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ABSTRACT

In the dynamic and demanding environment of industrial
plants, the reliability of machines is paramount. Ensuring
that machinery operates reliably and efficiently is crucial for
profitability of the plant. Reliability in industrial plants is
beyond preventing failures, it is also about enhancing
performance and extending the lifespan of equipment. By
focusing on the most failure-prone components or systems,
maintenance teams can prioritize their efforts and resources
effectively, leading to significant improvements in overall
reliability and total cost of ownership. This abstract delves
into the critical role of reliability in industrial environments,
emphasizing the importance of employing reliability growth
models to systematically validate the effectiveness of
solutions implemented to address machine reliability issues.

For every sudden unplanned shutdown event (also known as
“trip” in the Oil & Gas industry), remote real-time data
gathering and analysis are conducted to identify the
components or systems responsible for the trip. All the
events and contributors are tracked and trended to identify
top offenders. Top offenders are deeply investigated to find
the solution and the opportunity to develop automatic
diagnostic and prognostic tools based on remotely acquired
time-series data. In fact, the identification of the degradation
pattern of an equipment is key to develop and tailor
diagnostic and prognostic tools. Once a malfunction is
identified, we look for the root cause(s), extract learnings,
and develop targeted improvements. These improvements

are first validated in controlled environments (e.g., lab or
test bench), then implemented incrementally across the fleet.
Each implementation cycle is tracked using reliability
growth models to statistically measure the change of event
(trip) rate and validate the effectiveness of the solution over
time.

This process allows us to diagnose and isolate
malfunctions using real-time analytics, to generate and
refine new analytics based on observed failure modes and
their signature and finally to quantify the reliability growth.

The growth of the reliability can be quantified using
multiple metrics and statistical tools.

In the Oil & Gas industry, amongst the most disruptive
events there are the sudden automatic production shutdown
events (trips). They deserve a special attention and a lot of
care is put for their prevention and avoidance. Although in
multiple industry standards, such as [1] and [2] and in the
reliability theory the rate of occurrence of failure events can
be calculated using the MTBF (Mean Time Between
Failures), when special attention is dedicated to the
reduction of trips (more than to any generic type of failures),
there is the need to define another metric, that is the MTBT
(Mean Time Between Trips) and to focus to its change over
time.

By integrating reliability growth models into our reliability
process, we ensure that each improvement is measured and
also we can predictively estimate the reliability
improvement on any other unit in the fleet.

This methodology has already demonstrated success, with a
MTBT improvement of more than 10 times, from the initial
years of new projects to their stable operation after few
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years, showcasing the power of structured reliability growth
modelling in complex, distributed systems.

1. INTRODUCTION

Industries often rely on various key performance indicators
(KPIs) to monitor the quality and performance of their
products. Common KPIs include the cost of quality, defects
and warranty claims.

Baker Hughes Trip Reduction Program (TRP) approach is
more comprehensive. Machines are monitored throughout
their entire lifecycle. This begins with the design phase,
where it is ensured that the product is designed to meet
quality and performance standards. Once the machine are
commissioned and running, performance is tracked remotely
and with various machine parameters under real time live
monitoring. Huge historical database is maintained to
understand and identify the top issues and provide solutions.
These solutions are extended across the fleet wherever
applicable.

In Oil & Gas industries, where complex systems can fail or
degrade for many reasons, a prognostic and diagnostic
approach helps to monitor machine performance, detect
analytics-based anomalies, provide solutions and leverage
these insights at each stage to continuously improve the
product. Ultimately enhancing the overall system reliability
and customer satisfaction. By emphasizing cross-learning,
we ensure that insights gained from one machine or system
are applied across the entire fleet, leading to continuous
improvement

2.MACHINEMONITORING

Thousands of machine operational parameters are remotely
connected with Baker Hughes iCenters (multiple
Monitoring & Diagnostic centers across the globe), with a
24 hour x 7 days monitoring and diagnostic service [Fig 1].
The iCenter team employs a comprehensive approach to
monitor machines, which includes dynamic sampling of
thousands of signals. This process involves the use of trip
logs (capture at very high sampling rate of key signals
across the instant of trips) for fast data collection and remote
data transfer, supported by a server to store the vast amount
of historical data. The user interface, available through the
iCenter web portal, makes this data accessible for further
analysis to a vast population of engineers and data analysts
in the company.

