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ABSTRACT

Predicting progressive wear in aircraft engines is critical for
enabling condition-based maintenance and ensuring opera-
tional reliability. A persistent challenge lies in the discrep-
ancy between benchmark datasets and real-world engine data.
Although simulated datasets offer controlled and labeled con-
ditions for model development, they often fail to represent the
full complexity, noise characteristics, and operational irreg-
ularities observed in actual flight environments. This leads
to models that perform well in simulation but degrade sig-
nificantly when applied in practice. To address this limita-
tion, this work introduces a data-driven framework to simu-
late realistic wear-and-tear effects using high-resolution time-
series data collected over sequences of engine missions. The
method infers long-term degradation patterns in an unsuper-
vised manner, without relying on explicit wear labels, while
accounting for variability introduced by mission conditions.

1. INTRODUCTION

Prognostics and Health Management (PHM) plays a piv-
otal role in advancing aviation safety, operational efficiency,
and cost-effectiveness. By leveraging sensor data and ad-
vanced analytical techniques, we are able to detect perfor-
mance degradation earlier and to predict the remaining use-
ful life (RUL) across diverse operating conditions. This al-
lows us to implement condition-based maintenance strategies
and enhance fleet-level planning, significantly reducing un-
planned downtime while improving asset readiness and relia-
bility (Xiao et al., 2024).
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The exponential growth of data generated by modern indus-
trial systems has accelerated the development of data-driven
prognostic modeling techniques. Traditional physics-based
models employ systems of differential equations to capture
the behavior and interactions of engine subsystems, provid-
ing high interpretability and strict adherence to physical laws
(Von Krannichfeldt, Orehounig, & Fink, 2024). In contrast,
data-driven models leverage statistical and machine learn-
ing algorithms to derive relationships between input variables
and engine performance metrics captured directly from sen-
sor measurements, eliminating the need for extensive physi-
cal parameter calibration. While physics-based models excel
in scenarios with limited data and well-understood dynamics,
data-driven approaches offer greater adaptability to dynamic
operating conditions but are highly dependent on the volume,
quality, and diversity of the available data.

One of the persistent hurdles for data-driven prognostics for
aircraft engines is the limited availability of run-to-failure
data (Saxena, Goebel, Simon, & Eklund, 2008), which are
often proprietary and therefore inaccessible to the public. To
address this problem, simulated datasets have been devel-
oped. NASA, for example, introduced the CMAPSS (Saxena
et al., 2008) and N-CMAPSS turbofan engine degradation
datasets (Arias Chao, Kulkarni, Goebel, & Fink, 2021), pro-
viding researchers with realistic surrogate data to conduct
experiments, validate prognostic models, and ensure the re-
producibility of research findings. However, a significant
challenge remains: a gap exists between simulated datasets
and real-world engine data. Although simulated datasets of-
fer controlled and labeled conditions for model development,
they often fail to represent the full complexity, noise char-
acteristics, and operational irregularities observed in actual
flight environments. This leads to models that perform well
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in simulated environments but degrade significantly when ap-
plied in real-world applications.

In our prior (Madane, Lacaille, Forest, Azzag, & Lebbah,
2024), we developed a simulator capable of generating mul-
tivariate time series representing aircraft engine sensor mea-
surements for a given mission profile. This simulator was
trained exclusively on non-degraded engine data, ensuring
that the simulated output reflected the expected behavior of
a healthy engine. When applied to the N-CMAPSS dataset,
we compared the simulator outputs to the corresponding mis-
sion data. The observed differences between the two were
found to be systematic and constant over time for each sensor
channel. This bias was interpreted as a signature of the en-
gine’s wear and tear, since the simulator did not incorporate
degradation effects. In that setting, estimating the bias and
adding it to the simulator output was sufficient to accurately
reconstruct the actual mission data.

