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ABSTRACT 

In the aerospace industry, modern aircraft are increasingly 
equipped with a growing number of sensors, which enable the 
development of predictive maintenance solutions utilizing 
data-driven diagnostic and prognostic (D&P) techniques to 
enhance operational availability and reduce maintenance 
costs. However, constructing a purely data-driven D&P 
solution requires a substantial amount of run-to-fail sensor 
data, which is often unavailable for highly reliable and safety-
critical aircraft systems. This limitation restricts the 
applicability of purely data-driven D&P solutions for aircraft 
subsystems. To address this limitation, we developed a novel 
Hybrid Digital Twin framework that integrates physics-based 
subsystem models with sensor data, enabling enhanced 
feature generation for improved fault diagnostics and 
prognostics. Our approach simultaneously estimates both 
design and health-related parameters, facilitating accurate 
model calibration even when some of design data is not 
available. Sensor features enhanced with estimated health-
related parameters enable more accurate data-driven 
diagnostics and prognostics solutions of a sub-system or a 
component.  The framework is demonstrated on key 
subsystems of the aircraft Environment Control System 
(ECS), including the Heat Exchanger and Centrifugal 
Compressor. Various parameter estimation techniques 
including nonlinear least squares, particle swarm 
optimization, and extended Kalman filter, Unscented Kalman 
filter, Physics-Informed Neural Networks, etc., are evaluated. 
This Hybrid Digital Twin approach offers a promising 
pathway for more accurate, robust and scalable health 

management of aircraft subsystems having limited 
operational data. 
 
Keywords: Physics-based Model, Hybrid Digital Twin, 
Model Calibration, Parameter Estimation, Heat Exchanger, 
Diagnostics & Prognostics. 

1. INTRODUCTION 

Predictive maintenance has become essential in modern 
aircraft operations to ensure safety, reliability, and cost 
efficiency by anticipating faults before failures occur. 
Prognostics and health management (PHM) techniques 
leverage sensor data to enable real-time diagnostics and 
prognostics (D&P), thereby reducing unscheduled downtime 
and maintenance costs. However, purely data-driven D&P 
methods require extensive run-to-fail sensor datasets, which 
are often unavailable for highly reliable, safety-critical 
aircraft subsystems. This scarcity of data limits the 
effectiveness and applicability of conventional data-driven 
approaches in aerospace contexts. 

To address these challenges, Digital Twin (DT) technology 
has emerged as a transformative paradigm. A Digital Twin is 
a dynamic, virtual replica of a physical asset that 
continuously integrates real-time sensor data with physics-
based models to reflect the asset’s current state and predict 
future behavior. Unlike static digital models or one-way 
digital shadows, Digital Twins enable bidirectional data 
exchange and adaptive model updates, supporting enhanced 
decision-making throughout the asset lifecycle.  

The foundation of Digital Twins lies in Model-Based 
Systems Engineering (MBSE), which formalizes system 
modeling across requirements, design, analysis, and 
validation phases (Grieves, 2016). The Digital System Model 
(DSM) serves as the foundational integrated model from 
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which individual Digital Twins are instantiated (Glaessgen & 
Stargel, 2012; Gartner Inc, 2019). Digital Twins are 
characterized by their individuality, adaptability, continuous 
synchronization with physical assets, and scalability across 
asset fleets (Redding, 2011; Madni, Madni, & Lucero, 2019). 

Recent research highlights (Ezhilarasu et al. 2019, Adhikari 
et al. 2018) the growing interest in Hybrid Digital Twin 
approaches that combine physics-based and data-driven 
modeling to overcome limitations inherent in each method 
(Jardine et al. 2006; Ezhilarasu et al. 2019). Physics-based 
models offer interpretability and extrapolation capabilities 
grounded in physical laws, while data-driven methods excel 
at capturing complex patterns from operational data. Hybrid 
approaches, including physics-informed machine learning, 
provide enhanced robustness and accuracy for health 
monitoring and prognostics. 

In aerospace, several organizations have pioneered Digital 
Twin applications for vehicle health monitoring. NASA and 
the United States Air Force developed Digital Twins for 
airframe health management, with Tuegel (2012) proposing 
a cradle-to-grave airframe Digital Twin that reduces 
uncertainty through Bayesian updating of service experience. 
Zakrajsek and Mall (2017) developed a physics-based Digital 
Twin for aircraft tire health monitoring during touchdown 
events.  

Among aerospace OEMs, Rolls Royce employs Digital 
Twins for engine health monitoring, enabling an Intelligent 
Engine that is highly connected and contextually aware. Their 
Digital Twin supports analysis of blade-off events in Trent 
engines (Goldenberg B 2025). Similarly, GE has developed 
Digital Twins for its GE60 engine family and also aircraft 
landing gear, using initial physics-based models updated 
frequently with operational data to detect anomalies, forecast 
maintenance, and predict remaining useful life (Louise 
Bonnar, 2019; GE Digital Twin, 2016). 

Beyond aerospace, Digital Twins have been widely adopted 
in automotive, maritime, and railway industries. Tesla 
Motors creates a Digital Twin for every vehicle, enabling 
over-the-air fixes, software updates, and maintenance 
scheduling based on real-time usage and performance data 
(Schleich, Anwer, Mathieu, & Wartzack, 2017).  

Physics-based techniques rely on accurate dynamic Digital 
System Models (DSM) capable of detecting even 
unanticipated faults. The prediction results of model-based 
diagnostic and prognostic solutions are intuitive and 
grounded in modeled cause-effect relationships; deviations 
from these predictions during ‘nominal’ conditions may 
indicate the need for increased model fidelity or enhanced 
noise-handling methods. These techniques overcome 
limitations posed by insufficient sensor data or data 
inaccessibility in harsh environments by employing high-
fidelity models to generate multidomain databases of 
processed variables, effectively serving as virtual sensors 

(Liu, Meyendorf, Blasch, Tsukada, Liao, & Mrad, 2025). A 
key advantage is the ability to combine actual sensor data 
with model outputs to compute residuals, which, when 
exceeding defined thresholds, indicate potential fault 
conditions. Model-based solutions adopt a system-oriented 
approach characterized by high precision and determinism, 
allowing failure thresholds to be defined in accordance with 
system performance. 

