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ABSTRACT

Heavy-duty battery electric vehicles rely on large and com-
plex energy storage systems (ESS), composed of multi-
ple battery modules, whose individual health and reliabil-
ity are critical to vehicle performance and safety. This
study applies an unsupervised anomaly detection framework,
COSMO (Consensus Self-Organizing Models), to a natural-
istic real-world dataset collected during routine operations
of in-service heavy-duty vehicles. We extend the baseline
COSMO by incorporating causal discovery algorithms to
help detect early signs of faults in ESS across heterogeneous
missions and external conditions. On-board sensors data is
collected as a multivariate time series, including information
such as voltage, current, temperature, state of charge, etc.
Given the wide range of applications of heavy-duty vehicles,
these signals typically exhibit extreme variability even under
normal operation, making anomaly detection challenging.

Causal graph discovery allows us to acquire latent structures
that capture the underlying relationships among these influ-
ential features. The resulting learned causal graphs, for each
battery module, serve as a more consistent representation
that captures each battery module’s usage and behavior over
time. Since battery modules within the same ESS are ex-
pected to behave similarly under comparable operating con-
ditions, COSMO models them as a homogeneous group. We
then mark as anomalous modules that are identified to ex-
hibit causal graph representations deviating markedly from
the consensus.

1. INTRODUCTION

The ongoing transition from fossil fuel-driven mobility so-
lutions to electromobility is a key enabler of more sustain-
able transportation, particularly in the heavy-duty (HD) sec-
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tor, where reducing emissions has a significant societal im-
pact. At the core of electric trucks lies the energy storage
system (ESS), which is not only key to operational efficiency
but also safety critical. Failures in battery packs can lead
to costly unplanned downtime, accelerated degradation, and
sometimes even more severe consequences, making predic-
tive maintenance and health management strategies essential
for battery electric vehicles (BEVs).

This study evaluates causal graphs as model representations
for anomaly detection. Our goal is to assess whether causal
structures learned from sensor data and encoded in the form
of graphs can be helpful in indicating early signs of impend-
ing component faults, deterioration, or anomalies in the ESS
of HD BEVs. The dataset we use includes both vehicle usage
features and dedicated measurements for each battery pack
in ESS, with two documented cases of battery replacement
providing rare but valuable ground truth for validation.

In a series of studies (Fan, Nowaczyk, & Rognvaldsson,
2015; Fan, Nowaczyk, Antonelo, et al., 2016), we developed
and employed a framework for anomaly detection, namely
the Consensus Self-Organizing Models (COSMO). This ap-
proach is essentially based on the idea of “wisdom of the
crowd:” assuming that the majority of units in a homogeneous
population are healthy. By comparison, individual units that
deviate from the majority can be considered abnormal. Two
types of anomaly scoring features are computed to indicate
potential faults: distance-to-peers features, which capture dis-
similarity relative to the fleet average, and deviation-level fea-
tures, which quantify how likely an individual unit is to be
significantly deviating from its peers (accounting for the nor-
mal variation within the homogeneous group).

In particular, COSMO has been shown to work very well for
relatively small fleets of vehicles, for example, buses operat-
ing in a single city (Rognvaldsson, Nowaczyk, Byttner, Prytz,
& Svensson, 2018). However, it struggles with highly hetero-
geneous populations, and thus, in this study, we set out to ana-
lyze data collected worldwide by employing causal discovery
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algorithms to learn directed dependencies among the CAN
signals. Causal graphs offer an interpretable representation
of system behavior, making it possible to trace how changes
in one signal propagate through the system, thus assisting
in enabling explainable predictive maintenance (Pashami et
al., 2023). This is particularly valuable for conducting root
cause analysis, making diagnosis more efficient, and identi-
fying early equipment deterioration.