The present work aims to extend and validate this method-
ology using real-world flight data. Unlike the N-CMAPSS
case, our analysis revealed that the biases between the non-
degraded simulator outputs and the real measurements were
not constant over time. Consequently, no uniform bias term
could be applied across the entire time series for each sen-
sor channel. This variability in the bias distribution suggests
that degradation effects in real engines manifest in a more
complex and time-dependent manner than in the simulated
environment.

To address this challenge, we developed a new approach
for constructing a wear indicator and correcting simulator
outputs. First, we computed the bias vectors across multi-
ple flight phases as the difference between the real mission
data and the simulator predictions. Once these bias vectors
were extracted, they were used to train a predictive correc-
tion model. This model learns the mapping between the bias
patterns and the corresponding deviations from non-degraded
behavior. By applying this learned correction to the simulator
output, we were able to produce a more accurate reconstruc-
tion of the real sensor measurements.

2. RELATED WORKS

2.1. Continuous Engine Operational Data (CEOD)

Continuous Engine Operation Data (CEOD) refers to time-
series measurements acquired by on-board sensors during the
in-flight operation of aircraft engines. Depending on the sen-
sor type and monitored parameter, these measurements are
typically recorded at varying and often high sampling fre-
quencies. To facilitate analysis and data fusion, raw CEOD
usually go through a post-processing stage in which all vari-
ables are resampled to a standardized frequency, typically 1
Hz. The high temporal frequency and multivariate nature of
the CEOD allow a detailed description of engine performance

across different flight phases and operating conditions. Each
variable corresponds to a specific engine parameter, for ex-
ample, the Exhaust Gas Temperature (EGT). Due to the ex-
tended duration of flight missions, CEOD sequences are very
long, with lengths varying proportionally to the flight dura-
tion. This poses significant challenges regarding data stor-
age, computational processing, and algorithmic handling for
condition monitoring or prognostics applications. Neverthe-
less, these challenges have not deterred researchers and engi-
neers from leveraging CEOD, whether for developing innova-
tive processing pipelines (Forest, Lacaille, Lebbah, & Azzag,
2018), advanced anomaly detection frameworks, or other an-
alytical and diagnostic methodologies to enhance engine re-
liability and operational efficiency (Coussirou, Vanaret, La-
caille, & DataLab, 2022; Forest et al., 2020). This study fo-
cuses on the dynamic behavior of three engine performance
parameters: low-pressure rotor speed (N1), the temperature
before the combustion chamber (T), and Exhaust Gas Tem-
perature (EGT).

2.2. AESim: Data-driven Aircraft Engine Simulator
framework

AESim (Madane, Forest, Azzag, Lebbah, & Lacaille, 2023)
produces the synthetic CEOD representing the expected en-
gine output for a specified flight scenario. Each scenario
is parameterized by five key environmental and operational
variables that define the mission profile: ambient tempera-
ture, altitude, Mach number, Throttle Lever Angle (TLA),
and a binary flag indicating engine operating state (ON/OFF).
The overall simulation framework is shown in Figure 1.

The simulator works through a multi-stage process that be-
gins with normalizing raw multivariate time series to create
standardized inputs, followed by temporal phase partition-
ing into pre-cruise, cruise, and post-cruise phases to account
for varying flight durations and operational conditions. Each
phase is further divided into overlapping 300-second intervals
to improve computational efficiency while preserving data
continuity. These segments are then processed through gener-
ative models replicating real engine behavior’s statistical and
temporal characteristics. The final step reverses normaliza-
tion and stitches all segments into a coherent, high-fidelity
CEOD that can be used for predictive maintenance studies,
augmenting datasets for machine learning, and generating re-
alistic CEOD for mission profiles where such data are un-
available.

