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ABSTRACT

In the aerospace industry, modern aircraft are increasingly
equipped with a growing number of sensors, which enable the
development of predictive maintenance solutions utilizing
data-driven diagnostic and prognostic (D&P) techniques to
enhance operational availability and reduce maintenance
costs. However, constructing a purely data-driven D&P
solution requires a substantial amount of run-to-fail sensor
data, which is often unavailable for highly reliable and safety-
critical aircraft systems. This limitation restricts the
applicability of purely data-driven D&P solutions for aircraft
subsystems. To address this limitation, we developed a novel
Hybrid Digital Twin framework that integrates physics-based
subsystem models with sensor data, enabling enhanced
feature generation for improved fault diagnostics and
prognostics. Our approach simultancously estimates both
design and health-related parameters, facilitating accurate
model calibration even when some of design data is not
available. Sensor features enhanced with estimated health-
related parameters enable more accurate data-driven
diagnostics and prognostics solutions of a sub-system or a
component. The framework is demonstrated on key
subsystems of the aircraft Environment Control System
(ECS), including the Heat Exchanger and Centrifugal
Compressor. Various parameter estimation techniques
including nonlinear least squares, particle swarm
optimization, and extended Kalman filter, Unscented Kalman
filter, Physics-Informed Neural Networks, etc., are evaluated.
This Hybrid Digital Twin approach offers a promising
pathway for more accurate, robust and scalable health
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1. INTRODUCTION

Predictive maintenance has become essential in modern
aircraft operations to ensure safety, reliability, and cost
efficiency by anticipating faults before failures occur.
Prognostics and health management (PHM) techniques
leverage sensor data to enable real-time diagnostics and
prognostics (D&P), thereby reducing unscheduled downtime
and maintenance costs. However, purely data-driven D&P
methods require extensive run-to-fail sensor datasets, which
are often unavailable for highly reliable, safety-critical
aircraft subsystems. This scarcity of data limits the
effectiveness and applicability of conventional data-driven
approaches in acrospace contexts.

To address these challenges, Digital Twin (DT) technology
has emerged as a transformative paradigm. A Digital Twin is
a dynamic, virtual replica of a physical asset that
continuously integrates real-time sensor data with physics-
based models to reflect the asset’s current state and predict
future behavior. Unlike static digital models or one-way
digital shadows, Digital Twins enable bidirectional data
exchange and adaptive model updates, supporting enhanced
decision-making throughout the asset lifecycle.

The foundation of Digital Twins lies in Model-Based
Systems Engineering (MBSE), which formalizes system
modeling across requirements, design, analysis, and
validation phases (Grieves, 2016). The Digital System Model
(DSM) serves as the foundational integrated model from
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which individual Digital Twins are instantiated (Glaessgen &
Stargel, 2012; Gartner Inc, 2019). Digital Twins are
characterized by their individuality, adaptability, continuous
synchronization with physical assets, and scalability across
asset fleets (Redding, 2011; Madni, Madni, & Lucero, 2019).

Recent research highlights (Ezhilarasu et al. 2019, Adhikari
et al. 2018) the growing interest in Hybrid Digital Twin
approaches that combine physics-based and data-driven
modeling to overcome limitations inherent in each method
(Jardine et al. 2006; Ezhilarasu et al. 2019). Physics-based
models offer interpretability and extrapolation capabilities
grounded in physical laws, while data-driven methods excel
at capturing complex patterns from operational data. Hybrid
approaches, including physics-informed machine learning,
provide enhanced robustness and accuracy for health
monitoring and prognostics.

In aerospace, several organizations have pioneered Digital
Twin applications for vehicle health monitoring. NASA and
the United States Air Force developed Digital Twins for
airframe health management, with Tuegel (2012) proposing
a cradle-to-grave airframe Digital Twin that reduces
uncertainty through Bayesian updating of service experience.
Zakrajsek and Mall (2017) developed a physics-based Digital
Twin for aircraft tire health monitoring during touchdown
events.

Among aerospace OEMs, Rolls Royce employs Digital
Twins for engine health monitoring, enabling an Intelligent
Engine that is highly connected and contextually aware. Their
Digital Twin supports analysis of blade-off events in Trent
engines (Goldenberg B 2025). Similarly, GE has developed
Digital Twins for its GE60 engine family and also aircraft
landing gear, using initial physics-based models updated
frequently with operational data to detect anomalies, forecast
maintenance, and predict remaining useful life (Louise
Bonnar, 2019; GE Digital Twin, 2016).

Beyond aerospace, Digital Twins have been widely adopted
in automotive, maritime, and railway industries. Tesla
Motors creates a Digital Twin for every vehicle, enabling
over-the-air fixes, software updates, and maintenance
scheduling based on real-time usage and performance data
(Schleich, Anwer, Mathieu, & Wartzack, 2017).