In this work, we investigate three pairwise causal discov-
ery algorithms: the Additive Noise Model (ANM) (Hoyer,
Janzing, Mooij, Peters, & Scholkopf, 2008), the Conditional
Distribution Similarity statistic (CDS) (Fonollosa, 2016), and
Information-Geometric Causal Inference (IGCI) (Daniusis et
al., 2012). To compare two different causal structures, we
adopt a weighted Structural Hamming Distance (wSHD) in-
corporating domain knowledge, where high edge weights em-
phasize causal links between battery parameters, while edges
involving only vehicle usage signals are assigned lower im-
portance.

The contribution of this study are threefold: i) we apply and
investigate three causal discovery algorithms to learn causal
structure between CAN signals for anomaly detection; ii) we
propose a weighted SHD, based on relevancy of the feature
to component of interest, to measure the distances between
learn causal graphs; iii) we integrate causal graphs into the
COSMO framework and evaluate their performance on a real-
world dataset from heavy-duty battery electric vehicles in de-
tecting early signs of battery faults that ultimately lead to pack
replacements.

2. RELATED WORK

Majority of the anomaly detection studies for batteries are
prediction-based, or reconstruction-based methods (Dong &
Lin, 2021; Li, Wang, Xu, Wu, & Li, 2024; Bhaskar et al.,
2023; Xiong, Sun, Yu, & Sun, 2020). These approaches typi-
cally rely on self-supervised learning to construct a reference
model approximates the behavior of a healthy system, and
anomalies are flagged when the observed behavior deviates
significantly from reference model’s predictions. In contrast,
only a small fraction of the works, e.g. (Shin, Lee, & Kim,
2023), explore anomaly detection from a causality-driven
perspective, leveraging unsupervised learning to flag anoma-
lies based on comparing structural dependencies captured
from different samples. Moreover, causality-based methods
are inherently more explainable, which also provide valuable
insights for, e.g., fault diagnosis, and root cause analysis, by
revealing how features influence one other and by identifying
changes that emerge in the underlying causal structure.

Previous development on COSMO framework mainly fo-
cuses on analyzing univariate sensor data for anomaly de-
tection. The only study to incorporate multivariate sensor
data is by Rognvaldsson, in their work (Régnvaldsson et al.,

2018), which exploits pairwise relations between signals to
identify model settings with a higher likelihood of discovery
new knowledge, or anomalous occurrences.

3. PROBLEM STATEMENT

The multivariate time series dataset used in this study was
collected from the CAN bus of heavy-duty battery electric
trucks, comprising approximately 1,500 trips logged. Twelve
types of signals are included: seven related to the operating
conditions and attributes of the battery packs, and the remain-
ing five signals reflecting vehicle usage. Due to the high costs
associated with battery failures, the OEM has implemented
a preventive maintenance strategy, which means that actual
failure examples are very rare. The dataset contains only two
confirmed cases of battery replacements due to increased risk
or fault. In both cases, one of the six battery packs was re-
placed. In the first case, the replacement was conducted fol-
lowing several fault code instances indicating a risk of immi-
nent abnormal thermal event. In the second case, heat had
developed on one of the busbars, which led to the decision to
replace the affected battery pack.

Throughout this paper, we use the following notation. Let
the multivariate time series x of each trip [ and vehicle v be
denoted by

X={al,, | t=1,2,....,T(v),i=1,2,....K}, (1)

where 1, , is the value of the i"" feature at time ¢ for trip [ of
vehicle v, and T'(v) denotes the end-of-life of the battery pack
that was subsequently replaced in the workshop. The objec-
tive of our method is to identify deviations in the data that
occur prior to failure. Due to the lack of better information,
we assume that the time of failure coincides with the time of
repair. Ideally, any deviations should be detected sufficiently
early to allow for maintenance actions, such as inspection or
repair, to be scheduled proactively. For simplicity, we assume
a constant period of interest prior to repair, which we refer to
as the prediction horizon (PH). For a battery replacement car-
ried out on vehicle v at time 7, we define the set of samples
that should be labeled as faulty to be:

