract features for
regression approach. While statistical model like the
nonlinear wiener process proposed by Wang Zezhou et al.
(Wang et al., 2020) is to approximate the degradation
trajectory of machinery. However, these statistical models
fail to capture the intricate and varied degradation trajectory.
In response to these constraints, DL models have emerged as
a solution. Guo et al. (Guo et al., 2017) introduced the
Recurrent Neural Network (RNN) to discern degradation
trajectory for predicting HI up to the failure threshold.
However, processing long time series data with RNN may
lead to the loss of long-term dependencies when gradient
explosion and vanishing occur. To address these issues, a
variant of RNN, the Long Short-Term Memory (LSTM)
network, utilizes a forget gate to control which information
should be discarded from the memory cells, thus mitigating
gradient explosion and vanishing, as introduced by Zijian Ye
etal. (Ye et al., 2022). Despite the LSTM demonstrating the
capacity on alleviating gradient explosion and vanishing than
RNN in RUL prediction (Wu et al., 2020), it still struggles
with the loss of previously provided information in
processing complete life cycle data (Zhou et al., 2021).
Inspired by the extreme success of the transformer model in
Natural Language Process (NLP) and time series prediction,
this paper employs the transformer model in RUL prediction.
However, the transformer model exhibits its limitation in
extracting the spatial features, due to the self-attention
mechanism to weigh the attention score of data in a sequence.
In addition, the existing transformer model used in RUL
prediction (J. Zhang et al., 2023) direct estimate RUL instead
of predict next time’s signals.

In order to address these limitations, this paper proposes a
hybrid model of the TT-DAE to effectively extract both long-
term temporal and spatial features utilizing the regression
approach. Specifically, the representative spatial features are
first extracted by reconstructing the original signals from the
noisy signals, which are subjected to white noise.
Subsequently, the extracted spatial features are fed into the
TT model for temporal feature extraction. In the TT model,
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the transformer encoder module is integrated with the
transformer decoder module as a regression approach in the
indirect mapping method to learn the complete life cycle
degradation trajectory. The transformer encoder processes
source features for prediction and sends them to the
Transformer decoder via the encoder-decoder attention.
Subsequently, the decoder generates successive features
(referred to as target features) step by step based on the output
from the transformer encoder and previously predicted
features. Finally, the trained TT-DAE is used to predict target
signals step by step and calculate the RUL. This study makes
the following primary contributions:

e The TT-DAE model is first proposed to learn the
complete life cycle degradation trajectory by
utilizing the SVW technique, rather than a portion
of it.

e The TT-DAE model is employed to calculate the
RUL by predicting the degradation trajectory
instead of directly predicting RUL.

e The efficiency is analyzed between the LSTM
model and the TT model in handling the complete
life cycle data.

The overall organization is described below. Section 2
provides a detailed introduction to the proposed TT-DAE
model. Section 3 describes the case study using the
Commercial Modular Aero-propulsion System Simulation
(C-MAPSS) dataset and comparison with other state-of-the-
art models. Finally, the conclusion and the future research
direction are discussed in Section 4.

2. METHODOLOGY

In this section, the hybrid TT-DAE model is briefly
introduced, followed by a detailed description of the DAE
and TT model.

2.1. Time-Transformer and denoise autoencoder (TT-
DAE) model architecture

This section provides an in-depth representation of the
proposed TT-DAE. The framework involves data pre-
processing, complete life cycle degradation trajectory
learning, and RUL calculation. Among these steps, the data
pre-processing technique aims to eliminate irrelevant sensors
that remain constant over time, normalize the data from 0 to
1 for faster convergence, and split the data into 90% for
training and 10% for testing. Subsequently, the complete life
cycle degradation trajectory learning includes the extraction
of spatial features by the self-supervised model DAE and the
degradation trajectory learning by TT using training data. The
final step is to test the performance of the trained model in
RUL prediction. This step involves predicting target features
and converting these features into target signals via the
decoder in the trained DAE. Following this, RUL calculation
is performed, as illustrated in Figure. 2. Detailed explanations
of the DAE and the innovative complete life cycle
degradation trajectory recognition methods, TT, are provided
in the remainder of this section.

2.2. Denoise Auto-Encoder (DAE)

In Figure. 4, the schematic of the proposed DAE is depicted.
The DAE is a modification of the auto-encoder, wherein
white noise is introduced to the input signal to generate a
noisy signal. Subsequently, the DAE is trained to reconstruct
the clean output from the noisy signal, ensuring the output
signal closely matches the input signal. Following this
reconstruction, latent spatial features are extracted for aiding
the subsequent learning of complete life cycle degradation
trajectories.