Physics-based techniques rely on accurate dynamic Digital
System Models (DSM) capable of detecting even
unanticipated faults. The prediction results of model-based
diagnostic and prognostic solutions are intuitive and
grounded in modeled cause-effect relationships; deviations
from these predictions during ‘nominal’ conditions may
indicate the need for increased model fidelity or enhanced
noise-handling methods. These techniques overcome
limitations posed by insufficient sensor data or data
inaccessibility in harsh environments by employing high-
fidelity models to generate multidomain databases of
processed variables, effectively serving as virtual sensors

(Liu, Meyendorf, Blasch, Tsukada, Liao, & Mrad, 2025). A
key advantage is the ability to combine actual sensor data
with model outputs to compute residuals, which, when
exceeding defined thresholds, indicate potential fault
conditions. Model-based solutions adopt a system-oriented
approach characterized by high precision and determinism,
allowing failure thresholds to be defined in accordance with
system performance.

Pujana et al. (2023) presents a hybrid-model-based Digital
Twin methodology for wind turbine power conversion
systems that integrate physics-based models with data-driven
analytics to enhance failure detection and classification. By
generating synthetic failure data from real operational
observations and employing machine learning techniques,
this approach effectively addresses data scarcity and
improves predictive maintenance capabilities.

Building on these advances, this work presents a novel
Hybrid Digital Twin framework that integrates physics-based
subsystem models with sensor data to generate advanced
diagnostic and prognostic features. A key innovation is the
simultaneous estimation of design parameters (e.g.,
mechanical dimensions) and health parameters (e.g.,
efficiency degradation), enabling accurate model calibration
even when original design data is unavailable or affected by
operational changes such as aging or environmental stress.
This dual-parameter estimation enhances the fidelity of both
digital system model and operational Digital Twins for
individual aircraft subsystems.

We demonstrate the framework on the Heat exchanger (HX)
of the aircraft environment control system (ECS), a critical
yet difficult-to-monitor component prone to degradation
from clogging, corrosion, and icing. HX’s complex design
and inaccessibility necessitate accurate prognostics to
minimize unscheduled maintenance. Our approach calibrates
physics-based HX models wusing various parameter
estimation techniques including nonlinear least squares,
particle swarm optimization, and extended Kalman filtering
applied after each flight to track degradation trends. Ma, Lu,
and Liu (2015) propose a fault diagnosis method for the
aircraft environmental control system’s HX using a strong
tracking filter combined with a modified Bayes classification
algorithm. Their approach addresses limitations of traditional
filters by adaptively estimating fault-related parameters,
enabling accurate and rapid detection and classification of
HX faults. Similarly, Jonsson, Lalot, Palsson, and Desmet
(2007) demonstrate the use of extended Kalman filtering with
nonlinear state-space models for online detection of fouling
in HX, showing high sensitivity even during transient
operating conditions.

The remainder of this paper is organized as follows: Section
2 reviews related work on Digital Twins and hybrid modeling
approaches in aerospace PHM. Section 3 details the proposed
Hybrid Digital Twin framework and parameter estimation
methodologies. Section 4 presents the case study on HX,
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including model calibration and prognostics results. Section
5 discusses the implications and potential extensions of the
approach. Finally, Section 6 concludes the paper and outlines
future research directions.

2. DIGITAL TWIN OVERVIEW

Digital Twin technology has rapidly evolved as a cornerstone
for advanced health monitoring and predictive maintenance
in aerospace and other industries. By creating a dynamic,
data-driven virtual representation of physical assets, Digital
Twins enable continuous monitoring, diagnostics, and
prognostics throughout the asset lifecycle. To fully appreciate
the capabilities and applications of Digital Twins, it is
important to understand their foundation within Model-Based
Systems Engineering (MBSE) and the role of Digital System
Models (DSMs). The following subsections provide a
structured overview of these foundational concepts, clarify
the unique characteristics of Digital Twins, and explore their
methodologies and applications in diagnostics and
prognostics.

2.1. Model-Based Systems Engineering and Digital
System Models

Model-Based Systems Engineering (MBSE) provides a
structured and formalized approach to system development
by employing models to support requirements, design,
analysis, verification, and validation throughout the system
lifecycle. According to Friedenthal, Griego, and Sampson
(2007), MBSE utilizes various types of system models,
including functional/behavioral, performance,
structural/component, and other engineering analysis models.
These diverse models collectively contribute to the creation
of a comprehensive Digital System Model (DSM), which is
a fundamental product of Model-Based Engineering (MBE).

model and Evaluate calibration (Digital Twin) with
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Figure 1. Model Based Engineering Diamond with key
enablers

Figure 1 shows key enablers for Digital Twin driven D&P
solution, such as model development, calibration, and
enhanced diagnostics and prognostics across the product
lifecycle.

As described by Reid and Rhodes (2016), the DSM integrates
all technical data into a unified framework, serving as the
foundation from which individual Digital Twins are
instantiated. This integrated model ensures consistency and
traceability across the system’s lifecycle, enabling seamless
collaboration among engineering disciplines.

With this foundational framework in place, it is essential to
clearly distinguish the Digital Twin from other digital
representations, which we discuss next.