F,={c{) : 7T—PH<t<7}. 2)

The corresponding set of healthy samples is then given by
H, = F,,. The task of anomaly detection is to assign, through
a scoring function f : x + 4, higher scores to faulty samples
than to healthy samples, i.e., for as many samples as possible
0 F, > 1) H,-

4. METHOD

The COSMO approach is particularly well-suited for envi-
ronments that involve fleets of similar equipment, but where
defining a clear baseline of “normal” behavior is difficult,
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whether due to varying operating conditions or differences
in use. The core idea is to “understand” the typical level of
variability in the data across the fleet, and then compare one
unit against its peers in relation to this baseline. In overly het-
erogeneous operations, however, this degree of variability of-
ten becomes highly contextual, which is something COSMO
typically fails to capture, as it assumes a homogeneous pop-
ulation of samples undergoing the same, or very similar, un-
derlying process.

The method proceeds by first extracting relevant signal char-
acteristics from the multivariate time series using a selected
model. By comparing the learned representations with an ap-
propriate similarity metric, deviations are detected following
a “wisdom of the crowds” principle, i.e. individual sample
deviates from the majority can be identified as an anomaly.

4.1. Causal Inferences

In this study, therefore, in the first step, we learn causal re-
lationships between the CAN signals using causal inference
algorithms, as a means to reduce the effect of mission charac-
teristics and external conditions on the peer-to-peer distance
measures. The learned graph, or its equivalent adjacency ma-
trix, is utilized as the model representation of the given trip.
Three causal graph discovery algorithms were selected and
investigated: the additive noise model (ANM), the Condi-
tional Distribution Similarity Statistic (CDS), and the Infor-
mation Geometric Causal Inference (IGCI) method. ANM is
one of the most widely used approaches for pairwise causal
inference. Its key principle is to test whether the data fit an
additive noise formulation in one direction, while the model
can be rejected in the reverse direction. CDS computes the
variability of rescaled y (or x) values after binning along x
(or y). A lower variability suggests the direction x — y (or
y — z). IGCI is a pairwise causal discovery method that
assumes minimal noise and an invertible causal mechanism,
exploiting inherent asymmetries to infer causal direction.

Given a multivariate time series x, we represent its causal
structure as a directed graph G = (V, E), where each ver-
tex v € V corresponds to a signal (feature) and each directed
edge (v; — v;) € E reflects a causal relationship from fea-
ture ¢ to feature j. For simplicity, the graph is encoded by
its adjacency matrix A € {0, 1}/V*IV] where A;; = 1 indi-
cates the presence of a causal link from v; to v, and A;; = 0
otherwise.

4.2. Distance Metric Comparing Causal Graphs

The next step of COSMO is to compare two representa-
tions. In this work, structural Hamming distance (SHD)
(Dhanakshirur!, Laumann, & Park, 2024) and a weighted
version of it, were used for computing the dissimilarity be-
tween two causal graphs. The SHD between two causal
graphs counts the number of edge additions, deletions, or re-

versals required to transform one graph into the other. Let
A, B € {0,1}IVI*IVl denote the adjacency matrices of two
directed graphs with the same set of vertices. The SHD can be
computed as SHD (A, B) = >, .. 1(A;; # Bi;), where 1(-)
is the indicator function. Equivalently, SHD counts the num-
ber of entries that differ between A and B, thereby capturing
mismatches in both edge presence and orientation.

To account for the varying importance of signals with respect
to a specific component fault under investigation, we also pro-
pose to use a weighted version of SHD, denoted throughout
the text as wSHD, given by

wSHD(A, B; W) = Z Wij 1(Aij # Bij) - (3)
i#]

In practice, the weight mask W;; is constructed based on the
type of signals connected by the edge: edges between two
battery-related parameters are assigned the highest weight,
edges between battery and vehicle usage parameters are as-
signed medium weight, and edges solely between vehicle us-
age parameters are assigned the lowest weight. This ensures
that discrepancies on edges most relevant to the investigated
battery fault contribute most strongly to the overall distance.
The standard SHD is recovered as a special case when W is
a mask of ones.