Figure 1. Continous monitoring of fleet under iCenter

2.1. Process to Analytics and Customer Interaction

The iCenter team monitors data continuously, using
available analytics to detect degradation patterns or
malfunction events and at the same time develops new
analytics to understand better the issues and provide more
insightful recommendations to plant operator. This involves
the detection of events to identify anomalies. The process
map includes several steps:

1. Event occurs in field

2. Event identification through analytics with date,
time and type of signature

3. Prompt notification to Customer for adoption of
corrective and preventive actions, including
prioritization categories based on criticality of the
event and recommendation for predictive measures.
[Fig 2] & [Fig 2(a)]

4. Collection of further data from site and information
related to event

5. Engineering investigation using data from remote
sources, including pictures and unstructured data

6. Solution development and implementation

7. Monitoring of solution effectiveness.

8. Extend the lesson learnt and solution across the
fleet in service and new products in development,
as a continuous improvement process.

9. Develop new analytics for predictive maintenance
based on product knowledge and lesson learnt.
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Figure 2. Template for notification to customer

Figure 2(a). Clutch speed anomalous spike behavior

3. CROSS LEARNING

The TRP (Trip Reduction Program) team monitors the
Mean Time Between Trips (MTBT) across the fleet to
identify the rate of issues. This involves live monitoring to
identify recurring events. Data is collected on daily basis to
calculate MTBT and Starting Reliability Rate (SR) [Fig 3].
The focus is on specific fleets, and cross-learning helps
identify repetitive issues and monitor them in specific
projects.

Figure 3. MTBT trend over the years for specific machine
type under iCenter monitoring

Each event occurring in the field is meticulously identified
and labelled through an engineering breakdown structure
down to the component level. This detailed approach
ensures that every aspect of the system is accounted for,
allowing for precise tracking and analysis. Diagnostic
analytics are employed to pinpoint the most repetitive issues
within the fleet and to identify similar issues in new units.
By leveraging advanced data analytics running in backend
in iCenter, we can detect patterns and trends that might
otherwise go unnoticed.

Once insights are gained, they are incorporated into design
improvements for the new standard product. This process,
while time-consuming, ensures that the lessons learned from
field data are translated into tangible enhancements. For
new units, we verify if the identified issues occur or may
occur and implement the appropriate solutions, if for time
constraints they could not be implemented during the

project development phase. This proactive approach helps in
mitigating potential problems before they escalate.

Our primary focus is on the fleet improvement and product
improvement. For instance, with a certain number of units in
the fleet, we continuously monitor Mean Time Between
Trips (MTBT) and Starting Reliability (SR). These metrics
provide valuable insights into the reliability and
performance of the machines. Cross-learning is utilized to
identify repetitive issues, which are then monitored in
specific projects and, as applicable, implemented across the
fleet. This systematic approach ensures that improvements
are not isolated but are shared across all units, leading to
overall enhancement.

Once a solution is identified for a specific cause and
implemented across at least a portion of the fleet, we apply
statistical models based on the Non-Homogeneous-Poisson-
Process to measure the rate of change of trip rate, such as
for instance the Crow-AMSAA model. This model is used
to analyze the trip rate trend, to measure and confirm the
effectiveness of the identified solution in the field and
finally to predict the future performance of systems, based
on the new rate of occurrence demonstrated by the portion
of the fleet where the solutions were implemented already.

Figure 4. Learning from different projects are tracked and
implemented as cross learning across the fleet

3.1. Fleet-wise trend of KPIs

The team captures fleet-wide trends of Key Performance
Indicators (KPIs)[Fig 3]. These trends provide a view of the
fleet's performance, highlighting areas that require attention
and those that are performing well. The Crow AMSAA
model is applied to specific causes from projects to the fleet,
ensuring continuous improvement. The team monitors
specific issues, extends the monitoring to the fleet, and
ensures ongoing enhancement of system reliability.

In summary, our approach involves a meticulous
identification and labeling process, advanced diagnostic
analytics, proactive implementation of solutions, and
continuous monitoring and improvement. By focusing on
cross-learning and leveraging models like Crow-AMSAA,
we ensure that our systems are reliable, efficient, and
continuously improving. This comprehensive strategy not
only enhances customer satisfaction but also reduces costs
associated with product failures and warranty claims.
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4. CASE STUDY

In aeroderivative gas turbines, the starting system is
connected to the turbine shaft through an overrunning clutch.
The input side of the clutch is connected to the starting
system, while the output side is connected to the gas turbine
shaft. The speed of the input side of the overrunning clutch
is continuously monitored to detect possible re-engagement
events of the clutch once the gas turbine is running
autonomously at a speed higher than that for which the
starting system is designed for, and consequently to shut-
down immediately the turbine shaft in order to prevent
further damages. Magnetic passive speed pick-up are
selected for this use. These sensors generate output voltage
proportional to the rotational speed of the pole wheel in
front of which they are mounted.