Pujana et al. (2023) presents a hybrid-model-based Digital 
Twin methodology for wind turbine power conversion 
systems that integrate physics-based models with data-driven 
analytics to enhance failure detection and classification. By 
generating synthetic failure data from real operational 
observations and employing machine learning techniques, 
this approach effectively addresses data scarcity and 
improves predictive maintenance capabilities. 

Building on these advances, this work presents a novel 
Hybrid Digital Twin framework that integrates physics-based 
subsystem models with sensor data to generate advanced 
diagnostic and prognostic features. A key innovation is the 
simultaneous estimation of design parameters (e.g., 
mechanical dimensions) and health parameters (e.g., 
efficiency degradation), enabling accurate model calibration 
even when original design data is unavailable or affected by 
operational changes such as aging or environmental stress. 
This dual-parameter estimation enhances the fidelity of both 
digital system model and operational Digital Twins for 
individual aircraft subsystems. 

We demonstrate the framework on the Heat exchanger (HX) 
of the aircraft environment control system (ECS), a critical 
yet difficult-to-monitor component prone to degradation 
from clogging, corrosion, and icing. HX’s complex design 
and inaccessibility necessitate accurate prognostics to 
minimize unscheduled maintenance. Our approach calibrates 
physics-based HX models using various parameter 
estimation techniques including nonlinear least squares, 
particle swarm optimization, and extended Kalman filtering 
applied after each flight to track degradation trends. Ma, Lu, 
and Liu (2015) propose a fault diagnosis method for the 
aircraft environmental control system’s HX using a strong 
tracking filter combined with a modified Bayes classification 
algorithm. Their approach addresses limitations of traditional 
filters by adaptively estimating fault-related parameters, 
enabling accurate and rapid detection and classification of 
HX faults. Similarly, Jonsson, Lalot, Palsson, and Desmet 
(2007) demonstrate the use of extended Kalman filtering with 
nonlinear state-space models for online detection of fouling 
in HX, showing high sensitivity even during transient 
operating conditions. 

The remainder of this paper is organized as follows: Section 
2 reviews related work on Digital Twins and hybrid modeling 
approaches in aerospace PHM. Section 3 details the proposed 
Hybrid Digital Twin framework and parameter estimation 
methodologies. Section 4 presents the case study on HX, 
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including model calibration and prognostics results. Section 
5 discusses the implications and potential extensions of the 
approach. Finally, Section 6 concludes the paper and outlines 
future research directions. 

2. DIGITAL TWIN OVERVIEW  

Digital Twin technology has rapidly evolved as a cornerstone 
for advanced health monitoring and predictive maintenance 
in aerospace and other industries. By creating a dynamic, 
data-driven virtual representation of physical assets, Digital 
Twins enable continuous monitoring, diagnostics, and 
prognostics throughout the asset lifecycle. To fully appreciate 
the capabilities and applications of Digital Twins, it is 
important to understand their foundation within Model-Based 
Systems Engineering (MBSE) and the role of Digital System 
Models (DSMs). The following subsections provide a 
structured overview of these foundational concepts, clarify 
the unique characteristics of Digital Twins, and explore their 
methodologies and applications in diagnostics and 
prognostics. 

2.1. Model-Based Systems Engineering and Digital 
System Models 

Model-Based Systems Engineering (MBSE) provides a 
structured and formalized approach to system development 
by employing models to support requirements, design, 
analysis, verification, and validation throughout the system 
lifecycle. According to Friedenthal, Griego, and Sampson 
(2007), MBSE utilizes various types of system models, 
including functional/behavioral, performance, 
structural/component, and other engineering analysis models. 
These diverse models collectively contribute to the creation 
of a comprehensive Digital System Model (DSM), which is 
a fundamental product of Model-Based Engineering (MBE). 

  
Figure 1. Model Based Engineering Diamond with key 

enablers 

Figure 1 shows key enablers for Digital Twin driven D&P 
solution, such as model development, calibration, and 
enhanced diagnostics and prognostics across the product 
lifecycle. 

As described by Reid and Rhodes (2016), the DSM integrates 
all technical data into a unified framework, serving as the 
foundation from which individual Digital Twins are 
instantiated. This integrated model ensures consistency and 
traceability across the system’s lifecycle, enabling seamless 
collaboration among engineering disciplines. 

With this foundational framework in place, it is essential to 
clearly distinguish the Digital Twin from other digital 
representations, which we discuss next. 

2.2. Defining Digital Twin: Distinction from Digital 
Model and Digital Shadow 

The term "Digital Twin" refers to a dynamic digital replica of 
a physical system that is continuously updated with real-time 
data on performance, maintenance, and health status 
throughout the asset’s lifecycle (Madni, Madni, and Lucero, 
2019). Unlike static digital models or one-way digital 
shadows, Digital Twins enable bidirectional, fully integrated, 
and automatic data exchange between the physical and digital 
systems, allowing real-time synchronization and interaction. 