2.3. Phase-specific generative models

The models consist of a modified version of the Multivari-
ate Time Series Conditional Generative Adversarial Network
(MTS-CGAN) architecture, specifically designed to model
the complex dynamics of aircraft engine operations (Madane,
Dilmi, et al., 2023; Madane, Forest, Azzag, Lebbah, & La-
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Figure 1. AESim, our proposed data-driven Aircraft Engine Simulator framework. CEOD: Continuous Engine Operational
Data. N1: Low-pressure rotor speed. T: temperature before combustion chamber. EGT: Exhaust Gas Temperature.

caille, 2024; Madane & Lacaille, 2023). This transformer-
based framework consists of a generator and a discrimina-
tor, respectively Figure 2a and Figure 2b, with data gen-
eration conditioned on the preceding generated time series
and the specific flight mission profile segments to preserve
temporal continuity. The generator integrates a Context En-
coder, which processes a noise vector and mission parame-
ters through transformer encoder blocks with multi-head self-
attention to capture contextual dependencies, and an Adjust-
ment Encoder, which refines continuity by combining embed-
dings from the previous segment with context features. The
discriminator classifies whether CEOD inputs are real or gen-
erated. We use the Least Squares GAN (LSGAN) loss, with
an added custom generator loss that enforces smooth transi-
tions across overlapping segments. Both networks are trained
in parallel to optimize LD and LG.

LD =
1

2
Ex,y∼pdata

[
(D(x, y)− 1)2

]
+

+
1

2
Ez∼pz

[
(D(G(z, y), y))2

]
(1)

LG =
1

2
Ez∼pz

[
(D(G(zt, yt), yt)− 1)2

]
+

+ ∥G1:20 (zt, yt)−Gend-19:end (zt−1, yt−1)∥2 (2)

2.4. Wear Modeling

The wear modeling framework addresses the unique wear
patterns of individual aircraft engines by comparing their
performance to a “clean average engine simulator” Sclean

Figure 2. Architecture of the Generator and the Discriminator
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trained exclusively on non-degraded fleet data. This baseline
simulator predicts optimal engine behavior under given op-
erational and environmental conditions, enabling the calcu-
lation of residuals, which in this case were computed as the
mean deviations between simulated and actual performance
that quantify wear effects. Residual sequences from multi-
ple operational cycles are used to train a forecasting model to
predict the next cycle’s residual based on the previous ones.
The predicted residual is then added to the clean simulator’s
output, producing an adjusted simulation that reflects the en-
gine’s anticipated degraded performance for upcoming mis-
sions. This adaptive approach allows near real-time wear
tracking and mission-specific simulation adjustments. Given
operational inputs X , the simulator predicts

Ypredicted = Sclean(X),

which is compared to actual performance Yactual to compute
the residual

R = mean
(
Yactual − Sclean(X)

)
.

Using sequences of residuals {Ri} over engine life cycles, a
predictive model f estimates the next residual

R̂t+1 = f(Rt, Rt−1, Rt−2).

The adjusted simulation output incorporating wear is then
computed as

Yadjusted = Sclean(X) + 1 · R̂t+1.

where 1 is a vector of ones of the same length as Sclean(X).

2.5. Residual-Based Wear Incorporation: Synthetic Suc-
cess vs Real-World Complexity

The proposed wear modeling approach demonstrated out-
standing performance when evaluated on the N-CMAPSS
dataset. The method accurately learned and reproduced
degradation trends, with the residual-based adjustment ef-
fectively capturing the deviation between the clean aver-
age engine simulator Sclean and the degraded engine outputs.
In this simulated dataset, the residual R exhibited a near-
uniform distribution across the time series for each variable,
acting effectively as a constant offset as shown in Figure 3.
Under these conditions, incorporating degradation through
Yadjusted = Sclean(X) + 1 · R̂t+1 proved highly effective, pro-
ducing outputs that accurately align with the degraded engine
behavior.