2.2. Defining Digital Twin: Distinction from Digital
Model and Digital Shadow

The term "Digital Twin" refers to a dynamic digital replica of
a physical system that is continuously updated with real-time
data on performance, maintenance, and health status
throughout the asset’s lifecycle (Madni, Madni, and Lucero,
2019). Unlike static digital models or one-way digital
shadows, Digital Twins enable bidirectional, fully integrated,
and automatic data exchange between the physical and digital
systems, allowing real-time synchronization and interaction.

Figure 2 shows the distinction between a Digital Twin, a
Digital Model, and a Digital Shadow. Digital Model is a
static digital version of a physical object, such as a CAD
model, without automatic data exchange between the
physical and digital entities. A Digital Shadow involves a
one-way automated data flow from the physical object to the
digital counterpart, where changes in the physical asset
update the digital shadow but not vice versa. In contrast,
a Digital Twin supports bidirectional data flow, enabling the
digital model to influence the physical asset and vice versa.
This distinction is critical for enabling advanced diagnostics
and prognostics capabilities and is emphasized by Fuller, Fan,
Day, and Barlow (2020). However, we are not adhering to
such a strict definition and also regard Digital Shadow as a
form of Digital Twin.
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Figure 2. Distinguishing Digital Twin from Digital Model
and Digital Shadow

Having established the unique nature of Digital Twins, we
now explore their key properties that enable advanced
diagnostics and prognostics.

2.3. Key Properties of Digital Twins

Digital Twins possess several essential properties that make
them uniquely suited for diagnostics and prognostics in
complex systems such as aircraft sub-systems:

e Individuality: As defined by Grieves et al. [7], Digital
Twins exist in different forms, including the Digital
Twin Prototype (DTP) and Digital Twin Instance (DTI).
DTP represents the asset at the prototype stage,
incorporating design and requirement data, while the
DTI corresponds to a specific physical asset in operation,
continuously linked to its physical counterpart with real-
time sensor data and service records.

e Adaptability: Digital Twins must be adaptable to
accommodate different asset classes and evolving
operational scenarios. Nikula, Paavola, Ruusunen, and
Keski-Rahkonen (2020) demonstrated an online
adaptation mechanism using differential evolution
algorithms to update model parameters in real time,
enhancing monitoring and diagnostics accuracy. Madni
et al. (2019) introduced the concept of an ‘Adaptive
Digital Twin’ that continuously updates models with
real-time and batch data, improving predictive
capabilities.

e Continuity: Digital Twins are continuously updated
with sensor data from physical assets, enabling real-time
monitoring and intelligent decision-making. In the
Industry 4.0 context, this continuous data flow supports

run-to-fail analytics and proactive maintenance

strategies.

e  Scalability: Scalability allows Digital Twins to learn
from multiple similar assets and address complex use

cases. Jia, Wang, and Zhang (2022) proposed a multi-
scale, multi-scenario, and multi-dimensional approach to
complex Digital Twin development using a 4-C
architecture (composition, context, component, and
code). This approach modularizes Digital Twins into
reusable components and manages information fusion
and multi-context interactions, facilitating scalable and
comprehensive digital representations.

These properties collectively empower Digital Twins to serve
as powerful tools for health monitoring and predictive
maintenance. To realize these capabilities, appropriate
methodologies and enabling technologies are required, which
we discuss next.

2.4. Methodologies and Technologies for Digital Twin
Development

Developing effective Digital Twins involves a combination
of physics-based, data-driven, and hybrid modeling
approaches. Rasheed, San, and Kvamsdal (2020) provide a
comprehensive review of these methodologies, highlighting
physics-informed machine learning as a promising hybrid
approach that leverages the strengths of both physics-based
interpretability and data-driven pattern recognition.

Lim, Zheng, and Chen (2020) further explore the technology
stack for Digital Twin implementation, detailing methods and
tools across product lifecycle management (PLM) stages.
Their work underscores the value of Digital Twins in
enabling new business models through enhanced asset
management and predictive maintenance, emphasizing the
importance of integrating Digital Twins within the broader
digital thread.

These methodologies and technologies address challenges
related to model accuracy, adaptability, and real-time
performance, which are essential for reliable health
predictions in aerospace applications.

Building on this foundation, the next subsection highlights
the practical application of Digital Twins in diagnostics and
prognostics for aircraft subsystems.

3. DIAGNOSTICS AND PROGNOSTICS DRIVEN BY HYBRID
DIGITAL TWIN

Hybrid techniques combine knowledge of the physical
process with information extracted from observed data,
leveraging the strengths of both model-based and data-driven
methods. An important advantage of Hybrid Digital Twins is
their ability to calibrate and estimate unknown design
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parameters or characteristics across multiple components and
subsystems, to capture asset-specific behavior of the system
and to enhance predictive capability.

The parameters of a Digital System Model can be classified
into two categories: design parameters (e.g., mechanical
dimensions) and health-related parameters (e.g., efficiency).
The estimated health-related parameters are subsequently
utilized for diagnostics and prognostics of the subsystem.