Figure 2 shows the distinction between a Digital Twin, a 
Digital Model, and a Digital Shadow. Digital Model is a 
static digital version of a physical object, such as a CAD 
model, without automatic data exchange between the 
physical and digital entities. A Digital Shadow involves a 
one-way automated data flow from the physical object to the 
digital counterpart, where changes in the physical asset 
update the digital shadow but not vice versa. In contrast, 
a Digital Twin supports bidirectional data flow, enabling the 
digital model to influence the physical asset and vice versa. 
This distinction is critical for enabling advanced diagnostics 
and prognostics capabilities and is emphasized by Fuller, Fan, 
Day, and Barlow (2020). However, we are not adhering to 
such a strict definition and also regard Digital Shadow as a 
form of Digital Twin. 
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Figure 2. Distinguishing Digital Twin from Digital Model 
and Digital Shadow 

Having established the unique nature of Digital Twins, we 
now explore their key properties that enable advanced 
diagnostics and prognostics. 

2.3. Key Properties of Digital Twins 

Digital Twins possess several essential properties that make 
them uniquely suited for diagnostics and prognostics in 
complex systems such as aircraft sub-systems: 

• Individuality: As defined by Grieves et al. [7], Digital 
Twins exist in different forms, including the Digital 
Twin Prototype (DTP) and Digital Twin Instance (DTI). 
DTP represents the asset at the prototype stage, 
incorporating design and requirement data, while the 
DTI corresponds to a specific physical asset in operation, 
continuously linked to its physical counterpart with real-
time sensor data and service records. 

• Adaptability: Digital Twins must be adaptable to 
accommodate different asset classes and evolving 
operational scenarios. Nikula, Paavola, Ruusunen, and 
Keski-Rahkonen (2020) demonstrated an online 
adaptation mechanism using differential evolution 
algorithms to update model parameters in real time, 
enhancing monitoring and diagnostics accuracy. Madni 
et al. (2019) introduced the concept of an ‘Adaptive 
Digital Twin’ that continuously updates models with 
real-time and batch data, improving predictive 
capabilities. 

• Continuity: Digital Twins are continuously updated 
with sensor data from physical assets, enabling real-time 
monitoring and intelligent decision-making. In the 
Industry 4.0 context, this continuous data flow supports 
run-to-fail analytics and proactive maintenance 
strategies. 

• Scalability: Scalability allows Digital Twins to learn 
from multiple similar assets and address complex use 

cases. Jia, Wang, and Zhang (2022) proposed a multi-
scale, multi-scenario, and multi-dimensional approach to 
complex Digital Twin development using a 4-C 
architecture (composition, context, component, and 
code). This approach modularizes Digital Twins into 
reusable components and manages information fusion 
and multi-context interactions, facilitating scalable and 
comprehensive digital representations. 

These properties collectively empower Digital Twins to serve 
as powerful tools for health monitoring and predictive 
maintenance. To realize these capabilities, appropriate 
methodologies and enabling technologies are required, which 
we discuss next. 

2.4. Methodologies and Technologies for Digital Twin 
Development 

Developing effective Digital Twins involves a combination 
of physics-based, data-driven, and hybrid modeling 
approaches. Rasheed, San, and Kvamsdal (2020) provide a 
comprehensive review of these methodologies, highlighting 
physics-informed machine learning as a promising hybrid 
approach that leverages the strengths of both physics-based 
interpretability and data-driven pattern recognition. 

Lim, Zheng, and Chen (2020) further explore the technology 
stack for Digital Twin implementation, detailing methods and 
tools across product lifecycle management (PLM) stages. 
Their work underscores the value of Digital Twins in 
enabling new business models through enhanced asset 
management and predictive maintenance, emphasizing the 
importance of integrating Digital Twins within the broader 
digital thread. 

These methodologies and technologies address challenges 
related to model accuracy, adaptability, and real-time 
performance, which are essential for reliable health 
predictions in aerospace applications. 

Building on this foundation, the next subsection highlights 
the practical application of Digital Twins in diagnostics and 
prognostics for aircraft subsystems. 

3. DIAGNOSTICS AND PROGNOSTICS DRIVEN BY HYBRID 
DIGITAL TWIN  

Hybrid techniques combine knowledge of the physical 
process with information extracted from observed data, 
leveraging the strengths of both model-based and data-driven 
methods. An important advantage of Hybrid Digital Twins is 
their ability to calibrate and estimate unknown design 
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parameters or characteristics across multiple components and 
subsystems, to capture asset-specific behavior of the system 
and to enhance predictive capability. 

The parameters of a Digital System Model can be classified 
into two categories: design parameters (e.g., mechanical 
dimensions) and health-related parameters (e.g., efficiency). 
The estimated health-related parameters are subsequently 
utilized for diagnostics and prognostics of the subsystem. 

Physics-based Digital System Models and their design 
parameters are typically proprietary to suppliers for the 
specific assets they manufacture. In many cases, obtaining 
this design data from suppliers is challenging, creating a 
bottleneck in developing accurate Digital System Models that 
define normal system behavior. This paper proposes a novel 
reverse engineering approach to estimate unavailable design 
parameters for subsystem Digital Twins using sensor 
measurements collected under specific nominal operating 
conditions. Key steps involved in this approach are: 

• Physics-based Digital system model (DSM) 
development (or availability of existing DSMs for 
system/subsystem) 

• Calibration of physics-based Digital System Model 
using nominal sensor data (transformation to Digital 
System Model) 

• Generation of Advanced Features by comparison of 
Digital System Model outputs with corresponding sensor 
data/Operational Digital Twin 

Health-related parameters and associated performance 
characteristics are crucial for subsystem Digital System 
Models to accurately replicate the nominal behavior of the 
subsystem. This is achieved by calibrating the Digital System 
Model using nominal sensor data extracted from 
comprehensive historical datasets collected across various 
operators. 

The Physics-based Digital System Model (DSM), as depicted 
in Figure 3, represents the expected behavior of a system 
during operation, essentially describing "what should 
happen." This DSM is created from a physics-based model 
that incorporates the system architecture, component 
specification sheets, and geometric data, and is continuously 
updated using nominal operational data. In contrast, 
operational data captures "what is actually happening." By 
continuously calibrating the physics-based model with asset-
specific operational data, the model evolves into the 
Operational Digital Twin. Health-related parameters, along 
with various statistical features derived from the residuals 
between the Digital System Model and the Operational 
Digital Twin, combine to form an augmented feature space 
utilized for failure diagnostics and prognostics. 