The amplitude of output signal is related to the distance
between the probe face and the pole wheel, the geometry of
teeth and the rotational speed of the wheel/shaft to be
measured. The output signal from the sensor is also affected
by the sensor geometry and the impedance in the signal
acquisition system.

In the fleet of aeroderivative gas turbines served with the
Trip Reduction Program, some trips were recorded due to
the high readings of the overrunning clutch input shaft speed,
when the clutch was actually supposed to be disengaged
from the starting system and therefore to have its input shaft
at standstill (zero speed).

The investigation was focused first on confirming that the
signals generating the trips were generated spuriously and
then in understanding the causes of such malfunction.
In the laboratory, a test bench was setup with the assembly
of a sensor and clutch toothed wheel, trying to reproduce the
anomalous readings from the magnetic speed pick-up which
had caused the gas turbine trip.

A test campaign was performed for different models of
speed sensors with different geometry and sensitivity. The
probes considered for test have similar geometry which can
easily be interfaced with available connection on clutches
and represent a set of probes able to cover most of
applications.
To carry out the test following test bench was used [Fig 5]
and [Fig 6], with the appropriate safety and protection
features.

Figure 5. Test Bench

Figure 6. Test Setup

Test goal was to verify the correct working of probes under
installation and to reproduce the generation of spurious
signals by altering some setting parameters, such as the air
gap between the sensor pole and the toothed wheel, the
impedence of the entire signal acquisition loop and
definitely the speed of the wheel. Finally, the aim was to get
a correct and reliable reading from the assembly, enough
robust and tolerant to the conditions of use, such as
vibrations induced by the application on a gas turbine.

We tested two different models of passive magnetic speed
pick-up, with the same arrangement of the test bench. The
acquisition chain was replicating the one in the sites where
the issues were identified.

An oscilloscope was used to monitor the signal amplitude
(Vpeak-to-peak), with different settings of the air gap
between the sensor pole and the toothed wheel at different
speed.

As in site the air gap cannot be directly measured with filler
gauges, due to the fact that the parts are not directly
accessible, also in the lab the air gap was adjusted by
changing the degrees of rotation of the speed pick-up body
in a threaded support in front of the target toothed wheel.
This was done on purpose, trying to replicate the difficulty
of adjusting the air gap of the sensor in the overrunning
clutch body in field.
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The test was carried out with the sensor connected to the
acquisition board, starting from a speed of 50rpm and
increasing the speed up to 6000rpm, that is the typical range
of speed for the input shaft of the overrunning clutch.

An oscilloscope was connected to monitor the signal
amplitude (Voltage peak-to-peak) and the frequency.

4.1. Sensor Model A

Figure 7. Test at 50 rpm speed with air gap of 0.7mm

Figure 8. Test at 6000 rpm speed with air gap of 0.7mm

Figure 9 and 10 show the effect of an increased air gap [Fig
9 and 10]

Figure 9. Test 2 with increased air gap at 50rpm

Figure 10. Test 2 with increased gap at 6000 rpm

We can see how by increasing the air gap the signal is
generally weaker, but the shape of the waveform is
improved. At 50rpm the signal is still strong enough (in
terms of SN ratio and in terms of amplitude) to correctly
detect the pole wheel speed.

A larger air gap improves also the reliability of the
measurement, being the loop less sensible to spurious
signals generated by pole wheel vibrations.

4.2. Sensor Model B

In this case we have tried to set the gap closer to the values
indicated by the manufacturer of the overrunning clutch,
that is nominally 0.12 mm, very difficult to be actually set
up in the field [Fig 11 and 12]



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTHMANAGEMENT SOCIETY 2016

Baker Hughes Confidential

Figure 11. Sensor model B test at 500rpm with air gap of
about 0.12mm

Figure 12. Sensor model B test at 6000 rpm

The overall trend is similar to the one obtained with the
sensor model A

By comparing the results of the test, we want to find a
correlation between the Voltage output and the air gap for
sensor model A

We can approximate the correlation as a quadratic relation
between air gap and output voltage Vout. [Fig 13]

Figure 13. Correlation between air gap and Vout

From the above, we see how the trend of the sensor model B
speed pick-up sensor when considering 0.33 mm air gap is
close to the absolute values of the sensor model A with a
2.7mm air gap in terms of absolute Vout values.