Physics-based Digital System Models and their design
parameters are typically proprietary to suppliers for the
specific assets they manufacture. In many cases, obtaining
this design data from suppliers is challenging, creating a
bottleneck in developing accurate Digital System Models that
define normal system behavior. This paper proposes a novel
reverse engineering approach to estimate unavailable design
parameters for subsystem Digital Twins using sensor
measurements collected under specific nominal operating
conditions. Key steps involved in this approach are:

e Physics-based Digital system model (DSM)
development (or availability of existing DSMs for
system/subsystem)

e Calibration of physics-based Digital System Model
using nominal sensor data (transformation to Digital
System Model)

e Generation of Advanced Features by comparison of
Digital System Model outputs with corresponding sensor
data/Operational Digital Twin

Health-related parameters and associated performance
characteristics are crucial for subsystem Digital System
Models to accurately replicate the nominal behavior of the
subsystem. This is achieved by calibrating the Digital System
Model using nominal sensor data extracted from
comprehensive historical datasets collected across various
operators.

The Physics-based Digital System Model (DSM), as depicted
in Figure 3, represents the expected behavior of a system
during operation, essentially describing "what should
happen." This DSM is created from a physics-based model
that incorporates the system architecture, component
specification sheets, and geometric data, and is continuously
updated using nominal operational data. In contrast,
operational data captures "what is actually happening." By
continuously calibrating the physics-based model with asset-
specific operational data, the model evolves into the
Operational Digital Twin. Health-related parameters, along
with various statistical features derived from the residuals
between the Digital System Model and the Operational
Digital Twin, combine to form an augmented feature space
utilized for failure diagnostics and prognostics.

What is happening?

Operational Data /
Operation Digital Twin

(additional sensor data & estimated
parameters e.g. efficiency, etc.)

Senor Data from
Operation / Lab 5

What should happen?
Digital System Model (DSM

Sub-system schematics.

Nominal Cond

Diagnostics & Prognostics

Calibrated Nominal
Physics based Model

+ Enhanced Fault
Isolation

Compute reS‘d“?‘ + Anomaly Detection /

Prognostics Alert
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Simulated Sensor advanced statistical
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Figure 3. Use of Digital Twin for Diagnostics & Prognostics

The subsequent sections provide a detailed discussion of the
aforementioned steps. Step 1 implements physics-based
Digital System Model. Step 2 focuses on the calibration of
Digital System Models through parameter estimation,
supported by a benchmarking study of various techniques
using a spring-mass-damper example. Based on this
benchmarking, the most effective and efficient approach is
identified and subsequently applied to a real-world use case
involving HX diagnostics and prognostics, as part of Step 3.

3.1. Physics-Based Digital System Model (DSM)

The physics-based modeling approach involves representing
the underlying physical phenomena of a system through
mathematical equations. Numerous advanced software
packages are available to facilitate the development of such
models. Domain knowledge and expertise play a critical role
in constructing accurate physics-based models. Unlike data-
driven approaches, physics-based models are deterministic
and grounded in system dynamics and fundamental physical
laws.

An example of a physics-based model is the spring-mass-
damper system as shown in Figure 4, commonly used to
analyze responses of various engineering applications such as
aircraft landing gear operation.

i -1
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Figure 4. Spring-mass damper system
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The spring-mass system parameters include mass (m),
stiffness (k), and damping coefficient (c), which govern the
system dynamics.
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The governing equation for the spring-mass-damper system
is:
mx + bx + kx = 0 (1)

where (m) is mass, (b) is damping coefficient, and (k) is
spring stiffness in the Eq. (1). Figure 5. shows a spring mass
damper system physics-based model in Simulink.

3.2. Model Calibration

A Digital Twin of aircraft subsystems constructed using first-
principle physics-based models calibrated with operational
data, plays a crucial role in enhancing diagnostics and
prognostics. For a Digital Twin-driven diagnostic and
prognostic (D&P) solution, constructing a Digital System
Model for a specific subsystem of an individual asset or
platform in operation is a critical step. The parameters of the
Digital Twin can be classified into design parameters (e.g.,
mechanical dimensions) and health-related parameters (e.g.,

efficiency).
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Libraries for Parameter
Estimation
Physics Based Model Simulated
sensor data
2]
_é [Simulink / States space]
=
5 , Objective /
2 Fitness function
£
g
¢}

N
In-service Data F=1Y @, -0
5 2( i = U

Sensor
measurements

[sensor data for the tail]

Figure 6. Parameter estimation approach in general

Figure 6 illustrates a general structure of a parameter
estimation algorithm, highlighting the integration of physics-
based modeling and operational data. A physics-based model,
with governing equations (e.g., state-space representation),
generates simulated sensor data based on current parameter
estimates. This simulated data is compared against actual
sensor measurements collected from the asset in operation.

The discrepancy between simulated and measured data is
quantified using an objective or fitness function, often
defined as the sum of squared errors. Parameter estimation
algorithms iteratively adjust the model parameters to
minimize this objective function, thereby improving the
model’s accuracy in representing the real system. This
closed-loop framework effectively combines model
predictions and real-world observations to calibrate
parameters, ensuring that the physics-based model remains
representative of the asset’s true behavior.

-

Objective/
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Digital System Model
(Calibrated nominal physics-
based model)

Design parameters, Kominal
HealthPerformance characteristics

Operational DT outputs.

MNominal/Operational
Digital Twin oulputs.