 

Figure 3. Use of Digital Twin for Diagnostics & Prognostics 

The subsequent sections provide a detailed discussion of the 
aforementioned steps. Step 1 implements physics-based 
Digital System Model. Step 2 focuses on the calibration of 
Digital System Models through parameter estimation, 
supported by a benchmarking study of various techniques 
using a spring-mass-damper example. Based on this 
benchmarking, the most effective and efficient approach is 
identified and subsequently applied to a real-world use case 
involving HX diagnostics and prognostics, as part of Step 3. 

3.1. Physics-Based Digital System Model (DSM) 

The physics-based modeling approach involves representing 
the underlying physical phenomena of a system through 
mathematical equations. Numerous advanced software 
packages are available to facilitate the development of such 
models. Domain knowledge and expertise play a critical role 
in constructing accurate physics-based models. Unlike data-
driven approaches, physics-based models are deterministic 
and grounded in system dynamics and fundamental physical 
laws. 
 
An example of a physics-based model is the spring-mass-
damper system as shown in Figure 4, commonly used to 
analyze responses of various engineering applications such as 
aircraft landing gear operation. 
 

 
Figure 4. Spring-mass damper system 

The spring-mass system parameters include mass (m), 
stiffness (k), and damping coefficient (c), which govern the 
system dynamics. 
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Figure 5. Spring mass damper system physics-based model 

 
The governing equation for the spring-mass-damper system 
is: 

                  𝑚𝑚𝑥̈𝑥 + 𝑏𝑏𝑥𝑥 + 𝑘𝑘𝑘𝑘 = 0̇                               (1) 
 
where (m) is mass, (b) is damping coefficient, and (k) is 
spring stiffness in the Eq. (1). Figure 5. shows a spring mass 
damper system physics-based model in Simulink.  

3.2. Model Calibration 

A Digital Twin of aircraft subsystems constructed using first-
principle physics-based models calibrated with operational 
data, plays a crucial role in enhancing diagnostics and 
prognostics. For a Digital Twin-driven diagnostic and 
prognostic (D&P) solution, constructing a Digital System 
Model for a specific subsystem of an individual asset or 
platform in operation is a critical step. The parameters of the 
Digital Twin can be classified into design parameters (e.g., 
mechanical dimensions) and health-related parameters (e.g., 
efficiency). 

 
Figure 6. Parameter estimation approach in general 

 
Figure 6 illustrates a general structure of a parameter 
estimation algorithm, highlighting the integration of physics-
based modeling and operational data. A physics-based model, 
with governing equations (e.g., state-space representation), 
generates simulated sensor data based on current parameter 
estimates. This simulated data is compared against actual 
sensor measurements collected from the asset in operation. 

The discrepancy between simulated and measured data is 
quantified using an objective or fitness function, often 
defined as the sum of squared errors. Parameter estimation 
algorithms iteratively adjust the model parameters to 
minimize this objective function, thereby improving the 
model’s accuracy in representing the real system. This 
closed-loop framework effectively combines model 
predictions and real-world observations to calibrate 
parameters, ensuring that the physics-based model remains 
representative of the asset’s true behavior. 

 
Figure 7. Model calibration and parameter estimation 

approach in D&P solution 
 
Since the digital system model represents an idealized replica 
of the actual asset in operation, it is essential to characterize 
both the design parameters and health/performance-related 
parameters using nominal data which is free from faults or 
degradation associated with the real system. The model 
calibration process, which involves estimating these 
parameters, is a critical step in developing the Digital System 
Model (DSM). To accomplish this calibration, the subsystem 
physics-based model is integrated with a parameter 
estimation algorithm, such as nonlinear least squares 
estimation, to convert the physics-based model into a DSM. 
Figure 7 illustrates the pivotal role of model calibration and 
parameter estimation in constructing a robust diagnostic and 
prognostic (D&P) solution. 

3.2.1. Overview of Parameter Estimation Techniques 
for Calibration of Physics-Based Models 

Accurate parameter estimation is critical for developing 
reliable Digital Twins of complex engineering systems, 
enabling precise characterization of both design and health 
parameters. A variety of methods have been proposed to 
address this challenge, each with its own strengths and 
limitations. 
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Recursive Estimation Technique: 

Among the most widely used are recursive estimation 
techniques such as the Extended Kalman Filter (EKF) and 
Unscented Kalman Filter (UKF), which can estimate system 
states and parameters simultaneously. The UKF is 
particularly effective for nonlinear systems because it avoids 
explicit linearization by using sigma points to approximate 
the state distribution, often achieving higher accuracy than 
the EKF. However, this improved accuracy comes with 
increased computational complexity and the need for careful 
tuning of noise covariance matrices. The EKF, while simpler 
and computationally faster, relies on first-order linearization, 
which can reduce accuracy or cause divergence in highly 
nonlinear scenarios. Additionally, it requires the derivation of 
Jacobians, which can be cumbersome for complex models. 

Iqbal (2019) explores the application of EKF and its variants 
in nonlinear mechanics within an experimental physics 
teaching laboratory, emphasizing their role in filtering noisy 
data and estimating unknown parameters. The study provides 
a heuristic understanding of Kalman filtering techniques, 
highlighting their historical significance and broad 
applicability across fields such as signal processing and 
robotics. Yu et al. (2019) propose an improved EKF-based 
framework for state-of-charge estimation in lithium-ion 
batteries, combining the Akaike Information Criterion for 
model optimization with a two-stage estimation process 
integrating recursive least squares and particle swarm 
optimization. Their method enhances robustness, accuracy, 
and convergence speed compared to traditional EKF 
approaches, as validated experimentally. 