However, a key limitation appeared when applying the same
methodology to real-world CEOD. In actual engine data,
the degradation-induced residual is not uniformly distributed
across the entire time series. Instead, it varies temporally
within each parameter, reflecting complex operational and en-
vironmental interactions absent in the synthetic N-CMAPSS

Figure 3. Example visualization of a segment of the T48
parameter for a selected N-CMAPSS flight, illustrating the
constant residual between the non-degraded simulator output
(T48, orange) and the actual recorded T48 (blue).

setting. In other words, we can’t assume that the same degra-
dation pattern applies to all time steps, because the residual
patterns vary with flight phase and operational context. This
temporal variability means that degradation cannot always be
represented as a simple additive offset applied uniformly to
all time steps. Consequently, the residual adjustment addition
fails to fully capture the time-dependent deviations observed
in real operational data. This highlighted the necessity for
a more flexible degradation incorporation strategy capable of
capturing temporally varying residual patterns throughout the
mission profile.

3. PROPOSED APPROACH

We assume that one contributing factor to the temporal vari-
ation in observed residuals is the change in engine operating
conditions across different segments of the mission profile.
To account for this, we treat the data within discretized time
frames, such as distinct flight phases, where the operational
regime is relatively consistent. So we proceed using a phase-
conditioned wear incorporation method. The core idea is to
(i) decompose each mission into coherent macro-phases, (ii)
within each macro-phase, isolate steady-state operating seg-
ments defined as intervals where both the measured inputs
and outputs exhibit minimal variation over a sliding window,
ensuring the engine operates under quasi–steady conditions
where wear manifests as a persistent bias, and (iii) estimate a
robust bias through a high quantile of the residuals computed
on each micro-phase.

Let Xt ∈ Rd denote the input features (e.g., flight conditions,
control settings) at time t, and let Yt ∈ Rk be the correspond-
ing measured engine outputs. The output of a clean (non-
degraded) simulator is denoted by Sclean(Xt). The residual is
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then defined as:

Rt = Yt − Sclean(Xt),

representing the discrepancy between real engine measure-
ments and the non-degraded simulator response.

3.1. Phase Decomposition

We partition each flight into three distinct temporal phases:

Mission = Tpre ∪ Tcruise ∪ Tpost,

where Tpre, Tcruise, Tpost represent the sets of time indices cor-
responding to pre-cruise (taxi-in, takeoff and climb), cruise,
and post-cruise (descent, landing, and taxi-out) phases re-
spectively. Within each phase Tp, p ∈ {pre, cruise, post},
we further extract stabilized subphases by applying statisti-
cal filters on flight dynamics. Let T stab

p ⊆ Tp denote the set
of stabilized time indices in phase p. We then compute the
empirical residuals:

Rp = {Rt : t ∈ T stab
p }.

3.2. Quantile-Based Residuals

To robustly capture degradation signals while mitigating the
influence of outliers or sensor noise, we compute the 75th per-
centile of the residuals for each variable j = 1, . . . , k within
each phase p:

R̂(j)
p = Quantile0.75

(
{R(j)

t }t∈T stab
p

)
.

This yields a low-dimensional phase-wise residual vector:

R̂p = [R̂(1)
p , R̂(2)

p , . . . , R̂(k)
p ]⊤.

Collectively, these vectors form a triplet {R̂pre, R̂cruise, R̂post},
which serves as a compact health signature for the engine at
a given flight cycle.

3.3. Wear Tracking and Engine Health Indicators

Over successive flights throughout the engine life cycle, the
evolution of each residual quantile vector R̂

(i)
p (for engine

i) reveals trends reflective of wear progression. Empirically,
we observe that several components of R̂

(i)
p exhibit mono-

tonic or quasi-monotonic decline as engines accumulate cy-
cles, which aligns with expected degradation. These residual
quantiles can be used as health indicators, sensitive to subtle
deviations not captured by average residuals. Furthermore,
the phase-specific nature of the quantiles allows for discrimi-
native tracking of wear that manifests differently across flight
regimes.