Flight Logs

i : Part Replaced or MNSG Triggered

Figure 7. Model calibration and parameter estimation
approach in D&P solution

Since the digital system model represents an idealized replica
of the actual asset in operation, it is essential to characterize
both the design parameters and health/performance-related
parameters using nominal data which is free from faults or
degradation associated with the real system. The model
calibration process, which involves estimating these
parameters, is a critical step in developing the Digital System
Model (DSM). To accomplish this calibration, the subsystem
physics-based model is integrated with a parameter
estimation algorithm, such as nonlinear least squares
estimation, to convert the physics-based model into a DSM.
Figure 7 illustrates the pivotal role of model calibration and
parameter estimation in constructing a robust diagnostic and
prognostic (D&P) solution.

3.2.1. Overview of Parameter Estimation Techniques
for Calibration of Physics-Based Models

Accurate parameter estimation is critical for developing
reliable Digital Twins of complex engineering systems,
enabling precise characterization of both design and health
parameters. A variety of methods have been proposed to
address this challenge, each with its own strengths and
limitations.
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Recursive Estimation Technique:

Among the most widely used are recursive estimation
techniques such as the Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF), which can estimate system
states and parameters simultaneously. The UKF is
particularly effective for nonlinear systems because it avoids
explicit linearization by using sigma points to approximate
the state distribution, often achieving higher accuracy than
the EKF. However, this improved accuracy comes with
increased computational complexity and the need for careful
tuning of noise covariance matrices. The EKF, while simpler
and computationally faster, relies on first-order linearization,
which can reduce accuracy or cause divergence in highly
nonlinear scenarios. Additionally, it requires the derivation of
Jacobians, which can be cumbersome for complex models.

Igbal (2019) explores the application of EKF and its variants
in nonlinear mechanics within an experimental physics
teaching laboratory, emphasizing their role in filtering noisy
data and estimating unknown parameters. The study provides
a heuristic understanding of Kalman filtering techniques,
highlighting their historical significance and broad
applicability across fields such as signal processing and
robotics. Yu et al. (2019) propose an improved EKF-based
framework for state-of-charge estimation in lithium-ion
batteries, combining the Akaike Information Criterion for
model optimization with a two-stage estimation process
integrating recursive least squares and particle swarm
optimization. Their method enhances robustness, accuracy,
and convergence speed compared to traditional EKF
approaches, as validated experimentally.

Hybrid Physics-Informed Deep Learning Methods:

Beyond classical filtering, hybrid methods like Physics-
Informed Neural Networks (PINNs) have gained traction.
PINNs incorporate physical laws directly into the training
process, offering flexibility in handling noisy and sparse data
and enabling simultaneous estimation of states and
parameters without model linearization. However, they
require significant computational resources, extensive
hyperparameter tuning, and expertise in deep learning
frameworks, which may limit their practical adoption.

Metaheuristic / Optimization-Based Methods:

Optimization techniques also play a vital role in parameter
estimation. Several studies have combined advanced
optimization with filtering methods to improve performance.
For example, Sun et al. (2018) developed a method
integrating EKF with a constrained and improved Particle
Swarm Optimization (C&I-PSO) algorithm, effectively
incorporating physical constraints and demonstrating
superior performance in electromechanical oscillation
estimation. Similarly, Xu et al. (2014) proposed a PSO-based
approach for multi-parameter estimation in multi-cell
biological systems, achieving high accuracy in position

tracking and contour estimation while outperforming existing
multi-object tracking methods.

Particle Swarm Optimization (PSO), a metaheuristic global
optimization technique, excels at exploring complex,
multimodal parameter spaces without requiring gradient
information. Its simplicity and parallelizability are
advantageous, but PSO can be computationally intensive and
slow to converge, especially in high-dimensional problems.
Moreover, PSO focuses solely on parameter estimation and
does not provide state estimates.

Derivative-Based Method:

In contrast, nonlinear least squares estimation (NLSE)
leverages gradient-based optimization to achieve fast
convergence when residuals are smooth and the model is
well-formulated. Supported by robust implementations such
as MATLAB’s Isqnonlin, NLSE is efficient but sensitive to
initial guesses and noise, and like PSO, it estimates
parameters only.

Trade-Offs and Method Selection:

Each method presents distinct trade-offs in terms of accuracy,
computational demand, and applicability. The choice of an
appropriate parameter estimation technique depends on
factors such as system nonlinearity, measurement availability,
computational resources, and whether simultaneous state and
parameter estimation is required. Often, combining
complementary approaches or tailoring methods to specific
applications enhances estimation performance and model
robustness.

Additional Considerations:

Derivative-based methods, including Gradient Descent and
nonlinear least squares, rely on gradient information to
iteratively minimize error functions but may face challenges
like weak observability when measurements are insufficient
relative to the number of parameters. Metaheuristic
algorithms such as PSO and Genetic Algorithms are
population-based, stochastic search methods designed to
explore solution spaces globally, improving the likelihood of
finding global optima and handling multimodal, nonlinear
problems without gradient information.