Step 2: Complete life cycle

Step 1: Data preprocessing

Remove irrelevant sensors
visualization method

B

Data Normalization

training data

max-min normalization

1L

Data Splitting

degradation trajectory
learning

Denoise Auto-Encoder -

> 2

Time-Transformer

test data

Step 3: RUL calculation

+ = Trained denoise auto-encoder

A ——— e -

Target features prediction
Trained time-transformer

> Convert to target signals

- e e w ow

Figure. 2. The overall framework of the proposed TT-DAE model for RUL prediction.
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Figure. 4. The architecture of the DAE.

2.3. Time-Transformer (TT)

The detailed structure and procedures of the TT model for
complete life cycle degradation trajectory recognition, is
shown in Figure. 3.
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Figure. 3. Schematic of the TT model in the entire degradation
trajectory recognition.

2.3.1. Separation of source and target features

The purpose of the TT model in the RUL prediction aims to
establish the mapping function f between the source and
target features, as expressed in Eq. (3). Therefore, the first
step in utilizing the TT model is the randomized partition of
entire multi-sensor run-to-failure data into the source and
target features, as illustrated in the Figure 5. Herein, the
source features mean the existing features, and the target
features imply the predicted features.

2.3.2. Target features padding

Figure 5 indicates that the target features possess variable
lengths as a result of random segmentation operation. To
overcome this issue, a data padding technique is employed to
standardize the length of target features. In this study, the
value representing the end of the cycle is chosen as the
padding value, which is appended to the end of the target
features. During training, these padding values are masked in
the self-attention score calculations because they are
irrelevant to the degradation trajectories.

2.3.3. Position encoding

Position is the order of the multi-sensor run-to-failure data.
Unlike the RNN which inherently takes the order of multi-
sensor run-to-failure data into account, the TT model needs
to insert the positional encoding block to make sure the
source and target features include the temporal information
before feeding them to the self-attention mechanism. Below
is the detailed method for the positional encoding.

Let p; € R? is the corresponding positional encoding. Where
the t is the desired position within an input sequence of
length N, and d is the encoding dimension (also the
dimension of spatial features). Then f:N — R% is the
function that produces the positional encoding vector p; and
it is defined as follows:

o o sin(w .t), if i = 2j,
= f(t =
Pe r® {cos(wj.t),ifi =2j+1. )

where,
1

w; = ———2,
100002//d

and i,j are the position of the input sequence, 0 < i,j <

N/2.

2.3.4. Time-Transformer (TT) encoder

The TT encoder is the vital part of the proposed TT to extract
the temporal features based on the self-attention mechanism
and output the temporal features to the transformer decoder
for further processing. The TT encoder includes the N,
encoder layer to extract dive temporal features. Each encoder
layer primarily comprises multi-head attention and feed-
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Figure 5. Schematic of the separation of the source and target features from complete life cycle data.

forward layer, which are elaborated individually in the
subsequent sections

The multi-head attention layer includes the multi-head
attention and a residual layer to mitigate the vanishing
gradient problem. The multi-head attention concatenates
several scaled dot-product attentions running in parallel, as
shown in Figure. 6.

Scaled Dot-Product Attention

Multi-Head Attention

MathMul

Mask (opt.)

Scaled Dot-Product
Attention

o

v K Q

Figure. 6. (left) Scaled Dot-Product Attention. (right) Multi-Head
Attention consists of several attention layers running in
parallel.(Vaswani et al., 2017)

The scaled dot-product attention takes its inputs X2 in the
form of three represented vectors query Q, key K, and value
V, which are obtained by the product of learnable weight W,
W,., and W, and its inputs X. Its calculation process is as
follows:

Q = X{W,
K = XW,, (&)
V= X2W,.

Then, the dot-product attention matrix is computed as:

. ~ QKT
Attention(Q,K,V) = softmax <m> v, (6)

where the d, is the dimension of the key vectors. The multi-
head attention projects the query, key, and value h times and
concatenates the h attention matrix. The purpose of multi-
head attention is to learn attention mechanisms for different
operating scenarios.

Subsequently, the result of the multi-attention layer passes to
the feed-forward layer, sending its output (referred to as
memory) to the subsequent encoder or decoder layers. The
feed-forward layer operates with the residual connection as
its primary components, transforming linear temporal
features into nonlinear temporal features.

2.3.5. Time-Transformer (TT) decoder

The TT decoder tries to predict the target features based on
the memory fed from the TT encoder. Therefore, each TT
decoder layer includes the masked multi-head attention layer,
the encoder-decoder attention layer, and the feed-forward
layer, as shown in Figure. 3.