This strategy improves upon global residual modeling by
adapting to the operational regime, capturing subtle degra-

dation effects that occur in specific operational windows, and
providing interpretable health indicators easily integrated into
PHM applications such as Remaining Useful Life (RUL) es-
timation and anomaly detection. It’s a transition from static,
uniform residual adjustment to phase-wise quantile residual
modeling, enabling accurate and physically grounded track-
ing of engine wear in real-world conditions.

3.4. Phase-Wise Predictive Correction Model

Building upon the extracted phase-wise bias vectors
{R̂pre, R̂cruise, R̂post}, we train a corrective model designed
to learn the systematic deviation between simulated (non-
degraded) outputs and real engine sensor measurements.
This model explicitly leverages the residual structure learned
in stabilized flight phases to refine the simulator predictions
and produce sensor outputs that more faithfully reproduce
real-world behavior.

For each flight phase p ∈ {pre, cruise, post}, we train a phase-
specific predictive model Cp that maps the residual quantile
vector R̂p to the corresponding deviation between the simu-
lator output and the actual measured signal:

Cp : R̂p 7→ ∆Yp,

where ∆Yp = Yp−Sclean(Xp) denotes the observed deviation
within phase p.

This deviation is then added to the clean simulator output to
yield the corrected prediction:

Ŷp = Sclean(Xp) + Cp(R̂p).

The model Cp is trained by minimizing the mean squared
error (L2 loss) between the corrected prediction Ŷp and the
ground truth sensor measurements Yp.

Each engine’s correction model is trained independently,
leveraging its own operational history. We split the data into
three sets: training, validation, and test. The goal is to cap-
ture the underlying structure of wear-induced deviations as a
function of the bias pattern R̂p. This allows us to condition
the correction on the estimated health state of the engine.

The architecture consists of a lightweight yet effective neu-
ral network. It’s a feedforward multilayer perceptron archi-
tecture with three hidden layers with progressively decreas-
ing widths: 256, 128, and 64 neurons. , Each hidden layer
is followed by a ReLU activation, batch normalization, and
dropout (with rate 0.2). The final output layer maps to the
predicted deviation ∆̂Y p. The corrected output is computed
by adding the predicted deviation to the clean simulator sig-
nals.

Overall, this approach preserves the physical consistency of
the simulator while integrating data-driven corrections in-
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Figure 4. Example of the evolution of the EGT residual throughout an engine life cycle

formed by real-world operational deviations. And by work-
ing within each phase independently, the model accounts for
the fact that wear can manifest differently depending on the
engine’s operational regime.

4. RESULTS AND DISCUSSION

Figure 4 shows the temporal evolution of the Exhaust Gas
Temperature (EGT) residual throughout the operational life
cycle of a single engine. This residual would remain close
to zero in a hypothetical scenario with negligible degradation
and perfect modeling fidelity, reflecting only stochastic sen-
sor noise and minor environmental discrepancies.

However, the observed trajectory exhibits structured, non-
random variation over successive cycles, which strongly sug-
gests the presence of progressive degradation trends. In par-
ticular, four distinct wear followed by recovery cycles can be
identified: in each, the residual exhibits a gradual decline,
indicative of progressive performance loss, followed by an
abrupt return to a higher baseline. These sharp upward shifts
align temporally with known maintenance interventions. The
repetition of this wear and restoration pattern across multiple
operational intervals confirms the strong coupling between
residual evolution and both the underlying wear mechanisms
and the maintenance regime.

The high-frequency oscillations superposed on the long-term
trend likely originate from mission-to-mission variability in
ambient conditions and power settings, combined with mod-
eling approximations in the clean simulator.

From a PHM perspective, the evolution of the residual pro-
vides valuable information about the engine’s health state.
The overall downward trend can be used as an indicator of
wear and an early signal for upcoming performance restora-
tion. Short-term variations in the residual can also be useful
for detecting anomalies. These patterns support the use of
the proposed phase-wise quantile residual modeling, which

Figure 5. Root Mean Square Error (RMSE) of EGT between
real engine measurements and clean simulator outputs, shown
for the three major flight phases: before cruise, during cruise,
and post cruise. Results are presented before and after appli-
cation of the proposed phase-wise correction model.

is designed to capture stable, wear-related features from vari-
able data. In addition, the observed recovery events show the
importance of using models that can handle non-monotonic
wear trends, which often occur in fleet operations due to
maintenance interventions.