Online estimation techniques including EKF, UKF, and
Particle Filters recursively update parameter and state
estimates in real time, accommodating system dynamics and
measurement noise. Recent research has also focused on
improving parameter estimation efficiency through various
strategies. For instance, Le, Zach, Rosten, and Woodford
(2020) presented a nonlinear least squares approach that
guarantees convergence while significantly reducing
computational requirements. Zhao, Qi, and Liu (2017)
discussed leveraging information from previous data batches
to enhance state estimation using a Bayesian recursive
estimation algorithm combined with particle filtering.
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3.2.2. Parameter Estimation Benchmarking

Parameter estimation benchmarking using Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), Nonlinear
Least Squares (NLS) and Particle Swarm Optimization (PSO)
were studied before selecting suitable approach for model
calibration. Above 5 approaches are implemented on Spring
mass damper system, to estimate spring stiffness (k) and
Damping coefficient (b). For a given
measurement/experimental data, all the above approaches are
evaluated against KPIs.

Parameter estimation benchmarking study was conducted
using Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF), Nonlinear Least Squares (NLS), and Particle
Swarm Optimization (PSO) to identify the most suitable
approach for model calibration. These five methods were
applied to a spring-mass-damper system to estimate the
spring stiffness (k) and damping coefficient (b). Each
approach was evaluated against key performance indicators
(KPIs) using the same set of measurement and experimental
data.

The spring-mass-damper simulation is designed to generate
synthetic data for benchmarking various parameter
estimation techniques. The system is modeled as a second-
order differential equation representing a mass attached to a
spring and damper, with the dynamics governed by the
damping coefficient (a) and spring constant (k). The
simulation uses a fixed time step (dt = 0.01 seconds) over a
total duration of 10 seconds, resulting in a time vector with
1001 points. The true system parameters are set as a damping
coefficient of 0.5 and a spring constant of 2.0. An input force,
modeled as a sinusoidal function with frequency 0.5 Hz and
amplitude 1.0, drives the system. The state variables—
position and velocity—are numerically integrated using
Euler's method, starting from rest.

Generated measured data with noise

Noisy Measurement

True Position

Position
°

-0.1

-0.2

-0.3
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Figure 8. Generated data added with noise using spring-
mass-damper simulation

To mimic real-world measurement conditions, zero-mean
Gaussian noise with a standard deviation of 0.05 is added to
the simulated position data, as shown in Figure 8. This noisy
measurement serves as the observed data for parameter
estimation. The noise addition ensures that the estimators are
tested under realistic conditions where sensor noise and
disturbances are present.

All the 5 estimation techniques, uses the noisy position data
and known input force to estimate the system states and
parameters. Each estimator is configured with specific
hyperparameters tailored to its algorithmic nature. For the
UKEF and EKF, process and measurement noise covariances
are carefully tuned to balance model uncertainties and sensor
noise, enabling stable and accurate parameter tracking. PSO
uses a swarm size of 30 particles and runs for 100 iterations
with inertia and cognitive/social coefficients tuned for
convergence. NLSE employs the Levenberg-Marquardt
algorithm with bounds on parameters and a maximum of 200
iterations. The PINN typically involves network architecture
choices, learning rates, and loss weighting between data
fidelity and physics constraints.
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Figure 9. Comparison of results for estimation of various
approaches

First 2 subplots in Figure 9 provides the comparison of
measured vs computed values against the final estimated
parameters of various approaches. Subsequent plots have
results for estimated parameters.
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Parameter UKF EKF PSO NLS
Damping 0.404 0.5 0.472 0.472
coefficient

Stiffness 1.959 2.0 2.008 2.008

Table 1. Comparison of estimated parameter values of
various approaches

Table 1 provides the comparison of final estimated
parameters of various approaches. Notably, the parameter
estimates from the EKF closely match the true system values,
with a stiffness of 0.500 and a damping coefficient of 2.000,
reflecting its superior accuracy in capturing the system
dynamics compared to the other estimators.

To measure the performance of the various approaches it is
evaluated against various KPIs as depicted in Table 2.

No | Metrics UKF EKF PSO | NLS

1 MSE 32e4 | 2.6e-4 | 3e-5 | 3e-5

2 MAPE 0.553 0.502 | 0.213 | 0.213

3 Computation | 0.022 0.027 | 0.237 | 0.043
time (sec)

Table 2. Performance comparison of various approaches for
position (measured vs. computed)

The benchmarking results demonstrate the comparative
performance of the different estimators in terms of accuracy
and computational efficiency. The Particle Swarm
Optimization (PSO) and Nonlinear Least Squares Estimation
(NLSE) methods achieve the lowest Mean Squared Error
(MSE) of 0.00003 and Mean Absolute Percentage Error
(MAPE) of approximately 0.21%, indicating highly accurate
position estimates. However, PSO requires a longer
computation time of 0.237 seconds compared to NLSE’s
0.043 seconds. The Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) also provide reasonable
accuracy, with MSE values of 0.00026 and 0.00032 and
MAPE values of 0.50% and 0.55%, respectively, but they are
significantly faster, especially the UKF which completes in
0.022 seconds. These results highlight the trade-offs between
estimation accuracy and computational cost, guiding the
selection of appropriate methods based on application
requirements. But the convergence time of all approaches
may vary considering the complexity of the systems across
various real work use cases.