The masked multi-head attention layer consists of the masked
multi-head attention and residual network. The mask
mechanism is utilized in multi-head attention to prevent
attached future features when predicting subsequent time
steps. Following this, the output of the masked multi-head
attention layer is passed to the encoder-decoder attention
layer. As the vital component in the encoder-decoder
attention layer, encoder-decoder attention is a variant of
multi-head attention. The query @ in target features queries
all the key K and value V in memory instead of querying the
key K and value V in target features again, resulting in the
output attention value taking into account the information of
the source features. Finally, the output from the encoder-
decoder attention layer is passed to the feed-forward layer,
which is the same layer in the TT encoder to convert the linear
temporal features to the non-linear temporal features.

2.3.6. Target features prediction

As the final step in the proposed TT model, the output of the
TT decoder is fed into one-layer linear neural network to
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predict the target features. To ensure the predicted target
features align closely with the actual target features via
minimizing the Mean Absolute Error (MAE) between the
predicted and actual target features during training. It is
described as follows:

1o — 7
MAE = —Z |x2 - x2|, with ¢ @
n i=1
=(T+1T+2..,5).

3. CASE STUDY

To validate the prediction accuracy of RUL and the
degradation trajectory, the proposed TT-DAE model
employed the turbofan engine dataset, named C-MAPSS,
which was published by NASA (Saxena et al., 2008). Firstly,
the dataset is described in detail. Following this, detailed
preliminary processes were conducted, including data
preprocessing and features extraction. In the features
extraction, a hybrid model of TT-DAE is proposed. The DAE
model extracts the representative spatial features by
reconstructing the original data, then the TT model was
applied for recognizing the complete life cycle degradation
trajectory. Finally, the superiority of our proposed TT model
was justified through a comprehensive comparison with
existing transformer-based RUL prediction models.

3.1. Dataset description

The C-MAPSS dataset consists of simulated multi-sensor
run-to-failure data from turbofan jet engines generated using
the C-MAPSS dynamic model (Frederick et al., 2007). The
C-MAPSS dataset is divided into four subsets, FDO0OI,
FD002, FD003, and FDO004, according to the operating
conditions and fault modes, as described in Figure 7.
Moreover, each subset encompasses three operating settings
and 21 monitored sensor signals, including temperature,
pressure, speed signals, et al. to monitor the degradation
trajectory, as depicted in Figure 7.

FD001 FD002 FD003 FDO004
Number of 100 260 100 249
engines in the
training set
Number of 100 259 100 248
engines in the test
set
Training samples 17,731 48,819 21,820 57,522
Testing samples 100 259 100 248
Operating 1 6 1 6
conditions
Fault modes 1 1 2 2

Table 1. Description of the C-MAPSS dataset.

3.2. Data pre-processing

Data pre-processing techniques are crucial for selecting
dependable attributes that convey degradation information. It
is apparent that certain monitored signals are discounted as
they fail to carry any insight into degradation due to their
constancy throughout the entire life cycle (C. Zhang et al.,
2017). Based on the observation, the sensor signals such as
‘Total temperature at fan inlet’, ‘Pressure at fan inlet’,
‘Engine pressure ratio (P50/P2)’, ‘Burner fuel-air ratio’,
‘Demanded fan speed’, ‘Demanded corrected fan speed’
were removed, due to their consistent values throughout the
entire life cycle, as illustrated in Figure 7. Finally, the data
are normalized to a range of 0 to 1 using the min—max
normalization method, as described below:

x = K= Kmin_ ®)
Xmax - Xmin’
where X is the data before normalization, X’ denotes the data
after normalization, X,,,;,, is the minimum value of the X, and
Xmax 18 the maximum value of the X.

3.3. Features extraction

3.3.1. Representative spatial features extraction

The selected signals remain contaminated with white noise
and exhibit high dimensionality, posing challenges for
accurate prediction (Saxena et al., 2008). This approach also
addresses the limitations of Transformer-based models in
spatial feature extraction. Consequently, we propose the
DAE extract representative spatial features while eliminating
noise.

As a self-supervised model, the DAE introduces white noise
to the original signals, creating noisy inputs, and is trained to
reconstruct the clean signals. The features extracted through
this process demonstrate strong representativeness,
particularly when the evaluation metric—the Mean Absolute
Error (MAE) loss between the reconstructed and original
signals—is minimized. The representative spatial features
extracted by the optimized DAE, as illustrated in Figure 8,
achieve a dimensionality reduction from 14 signals to 8
features.