Hybrid Physics-Informed Deep Learning Methods: 

Beyond classical filtering, hybrid methods like Physics-
Informed Neural Networks (PINNs) have gained traction. 
PINNs incorporate physical laws directly into the training 
process, offering flexibility in handling noisy and sparse data 
and enabling simultaneous estimation of states and 
parameters without model linearization. However, they 
require significant computational resources, extensive 
hyperparameter tuning, and expertise in deep learning 
frameworks, which may limit their practical adoption. 

Metaheuristic / Optimization-Based Methods: 

Optimization techniques also play a vital role in parameter 
estimation. Several studies have combined advanced 
optimization with filtering methods to improve performance. 
For example, Sun et al. (2018) developed a method 
integrating EKF with a constrained and improved Particle 
Swarm Optimization (C&I-PSO) algorithm, effectively 
incorporating physical constraints and demonstrating 
superior performance in electromechanical oscillation 
estimation. Similarly, Xu et al. (2014) proposed a PSO-based 
approach for multi-parameter estimation in multi-cell 
biological systems, achieving high accuracy in position 

tracking and contour estimation while outperforming existing 
multi-object tracking methods. 

Particle Swarm Optimization (PSO), a metaheuristic global 
optimization technique, excels at exploring complex, 
multimodal parameter spaces without requiring gradient 
information. Its simplicity and parallelizability are 
advantageous, but PSO can be computationally intensive and 
slow to converge, especially in high-dimensional problems. 
Moreover, PSO focuses solely on parameter estimation and 
does not provide state estimates. 

Derivative-Based Method: 

In contrast, nonlinear least squares estimation (NLSE) 
leverages gradient-based optimization to achieve fast 
convergence when residuals are smooth and the model is 
well-formulated. Supported by robust implementations such 
as MATLAB’s lsqnonlin, NLSE is efficient but sensitive to 
initial guesses and noise, and like PSO, it estimates 
parameters only. 

Trade-Offs and Method Selection: 

Each method presents distinct trade-offs in terms of accuracy, 
computational demand, and applicability. The choice of an 
appropriate parameter estimation technique depends on 
factors such as system nonlinearity, measurement availability, 
computational resources, and whether simultaneous state and 
parameter estimation is required. Often, combining 
complementary approaches or tailoring methods to specific 
applications enhances estimation performance and model 
robustness. 

Additional Considerations: 

Derivative-based methods, including Gradient Descent and 
nonlinear least squares, rely on gradient information to 
iteratively minimize error functions but may face challenges 
like weak observability when measurements are insufficient 
relative to the number of parameters. Metaheuristic 
algorithms such as PSO and Genetic Algorithms are 
population-based, stochastic search methods designed to 
explore solution spaces globally, improving the likelihood of 
finding global optima and handling multimodal, nonlinear 
problems without gradient information. 

Online estimation techniques including EKF, UKF, and 
Particle Filters recursively update parameter and state 
estimates in real time, accommodating system dynamics and 
measurement noise. Recent research has also focused on 
improving parameter estimation efficiency through various 
strategies. For instance, Le, Zach, Rosten, and Woodford 
(2020) presented a nonlinear least squares approach that 
guarantees convergence while significantly reducing 
computational requirements. Zhao, Qi, and Liu (2017) 
discussed leveraging information from previous data batches 
to enhance state estimation using a Bayesian recursive 
estimation algorithm combined with particle filtering. 
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3.2.2. Parameter Estimation Benchmarking 

Parameter estimation benchmarking using Extended Kalman 
Filter (EKF), Unscented Kalman Filter (UKF), Nonlinear 
Least Squares (NLS) and Particle Swarm Optimization (PSO) 
were studied before selecting suitable approach for model 
calibration. Above 5 approaches are implemented on Spring 
mass damper system, to estimate spring stiffness (k) and 
Damping coefficient (b). For a given 
measurement/experimental data, all the above approaches are 
evaluated against KPIs.  

Parameter estimation benchmarking study was conducted 
using Extended Kalman Filter (EKF), Unscented Kalman 
Filter (UKF), Nonlinear Least Squares (NLS), and Particle 
Swarm Optimization (PSO) to identify the most suitable 
approach for model calibration. These five methods were 
applied to a spring-mass-damper system to estimate the 
spring stiffness (k) and damping coefficient (b). Each 
approach was evaluated against key performance indicators 
(KPIs) using the same set of measurement and experimental 
data. 

The spring-mass-damper simulation is designed to generate 
synthetic data for benchmarking various parameter 
estimation techniques. The system is modeled as a second-
order differential equation representing a mass attached to a 
spring and damper, with the dynamics governed by the 
damping coefficient (a) and spring constant (k). The 
simulation uses a fixed time step (dt = 0.01 seconds) over a 
total duration of 10 seconds, resulting in a time vector with 
1001 points. The true system parameters are set as a damping 
coefficient of 0.5 and a spring constant of 2.0. An input force, 
modeled as a sinusoidal function with frequency 0.5 Hz and 
amplitude 1.0, drives the system. The state variables—
position and velocity—are numerically integrated using 
Euler's method, starting from rest. 

 
Figure 8. Generated data added with noise using spring-

mass-damper simulation 

To mimic real-world measurement conditions, zero-mean 
Gaussian noise with a standard deviation of 0.05 is added to 
the simulated position data, as shown in Figure 8. This noisy 
measurement serves as the observed data for parameter 
estimation. The noise addition ensures that the estimators are 
tested under realistic conditions where sensor noise and 
disturbances are present. 