4. AIRCRAFT SYSTEM USE CASES: USE OF DIGITAL TWIN
FOR D&P

A digital system model captures the design intent and
expected behavior of a subsystem under healthy or nominal
operating conditions. It relies on estimated nominal health
parameters to characterize this ideal state. In contrast,
an operational Digital Twin reflects the real-time condition
and behavior of the physical asset during operation,

continuously integrating sensor data and other inputs to
derive current health parameters.

Generate
solutions Operational
(parameters) Data

Model output
(sensor) data

Launch Non linear
least squares

esti matlon

Calling and evaluatlng
Objective function

Convergence
@ criteria

Generate final
estimated
parameters

Figure 10. Parameter estimation approach

In this work, a novel two-level filtering approach is employed
to identify nominal flight legs of the subsystem. These
filtered data segments, representing stable and fault-free
operation, are used to calibrate the digital system model,
ensuring that the model accurately reflects the subsystem’s
healthy behavior.

The model calibration process, illustrated in Figure 10,
employs a parameter estimation routine based on the
Nonlinear Least Squares (NLS) technique. For the initial
flight, parameter values within valid ranges are specified as
starting points. For subsequent flights, the parameter
estimates from the previous flight serve as initial values,
enhancing convergence and stability. This iterative
calibration against filtered nominal flight data enables precise
characterization of nominal health parameters, thereby
facilitating the development of a robust and reliable digital
system model.

The aircraft Environment Control System (ECS) is vital for
maintaining a comfortable and safe cabin environment by
regulating temperature, humidity, pressurization, and air
circulation. Key components of ECS include the Centrifugal
Compressor (CC) and the Heat Exchanger (HX), both of
which are critical for effective environmental control and are
the focus of this study.
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4.1 Design Parameter estimation and characterization
for a Centrifugal Compressor in aircraft ECS

A centrifugal compressor is employed in the environmental
control systems (ECS) of modern aircraft to compress outside
air prior to conditioning and delivery to the cabin. Its main
role is to raise the pressure and temperature of the incoming
air, facilitating effective cooling, heating, and pressurization
of the aircraft cabin. In this use case, we focus on estimating
two unknown design parameters the compressor inlet duct
area and the impeller effective diameter by utilizing selected
nominal operational data.

The governing equations used to estimate these unknown
design parameters for the compressor are as follows:
For inlet duct area (which is function of impeller eye diameter)
estimation :

Me = pi * A * V; 2)
Where:
Mc = Mass flow rate of air at the inlet (kg/s)
pi = Density of air at the inlet (kg/m?)
A; = Cross-sectional area of the inlet (m?)
V; = Velocity of air at the inlet (m/s)
Figure 11 shows, a backward swept impeller blade
orientation, for which the velocity component at inlet of the
compressor can be derived as:

Vi = U; » tan(B;) 3)
Where:
V; = Absolute velocity component of the fluid at the inlet (m/s)
U; = Blade (or impeller) peripheral velocity at the inlet radius
(m/s)
; = Blade angle (or flow angle) at the inlet relative to the
tangent of the impeller (degrees or radians)

Ti+Dj*xN

U= T 4)

ir,
b

Figure 11. Impeller orientation (backward swept)

For impeller diameter estimation, exit pressure measurement
is used.
Governing Equation:

)4
o LS o S LG
Where:
7, is pressure ratio (dimensionless)
y is specific heat ratio (Cp/Cv), constant (dimensionless)
P; is inlet pressure (pa)
v; is Specific volume of gas at inlet (1/p;) (m*kg)

2*1TxN . . .
o 1S angular velocity in rad/s

Tie is impeller tip radius which is Die/2 in terms of
diameter (effective impeller diameter) in the Eq. (5).
Figure 11 illustrates the impeller orientation, which
forms the basis for the above governing equations.

w 1S
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Figure 12. Inlet duct area estimated

Using nonlinear least squares (NLS) parameter estimation on
snapshot data from 5345 nominal flights, the results shown in
Figure 12 and 13were obtained. To estimate the inlet
diameter of the impeller, i.e. the area of the inlet duct which
joins at the impeller eye section (shorter section of the
impeller), Eq. (2) Eq. (3) and Eq. (4) are used along with the
inlet flow rate sensor measurement. Blade angle, B; is also
another estimated parameter. Figure 12 shows the results for
Inlet duct area.

lia estimated

1 15 L : |
n ann Annn 200 -~ A
0 1000 2000 3000 4000 5000

Mo of Flight Legs -

Figure 13. Impeller effective diameter estimation
Impeller effective diameter is characterized as:

01731 —2.9304¢-05*VDA position (6)
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The above equation provides estimates with a mean absolute
error (MAE) of 0.0055, using the Variable Diffuser Actuator
(VDA) position measured by a sensor. This is based upon the
result shown in Figure 13 for Impeller effective diameter,
which is obtained from the estimation using the exit pressure
sensor measurement along with the Eq. (5). Once
characterization is done, these design parameters are used in
the Digital System Model which is used for feature
generation for diagnostics & prognostics solution.