4.3. COSMO Framework

Within the homogeneous group, learned representations of
each sample are compared in pairs. For a given crowd of n
samples, a distance matrix comprises pairwise distances be-
tween all samples:

dip diz -+ dip
d21 d22 e d2n

D=1 . . . 4)
dnl dn2 e dnn

where elements on the primary diagonal are equal to zero, i.e.,
distances d;; = dj;. In this study, we set n equal to the num-
ber of battery packs in ESS, as they constitute a homogeneous
group.

Deviation detection is performed based on the most central
pattern (row with the lowest sum total), which reflects the
normal behavior of the group and is denoted by c. The set of
distances from this central sample c to the other samples m is
then used as an empirical distribution. The z-score of sample
m is then estimated as the number of samples in the empirical
distribution that is further away from the most central pattern
c

7= ]., ,N : d@c > dm.,c
_ N i) 5)

N
where | - | denotes the cardinality of the set. The null hypoth-
esis is that all samples are drawn from the same distribution,

z(m)
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Figure 1. Learned causal graphs (i.e., adjacency matrix with dark cell corresponding to causal relationship between two features)
for each of the battery packs using three causal discovery algorithms (IGCI, CDS, ANM) from a three example trips.

in which case the z-scores should be uniformly distributed
between zero and one. This hypothesis is tested by compar-
ing the average z-score over a certain period with the value
expected from a uniform distribution. The deviation level is
computed using the negative logarithm of the one-sided p-
value:

Deviation level(Z) = —logy, {fb (ZM)] ,  (6)
where ®(-) is the normal cumulative distribution function, z
is the average of the z-scores, o, = (12n)’1/2, and n is
the number of valid days during a predetermined period, e.g.,
30 day period. All trips/trajectories within this period were
included for computing the the deviation level.

In this study, we investigate two types of features generated
by COSMO for anomaly detection: deviation-level features
and distance-to-peers features. The latter are computed as the
mean distance of a unit to all other units within the homoge-
neous group.

5. EXPERIMENT RESULTS
5.1. Learning Causal Structure

The time-series dataset was segmented into approximately
1,500 trips, each lasting between 30 minutes and 3 hours. For
every trip, six causal graphs were learned, one for each bat-
tery pack in the ESS, using three different causal discovery
algorithms. To compute the causal graphs, we employed the
Causal Discovery Toolbox library (Kalainathan & Goudet,
2019). The graphs were constructed from both battery param-
eters and vehicle usage features. Battery parameters are spe-
cific to individual battery packs, whereas vehicle usage fea-

tures are shared across all packs. Figure 1 presents three sets
of causal graphs (represented as adjacency matrices) obtained
using ANM, CDS, and IGCI across three example trips. Each
dark cell in the matrices denotes a directed causal relationship
from one signal to another. As illustrated, the causal graphs
of the six battery packs within the same trip (on each row)
exhibit a consistent structure, sharing several common causal
relationships, with a few differing edges. These variations
will later be assessed using the Structural Hamming Distance
(SHD) for anomaly detection.

5.2. COSMO Features

Figure 2 and Figure 3 illustrate the two types of COSMO fea-
tures computed for detecting anomalies. Figure 2 shows the
distance-to-peers feature, which reflects the deviation of each
battery pack from the fleet average. As seen in the figure,
the distance feature for battery pack four exhibits significant
deviations some time before the repair was performed, sug-
gesting potential for use in predictive maintenance service.
Figure 3 presents the deviation-level feature, which clearly in-
dicates a strong and persistent deviation in the 4th pack. This
deviation lasted for some time and ultimately led to a service
intervention in which the 4th battery pack was replaced. No
further repairs to the ESS of this vehicle were required, and
the deviation-level features of the remaining packs did not
show deviations of comparable magnitude.