All the 5 estimation techniques, uses the noisy position data 
and known input force to estimate the system states and 
parameters. Each estimator is configured with specific 
hyperparameters tailored to its algorithmic nature. For the 
UKF and EKF, process and measurement noise covariances 
are carefully tuned to balance model uncertainties and sensor 
noise, enabling stable and accurate parameter tracking. PSO 
uses a swarm size of 30 particles and runs for 100 iterations 
with inertia and cognitive/social coefficients tuned for 
convergence. NLSE employs the Levenberg-Marquardt 
algorithm with bounds on parameters and a maximum of 200 
iterations. The PINN typically involves network architecture 
choices, learning rates, and loss weighting between data 
fidelity and physics constraints. 

 
Figure 9. Comparison of results for estimation of various 

approaches 

First 2 subplots in Figure 9 provides the comparison of 
measured vs computed values against the final estimated 
parameters of various approaches. Subsequent plots have 
results for estimated parameters.  
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Parameter UKF EKF PSO NLS 
Damping 
coefficient 

0.404 0.5  0.472  0.472 

Stiffness 1.959 2.0 2.008 2.008 
Table 1. Comparison of estimated parameter values of 

various approaches 
 
Table 1 provides the comparison of final estimated 
parameters of various approaches. Notably, the parameter 
estimates from the EKF closely match the true system values, 
with a stiffness of 0.500 and a damping coefficient of 2.000, 
reflecting its superior accuracy in capturing the system 
dynamics compared to the other estimators. 
To measure the performance of the various approaches it is 
evaluated against various KPIs as depicted in Table 2. 
 

No Metrics UKF EKF PSO NLS 

1 MSE 3.2e-4 2.6e-4 3e-5 3e-5 

2 MAPE 0.553 0.502 0.213 0.213 

3 Computation 
time (sec) 

0.022 0.027 0.237 0.043 

Table 2. Performance comparison of various approaches for 
position (measured vs. computed) 

 
The benchmarking results demonstrate the comparative 
performance of the different estimators in terms of accuracy 
and computational efficiency. The Particle Swarm 
Optimization (PSO) and Nonlinear Least Squares Estimation 
(NLSE) methods achieve the lowest Mean Squared Error 
(MSE) of 0.00003 and Mean Absolute Percentage Error 
(MAPE) of approximately 0.21%, indicating highly accurate 
position estimates. However, PSO requires a longer 
computation time of 0.237 seconds compared to NLSE’s 
0.043 seconds. The Extended Kalman Filter (EKF) and 
Unscented Kalman Filter (UKF) also provide reasonable 
accuracy, with MSE values of 0.00026 and 0.00032 and 
MAPE values of 0.50% and 0.55%, respectively, but they are 
significantly faster, especially the UKF which completes in 
0.022 seconds. These results highlight the trade-offs between 
estimation accuracy and computational cost, guiding the 
selection of appropriate methods based on application 
requirements. But the convergence time of all approaches 
may vary considering the complexity of the systems across 
various real work use cases.  

4. AIRCRAFT SYSTEM USE CASES: USE OF DIGITAL TWIN 
FOR D&P 

A digital system model captures the design intent and 
expected behavior of a subsystem under healthy or nominal 
operating conditions. It relies on estimated nominal health 
parameters to characterize this ideal state. In contrast, 
an operational Digital Twin reflects the real-time condition 
and behavior of the physical asset during operation, 

continuously integrating sensor data and other inputs to 
derive current health parameters. 

 
Figure 10. Parameter estimation approach 

In this work, a novel two-level filtering approach is employed 
to identify nominal flight legs of the subsystem. These 
filtered data segments, representing stable and fault-free 
operation, are used to calibrate the digital system model, 
ensuring that the model accurately reflects the subsystem’s 
healthy behavior. 

The model calibration process, illustrated in Figure 10, 
employs a parameter estimation routine based on the 
Nonlinear Least Squares (NLS) technique. For the initial 
flight, parameter values within valid ranges are specified as 
starting points. For subsequent flights, the parameter 
estimates from the previous flight serve as initial values, 
enhancing convergence and stability. This iterative 
calibration against filtered nominal flight data enables precise 
characterization of nominal health parameters, thereby 
facilitating the development of a robust and reliable digital 
system model. 

The aircraft Environment Control System (ECS) is vital for 
maintaining a comfortable and safe cabin environment by 
regulating temperature, humidity, pressurization, and air 
circulation. Key components of ECS include the Centrifugal 
Compressor (CC) and the Heat Exchanger (HX), both of 
which are critical for effective environmental control and are 
the focus of this study. 
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4.1 Design Parameter estimation and characterization 
for a Centrifugal Compressor in aircraft ECS 

A centrifugal compressor is employed in the environmental 
control systems (ECS) of modern aircraft to compress outside 
air prior to conditioning and delivery to the cabin. Its main 
role is to raise the pressure and temperature of the incoming 
air, facilitating effective cooling, heating, and pressurization 
of the aircraft cabin. In this use case, we focus on estimating 
two unknown design parameters the compressor inlet duct 
area and the impeller effective diameter by utilizing selected 
nominal operational data. 
 