Engines belonging to the same fleet are referenced to the
same clean, non-degraded simulator, which makes the result-
ing residuals directly comparable across units. This enables
an objective assessment of relative wear levels and supports
identifying engines exhibiting abnormal deterioration rates.
Such ability to compare the engines is highly valuable for
fleet-level PHM, where accurate health ranking underpins ef-
fective maintenance planning and resource allocation.

Figure 5 presents the RMSE of the EGT between real engine
measurements and the outputs of the clean, non-degraded
simulator, evaluated for three operational phases: before
cruise, during cruise, and post cruise. The evaluations shown
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Figure 6. Example visualization of a segment of the EGT parameter from the test subset, illustrating the non-degraded simulator
output (orange), the actual recorded measurement (blue), and the corrected output (green).

Figure 7. Example visualization of a segment of the EGT parameter from the test subset, illustrating the non-degraded simulator
output (orange), the actual recorded measurement (blue), and the corrected output (green).

Figure 8. Example visualization of a segment of the EGT parameter from the test subset, illustrating the non-degraded simulator
output (orange), the actual recorded measurement (blue), and the corrected output (green).

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

were conducted on the test subset. For all phases, the pro-
posed phase-wise correction model reduces the RMSE rela-
tive to the uncorrected simulator output, indicating improved
alignment with the real measured data.

The improvement is most pronounced in the post-cruise
phase, where RMSE decreases from 18.22 to 15.38 (15.6%),
followed by the during-cruise phase (5.51 to 4.72, 14.3%) and
the before-cruise phase (14.49 to 12.42, 14.3%). The cruise
phase exhibits lower RMSE because engine operation is rel-
atively stable, with limited quick events. In contrast, the be-
fore and post-cruise phases involve frequent throttle changes,
resulting in highly dynamic engine behavior that is more dif-
ficult for the simulator to replicate precisely.

While the consistent RMSE reduction across phases confirms
the model’s capability to capture wear-induced deviations, the
improvement remains moderate. The residual errors after cor-
rection indicate that not all variability is accounted for, which
may result from unmodeled operational effects or other envi-
ronmental influences. Particularly, it may require more com-
plex or phase-specific modeling strategies to achieve further
accuracy gains in the pre- and post-cruise segments.

Figures 6-7-8 illustrate example visualizations of EGT seg-
ments from the test subset, showing the non-degraded simula-
tor output (orange), the actual recorded measurement (blue),
and the corrected output from the proposed model (green).
In all cases, the correction model reduces the residual gap
between the simulator and measured values. It should be
noted that the uncorrected simulator output is already highly
accurate, as real-world aircraft engines are subject to regu-
lar and effective maintenance, which limits the occurrence
of pronounced degradation patterns. Consequently, large dis-
crepancies between simulated and measured EGT are uncom-
mon, yet the proposed correction still achieves measurable
improvement.

5. CONCLUSION

This work shows that the methods validated on benchmark
datasets of aircraft engines can be extended to real engines
by accounting for the phase-dependent, time-varying nature
of residuals. By learning how simulator outputs drift from
real measurements over different flight phases, we can correct
these deviations, track degradation and maintenance cycles,
and compare wear levels across a fleet. For operators, that
means earlier warning of emerging issues, better maintenance
planning, and more informed allocation of resources.

The findings also highlight that real-world engines don’t fol-
low simple, steady wear patterns. Future approaches will
need to adapt to each phase of flight, blend data-driven learn-
ing with physical understanding of engine wear, and account
for environmental and operational variability. Closing this
gap will be key to delivering scalable, real-time health mon-

itoring that works reliably from research benches to active
fleets.
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