Since the optimum choice of the sensor model A air gap has
been based on the Vout values, we can conclude that we can
extend the same consideration to the sensor model B when
the air gap is 0.45mm

This allow us to conclude that both sensor models are
suitable for the applications but the air gaps are different in
the two cases: the optimum Air gap is 2.7mm for sensor
model A, while it is 0.45mm (in line with the clutch
manufacturer instructions) for the sensor model B.

During the tests, there was the possibility to reproduce some
spikes of the speed signal at low speed values, that is when
the output signal from the speed pick-up has a lower
amplitude and therefore a lower signal to noise ratio.

Figure 14. Trend with 0.68mm gap setting without resistive
network

Finally, the tests were targeted to identify a balance between
the degrees of freedom for the test bench: the sensitivity of
the specific sensor model, the air gap, the impedance in the
acquisition loop, given the target toothed wheel in the
overrunning clutch.

Once defined the optimum air gap for the specific sensor
model, the fine tuning of the gain in the entire acquisition
loop was setup in field, by adjusting the values of some
variable resistors in series and in parallel between the input
wires to the acquisition board, acting as a voltage divider.

5. RELIABILITY GROWTH

In this case study, after having defined the optimum setup
for the installation in site, we applied a Reliability Growth
(RG) model, not only to evaluate the effectiveness of
corrective actions implemented at a production site but also
to investigate the root causes of suboptimal effectiveness
over time. We observed variations that are beyond our direct
control, such as personal adherence to engineering
procedures and operational decisions influenced by human
factors
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5.1. Application of Reliability Growth and initial result

We applied the RG to analyze the effectiveness after a
targeted modification campaign on a specific set of units .
The initial results, right after implementing the corrective
actions, showed an effectiveness level of 71% (in terms of
reduction in the occurrence of the events) over
approximately 0.2 million cumulated operating hours, if
compared with the previous phase of plant operation
(approx. 0.6 million cumulated operating hours).[Fig 15]

5.1.1. Continuous monitoring and plot degradations

Over the following years, continuous monitoring of RG
plots allowed us to observe a gradual decline in performance
for the same type of event (spurious reading of the speed of
the input side of the starting system overrunning clutch).
Data showed an increasing number of events, even though
operating conditions remained largely the same.

At this point, we tried to understand deeper why the
situation did not remain stable.

Figure 15. Applying RG to analyze the effectiveness after
modification

Our investigation revealed that:

 Engineering drawings and technical specifications
were not systematically updated to reflect the
actual changes made at site.

 The human factor played a significant role, in
particular personnel accustomed to established
procedures. In particular, when gas turbines are
removed from service for the periodic preventive
maintenance, the starting system overrunning
clutch is temporarily disconnected, including the
speed sensors. Afterwards, when the clutch is
reinstalled back and connected to a new gas turbine,
the procedure for the careful installation of the
speed sensors was not always followed.

Figure 16. Continuous monitoring of RG curve

The continuous monitoring of the RG curve proved to be a
crucial tool not only for measuring short-term effectiveness
but also for interpreting degradation behaviors over time,
thus enabling proactive approach towards continuous
improvement in production sites. This allowed to focus the
attention on other important organizational aspects, such as
the need to have solid procedures for execution in site and
above all a continuous training to operators, including the
lessons learned.

6. CONCLUSION

The iCenter team's approach to prognostics and diagnostics
involves comprehensive monitoring, data analysis, and
continuous improvement. The iCenter play a pivotal role in
this process, providing 24/7 monitoring and diagnostic
services. The dynamic sampling of thousands of signals,
coupled with advanced data analytics, enables the detection
of patterns and trends that inform preventive and predictive
measures. The engineering team further investigates and
develops solutions, ensuring that lessons learned are
extended across the fleet.

A cornerstone of the TRP is its emphasis on cross-learning.
This approach ensures that insights gained from one
machine or system are applied fleet-wide, leading to
continuous improvement. By identifying repetitive issues
and implementing solutions across the fleet, the TRP
enhances system reliability and reduces costs associated
with product failures. The use of advanced diagnostic
analytics and models like Crow AMSAA further supports
this process, ensuring that lessons learned are effectively
utilized to improve overall system performance and
customer satisfaction.

Ultimately, the TRP's meticulous identification, advanced
diagnostic analytics, and proactive implementation of
solutions create a robust framework for continuous
monitoring and improvement. This comprehensive strategy
not only enhances customer satisfaction but also ensures
reliability.

NOMENCLATURE

MTBT Mean Time Between Trip
RG Reliability Growth
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