The governing equations used to estimate these unknown 
design parameters for the compressor are as follows: 
For inlet duct area (which is function of impeller eye diameter) 
estimation : 

                          Mc = ρi ∗ Ai ∗ Vi                                (2) 
Where: 
Mc = Mass flow rate of air at the inlet (kg/s) 
ρi = Density of air at the inlet (kg/m³) 
Ai = Cross-sectional area of the inlet (m²) 
Vi = Velocity of air at the inlet (m/s) 
Figure 11 shows, a backward swept impeller blade 
orientation, for which the velocity component at inlet of the 
compressor can be derived as: 

 
                         Vi = Ui ∗ tan(βi)                                  (3) 

Where: 
Vi = Absolute velocity component of the fluid at the inlet (m/s) 
Ui = Blade (or impeller) peripheral velocity at the inlet radius 
(m/s) 
βi = Blade angle (or flow angle) at the inlet relative to the 
tangent of the impeller (degrees or radians) 

 
                           Ui =   π∗Di∗N

60
                                        (4) 
 

 
Figure 11. Impeller orientation (backward swept) 

For impeller diameter estimation, exit pressure measurement 
is used.  
Governing Equation: 

𝑟𝑟𝑝𝑝 =  𝑃𝑃𝑒𝑒
𝑃𝑃𝑖𝑖

= �1 + �𝛾𝛾−1 
𝛾𝛾
� � 1

𝑃𝑃𝑖𝑖∗𝑣𝑣𝑖𝑖
� (𝜔𝜔𝑟𝑟i)2�

� 𝛾𝛾 
𝛾𝛾−1�                     (5) 

Where: 
𝑟𝑟𝑝𝑝 is pressure ratio (dimensionless) 
𝛾𝛾 is specific heat ratio (Cp/Cv), constant (dimensionless) 
𝑃𝑃𝑖𝑖 is inlet pressure (pa) 
𝑣𝑣𝑖𝑖 is Specific volume of gas at inlet (1/𝜌𝜌𝑖𝑖) (m³/kg) 
𝜔𝜔 is 2∗𝜋𝜋∗𝑁𝑁

60
 is angular velocity in rad/s 

𝑟𝑟ie  is impeller tip radius which is Die/2 in terms of 
diameter (effective impeller diameter)  in the Eq. (5). 
Figure 11 illustrates the impeller orientation, which 
forms the basis for the above governing equations. 

 
Figure 12. Inlet duct area estimated 

Using nonlinear least squares (NLS) parameter estimation on 
snapshot data from 5345 nominal flights, the results shown in 
Figure 12 and 13were obtained. To estimate the inlet 
diameter of the impeller, i.e. the area of the inlet duct which 
joins at the impeller eye section (shorter section of the 
impeller), Eq. (2) Eq. (3) and Eq. (4) are used along with the 
inlet flow rate sensor measurement. Blade angle, βi  is also 
another estimated parameter. Figure 12 shows the results for 
Inlet duct area.  

 
Figure 13. Impeller effective diameter estimation 

Impeller effective diameter is characterized as: 

          01731 – 2.9304e-05*VDA position                      (6) 



 Annual Conference of the Prognostics and Health Management Society, 2025   
 
 

11 

The above equation provides estimates with a mean absolute 
error (MAE) of 0.0055, using the Variable Diffuser Actuator 
(VDA) position measured by a sensor. This is based upon the 
result shown in Figure 13 for Impeller effective diameter, 
which is obtained from the estimation using the exit pressure 
sensor measurement along with the Eq. (5). Once 
characterization is done, these design parameters are used in 
the Digital System Model which is used for feature 
generation for diagnostics & prognostics solution. 

4.2 Health Related Parameter Estimation for Aircraft 
Heat Exchanger 

A HX facilitates heat transfer between fluids. Typically 
designed with a fin-and-tube structure, heat exchangers can 
face performance issues due to clogging from debris, 
corrosion, mechanical damage, and ice formation, all of 
which can lead to reduced efficiency and reliability concerns 
in associated components. In this paper a HX is considered 
as a use case for health-related parameter estimation and its 
characterization for operational Digital Twin development 
for ECS subsystem.  
 

 
Figure 14. ECS HX and ram air subsystem architecture 

Continuous monitoring of heat exchangers is challenging due 
to their complex design and limited accessibility, making 
maintenance alert prediction crucial to minimize unscheduled 
downtime. Jonsson and Palsson (1994) demonstrated the use 
of an extended Kalman filter for parameter estimation in 
continuous-time heat exchanger models formulated in state-
space form. Their nonlinear model incorporates temperature-
dependent parameters and empirical correlations for heat 
transfer coefficients, enabling accurate dynamic 
representation and adaptive parameter tuning tailored to the 
heat exchanger’s varying operating conditions. 

Newman (2023) presents a scalable approach leveraging 
engineering Digital System Models (DSMs) and Digital 
Twins to support and enhance health management activities. 
He highlights a heat exchanger DSM use case involving time-
invariant calculations to determine output temperatures based 
on inlet temperatures and flow rates. 

Guðmundsson (2008) explores statistical methods, including 
state-space models and Kalman filters, for fouling detection 
in cross-flow heat exchangers using data collected during 
normal operation. By dividing the heat exchanger into 
compartments and applying physical equations alongside 
Kalman filtering, the study shows effective fouling detection, 
with offline methods identifying deposits earlier than online 
approaches. 

Zhang et al. (2015) propose a bilinear model-based parameter 
estimation technique using a multi-input multi-output 
recursive least squares estimator with a forgetting factor to 
detect fouling in heat exchangers. Simulation results validate 
the method’s ability to identify early-stage fouling by 
estimating parameters related to unmeasurable heat transfer 
coefficients. 

Shah, Liu, and Greatrix (2009) introduce a diagnostics, 
prognostics, and health management (DPHM) solution for 
online fouling detection in aircraft environmental control 
system (ECS) cross-flow heat exchangers. Their approach 
employs a lumped state-space dynamic model combined with 
extended Kalman filtering to accurately estimate state-
dependent parameters, enabling predictive maintenance 
scheduling based on real-time fouling status. The method is 
validated through experimental testing. 

This paper proposes a Hybrid Digital Twin framework for 
heat exchanger diagnostics and prognostics. The approach 
improves fault prediction accuracy by estimating critical 
parameters, such as heat transfer coefficients, which are 
difficult to measure directly. Figure 15 illustrates the 
architecture of the ECS HX and ram air subsystem. 