3.3.2. Complete life cycle degradation trajectory learning

The TT model recognizes complete life-cycle degradation
trajectories by constructing the mapping function outlined in
Eq. (3). In this study, the length of the source features,
denoted as [, is set to 30. To meet its operational
requirements, data separation and padding techniques were
implemented prior to training. Furthermore, to enhance the
TT model's performance in degradation trajectory
recognition, the Hyperband algorithm—a hyperparameter
optimization method identical to that employed in the DAE—
was utilized.
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Figure 7. Visualization of signals within the FDOO1 dataset.
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Figure 8. Visualization of extracted features in the FD0O1 dataset.

3.4. Assessment and comparison of the hybrid Time-
Transformer and Denoise Auto-Encoder (TT-DAE)

Performing a testing stage on unknown testing turbofan
engine data is essential to comprehensively assess the
performance of trained TT model in recognizing complete
life cycle degradation trajectories. In this section, the
evaluation of the predicted target signals was conducted
using the Pearson Correlation Coefficient (PCC) as shown in
step 3 in Figure. 3.

Hyperparameter Value

Number of attention heads in encoder 4

Neurons of feedforward layers in encoder 230

Number of encoder layers 4
Dropout 0.1
Number of decoder layers 4

Neurons of feedforward layers in decoder 330

Learning rate le-3
Batch size 512
Neurons of linear layer 230

Table 2. Optimized hyperparameter configuration of the TT model.

3.4.1. Assessment of target signals prediction

The predicted target signals generated by the TT-DAE model,
as depicted in Figure 9, demonstrate that the predicted signals
(solid red line) closely align with the actual target signals
(solid blue line), achieving an average Pearson Correlation
Coefficient (PCC) of 0.89. In comparison, the Transformer
Encoder-Denoising Autoencoder (TE-DAE) hybrid model
yields an average PCC of 0.80, while the Long Short-Term
Memory-Denoising Autoencoder (LSTM-DAE) hybrid
model attains a score 0of 0.61. Both TE-DAE and LSTM-DAE
employed the Sliding Window (SW) technique for data
sampling, in contrast to the Sliding Variable-Length Window
(SVW) technique utilized by TT-DAE.

Both TT-DAE and TE-DAE exhibit superior prediction
accuracy over LSTM-DAE, highlighting the effectiveness of
self-attention mechanisms compared to LSTM for the
regression approach. Notably, TT-DAE outperforms TE-
DAE (represented by the solid cyan line). Initially, the
predicted degradation trajectory from TE-DAE follows the
actual trajectory, but it eventually deviates because TE-DAE
learns only a portion of the complete life-cycle degradation
trajectory. By contrast, the TT-DAE's predicted trajectory
remains consistently close to the actual one. This
demonstrates that learning the complete life-cycle
degradation trajectory is more effective than focusing on a
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single portion, resulting in greater accuracy for predicting learning, evident in its heightened prediction accuracy in both
target signals. target signals and RUL values.

In summary, the proposed TT-DAE model demonstrates
superiority in complete life cycle degradation trajectory

~ Predicted signal by TT-DAE = Real signal Predicted end-of-life cycle by LSTM-DAE
Predicted signal by LSTM-DAE ==+ Real end-of-life cycle ==+ Predicted end-of-life cycle by TE-DAE
———  Predicted signal by TE-DAE ==+ Predicted end-of-life cycle by TT-DAE ==« Start line of predicted signal
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Figure 9. Comparison of target signals predictions: TT-DAE Model, TE-DAE, and LSTM-DAE versus actual target signal in the FD0O1
dataset.
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4. CONCLUSION

This paper primarily addresses the problem of recognizing
complete life-cycle degradation trajectories using an indirect
mapping method with a regression approach. In this study,
we introduce the TT-DAE model for predicting target signals
and estimating RUL. Specifically, the DAE first extracts
spatial features and mitigates signal noise by reconstructing
signals from noisy inputs. These features are then partitioned
into source and target domains and standardized to uniform
lengths via padding. Subsequently, the TT module
reconstructs the mapping function between source and target
features to recognize degradation trajectories. To validate its
effectiveness, the TT-DAE model was applied to the C-
MAPSS dataset, yielding an average Pearson Correlation
Coefficient (PCC) of 0.89 between predicted and actual target
signals. This performance surpasses that of the TE-DAE,
LSTM-DAE, and Transformer-DAE models, highlighting
the TT-DAE's superior ability to capture entire degradation
trajectories. Looking ahead, the TT-DAE framework could
form the basis for diverse multivariate time-series prediction
applications, such as traffic flow forecasting. Future research
will prioritize evaluating the TT model's performance across
varied datasets for RUL prediction.
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