5.3. Performance Comparison

Table 1 summarizes the performance, measured in terms of
average precision (AP) and area under the receiver operating
characteristic curve (AUROC), across different approaches.
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Figure 3. Deviation level, i.e. p-values, computed based on distance-to-peers features shown in Figure. 2

The comparison includes the choice of causal discovery algo-
rithms, the distance metrics used between causal graphs, and
a baseline against a well-known conventional method, Isola-
tion Forest. The isolation forest, employed using the scikit-
learn library (Pedregosa et al., 2011), were trained on aggre-
gated values of 360 data trajectories collected from fault-free
battery packs, with 100 estimators and provided with the true
contamination ratio. The results show that using IGCI for
causal graph learning in combination with weighted SHD
achieves the highest AP and AUC. Overall, COSMO with
causal graphs greatly outperforms Isolation Forest in detect-
ing faulty batteries in this dataset.

6. CONCLUSION AND FUTURE WORK

This study has presented an extension of the COSMO
anomaly detection framework through the integration of
causal discovery algorithms, with the specific aim of im-
proving early fault detection in the energy storage systems
of heavy-duty battery electric vehicles. By modeling each
battery module as a causal graph derived from multivari-
ate sensor data, we were able to obtain a more robust and
interpretable representation of its behavior across diverse
operational conditions. The proposed approach captures un-
derlying dependencies among signals, thereby reducing the

confounding impact of environmental and usage variability
that typically complicates anomaly detection in real-world
settings.

Our results demonstrate that causal graph representations en-
hance COSMO’s ability to distinguish between healthy and
potentially faulty modules. By employing a weighted struc-
tural Hamming distance, which prioritizes causal links most
relevant to the ESS, the framework effectively identifies de-
viations that precede documented battery pack replacements.
This not only validates the feasibility of incorporating causal
structures into unsupervised fleet-based anomaly detection
but also highlights their value for predictive maintenance ap-
plications where early intervention can mitigate costly fail-
ures and downtime.

Beyond performance gains, the integration of causal discov-
ery offers an important step towards explainability in predic-
tive maintenance. Causal graphs allow for tracing potential
pathways of degradation, thereby supporting root-cause anal-
ysis and providing practitioners with interpretable evidence
for maintenance decisions. Such transparency is essential for
building trust in data-driven health monitoring systems, par-
ticularly in safety-critical applications like heavy-duty elec-
tromobility.
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Table 1. Performance comparison between causal discovery algorithms, distance measures, and versus isolation forest

Method Feature Type Performance

AP AUROC

ANM-SHD Distance-to-Peers | 0.0191 0.5255

P-value 0.0240 0.6611

CDS-SHD Distance-to-Peers | 0.0537 0.5639

P-value 0.0536  0.7669

IGCI-SHD Distance-to-Peers | 0.0926 0.5585

P-value 0.3230  0.7692

ANM-wSHD | Distance-to-Peers | 0.0190  0.5069

P-value 0.0165 0.5338

CDS-wSHD Distance-to-Peers | 0.0489 0.5663

P-value 0.0573  0.7161

IGCI-wSHD Distance-to-Peers | 0.0728 0.5456

P-value 0.3924  0.7822

Isolation Forest | Anomaly Score | 0.0094  0.3346

Label 0.0126  0.4538

Future work will focus on extending this approach in sev-
eral directions. First, larger-scale evaluations across more
diverse fleets will help establish generalizability and robust-
ness. Second, the incorporation of temporal causal discovery
methods could capture evolving dependencies that better re-
flect long-term battery aging processes. Finally, combining
causal representations with complementary approaches such
as physics-informed modeling or transfer learning could fur-
ther strengthen the reliability of early fault detection. Taken
together, these advances will contribute towards safer, more
efficient, and sustainable deployment of heavy-duty battery
electric vehicles.
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