 

no Label Sensor Measurement 

1 TAT Total air temperature  

2 PT Total air  pressure  

3 Tin Air Cycle Machine (ACM) compressor 
exit temperature (HX inlet 
temperature) 

4 To HX exit temperature 

7 Ridp Ram air duct inlet door position 

8 Mpack Pressurized Air Conditioning Kit 
(PACK) mass flow rate 

Table 3. Sensor details of ECS HX 
 
These sensor details of ECS HX are summarized in Table 3. 
Inputs include Ram air inlet conditions and supply from the 
centrifugal compressors, in addition to heat transfer 
coefficients (fouling factors) for the heat exchangers and air 
cycle machine. Based on these inputs, the temperatures at 
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exits (cold and hot sides) of HX are calculated. Note that the 
heat transfer coefficients are not recorded in flight sensor data. 
Governing equation for HX thermal dynamics as shown 
below: 
 

 

 

Where, 

𝑇𝑇ℎ𝑖𝑖, 𝑇𝑇𝑐𝑐𝑐𝑐  — Inlet temperature for hot and cold side 

𝑇𝑇ℎ𝑜𝑜, 𝑇𝑇𝑐𝑐𝑐𝑐  — Outlet temperature for hot and cold side 

𝑊𝑊ℎ — Hot side mass flow rate [Pack flow rate] 

𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 — Ram air duct mass flow rate  

𝐻𝐻ℎ, 𝐻𝐻𝑐𝑐 — Hot and cold side heat transfer coefficients 

𝑚𝑚ℎ , 𝑚𝑚𝑐𝑐  — Mass flow corresponding to hot and cold side 
(product of density and volume for hot and cold side) 

𝐶𝐶ℎ,𝐶𝐶𝑐𝑐 — Specific heats for hot and cold side 

It is to be noted that there are two unknown health related 
parameters (heat transfer coefficients) to be estimated and 
two equations for solution satisfying observability conditions. 

 

Figure 15. HX Output Temperature vs. Actual Temperature 
(from CPL Data) for a segment of flight leg using CPL data 
(time series) 

Figure 15 shows the comparison of HX Output Temperature 
against  Sensor measured Temperature after using estimated 
heat transfer coefficients in the state space model of HX. This 
is estimated per flight for a selected flight phase, here it is 
performed on Cruise flight phase where the operating 
conditions are comparatively stable/steady compared to other 
phases. Once the estimation of heat transfer coefficients is 
performed for significant number of flights in the low 
frequency Aircraft Condition Monitoring System (ACMS) 
data, it can be also characterized similar to the Design 
parameter estimation.  

Estimated design and health parameters are used for Digital 
System Model to execute against operational data, which can 
support deriving advanced features (e.g. Residual features 
between Digital Twin and Sensor data) for prognostics 
solution and indicate failure much ahead of 
warning/maintenance message. Advanced features can be 
either derived by comparing sensor data or operational 
Digital Twin features.  

4.3 D&P APPROACH 

Advanced feature generation for D&P solution, are mainly 
based upon the residuals computed from both Operational 
and Digital System Models. For a selected test data (of  any 
operator) the residual features are generated by comparison 
of parameters and values computed from Digital System 
Model to Operational Digital Twin will be used for anomaly 
detection and can be enhanced by performing various data 
analytics approaches to the residuals.  

Estimated heat transfer coefficient from the HX Operational 
Digital Twin itself depicted better explainable degradation 
trend as shown in below figure 16. 

 
Figure 16. Estimated heat transfer coefficients over 
successive flights using ACMS data indicating a drift in the 
heat transfer coefficient at the region of replacement. 

The above result is for low frequency ACMS data set, for a 
window ahead of HX replacement.  

5. CONCLUSION  

Digital Twins (DT) have demonstrated significant potential 
across industries by enabling cost savings in design, testing, 
inspection, and maintenance, improving knowledge transfer, 
enhancing data transparency, and integrating supply chains. 
However, key challenges remain for their implementation in 
Integrated Vehicle Health Management (IVHM). These 
include balancing model fidelity with development cost and 
complexity, optimizing sensor deployment without 
increasing vehicle weight, managing large-scale data storage 
and high-speed computation needs, and ensuring 
cybersecurity against threats inherent in cloud-based data 
sharing. Additionally, intellectual property concerns limit 
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Digital twin

Operational sensor data

     𝑇𝑇ℎ𝑜𝑜̇ =
𝑊𝑊ℎ(𝑇𝑇ℎ𝑖𝑖−𝑇𝑇ℎ𝑜𝑜)

𝑚𝑚ℎ
−

𝐻𝐻ℎ(𝑇𝑇ℎ𝑜𝑜−𝑇𝑇𝑐𝑐𝑐𝑐)
𝑚𝑚ℎ𝐶𝐶ℎ

                        (7) 

       𝑇𝑇𝑐𝑐𝑐𝑐  ̇ =
𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇𝑐𝑐𝑐𝑐−𝑇𝑇𝑐𝑐𝑐𝑐)

𝑚𝑚𝑐𝑐
−

𝐻𝐻𝑐𝑐(𝑇𝑇𝑐𝑐𝑐𝑐−𝑇𝑇ℎ𝑜𝑜)
𝑚𝑚𝑐𝑐𝐶𝐶𝑐𝑐

                   (8) 
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data sharing, hindering the creation of fully representative 
DTs. 

Despite these challenges, recent advances and decreasing 
technology costs present opportunities for further research. 
Most existing DTs focus on components or subsystems, with 
few addressing integrated system-level models that emulate 
interactions across entire vehicles. Developing modular, 
black-box DT representations that can interconnect offers a 
promising path toward comprehensive vehicle-level Digital 
Twins. Such integration can enhance IVHM effectiveness 
and optimize condition-based maintenance strategies, 
ultimately improving vehicle safety and operational 
efficiency. 
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