4.2 Health Related Parameter Estimation for Aircraft
Heat Exchanger

A HX facilitates heat transfer between fluids. Typically
designed with a fin-and-tube structure, heat exchangers can
face performance issues due to clogging from debris,
corrosion, mechanical damage, and ice formation, all of
which can lead to reduced efficiency and reliability concerns
in associated components. In this paper a HX is considered
as a use case for health-related parameter estimation and its
characterization for operational Digital Twin development
for ECS subsystem.

Exit door

Ram air exit

ACM Compressor

Figure 14. ECS HX and ram air subsystem architecture

Continuous monitoring of heat exchangers is challenging due
to their complex design and limited accessibility, making
maintenance alert prediction crucial to minimize unscheduled
downtime. Jonsson and Palsson (1994) demonstrated the use
of an extended Kalman filter for parameter estimation in
continuous-time heat exchanger models formulated in state-
space form. Their nonlinear model incorporates temperature-
dependent parameters and empirical correlations for heat
transfer  coefficients, enabling accurate  dynamic
representation and adaptive parameter tuning tailored to the
heat exchanger’s varying operating conditions.

Newman (2023) presents a scalable approach leveraging
engineering Digital System Models (DSMs) and Digital
Twins to support and enhance health management activities.
He highlights a heat exchanger DSM use case involving time-
invariant calculations to determine output temperatures based
on inlet temperatures and flow rates.

Gudmundsson (2008) explores statistical methods, including
state-space models and Kalman filters, for fouling detection
in cross-flow heat exchangers using data collected during
normal operation. By dividing the heat exchanger into
compartments and applying physical equations alongside
Kalman filtering, the study shows effective fouling detection,
with offline methods identifying deposits earlier than online
approaches.

Zhang et al. (2015) propose a bilinear model-based parameter
estimation technique using a multi-input multi-output
recursive least squares estimator with a forgetting factor to
detect fouling in heat exchangers. Simulation results validate
the method’s ability to identify early-stage fouling by
estimating parameters related to unmeasurable heat transfer
coefficients.

Shah, Liu, and Greatrix (2009) introduce a diagnostics,
prognostics, and health management (DPHM) solution for
online fouling detection in aircraft environmental control
system (ECS) cross-flow heat exchangers. Their approach
employs a lumped state-space dynamic model combined with
extended Kalman filtering to accurately estimate state-
dependent parameters, enabling predictive maintenance
scheduling based on real-time fouling status. The method is
validated through experimental testing.

This paper proposes a Hybrid Digital Twin framework for
heat exchanger diagnostics and prognostics. The approach
improves fault prediction accuracy by estimating critical
parameters, such as heat transfer coefficients, which are
difficult to measure directly. Figure 15 illustrates the
architecture of the ECS HX and ram air subsystem.

no | Label Sensor Measurement

1 TAT Total air temperature

2 PT Total air pressure

3 Tin Air Cycle Machine (ACM) compressor
exit temperature (HX inlet
temperature)

4 T, HX exit temperature

7 Ridp Ram air duct inlet door position

8 Mpack Pressurized Air Conditioning Kit
(PACK) mass flow rate

Table 3. Sensor details of ECS HX

These sensor details of ECS HX are summarized in Table 3.
Inputs include Ram air inlet conditions and supply from the
centrifugal compressors, in addition to heat transfer
coefficients (fouling factors) for the heat exchangers and air
cycle machine. Based on these inputs, the temperatures at

11
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exits (cold and hot sides) of HX are calculated. Note that the

heat transfer coefficients are not recorded in flight sensor data.

Governing equation for HX thermal dynamics as shown

. Wi (Thi—The Hp(Tho—Teco
below.ThO _ Wa(Thi=Tno) _ Ha(Th ) )
mp mpCp
" Wram(Tci_Tco) Hc(Tca_T a)
T, = - : ®)
me m.C.
Where,

Thi, T;; — Inlet temperature for hot and cold side
Tho> T:o — Outlet temperature for hot and cold side
W), — Hot side mass flow rate [Pack flow rate]

Wyam — Ram air duct mass flow rate

Hp, H. — Hot and cold side heat transfer coefficients

my, m, — Mass flow corresponding to hot and cold side
(product of density and volume for hot and cold side)

Cy,C. — Specific heats for hot and cold side

It is to be noted that there are two unknown health related
parameters (heat transfer coefficients) to be estimated and

two equations for solution satisfying observability conditions.

Experiment 1: Simulated and Measured Responses After Estimation

u

w5

— Digital twin

. Operational sensor data

0 50 100 150 20 250

Time(s)

Figure 15. HX Output Temperature vs. Actual Temperature
(from CPL Data) for a segment of flight leg using CPL data
(time series)

Figure 15 shows the comparison of HX Output Temperature
against Sensor measured Temperature after using estimated
heat transfer coefficients in the state space model of HX. This
is estimated per flight for a selected flight phase, here it is
performed on Cruise flight phase where the operating
conditions are comparatively stable/steady compared to other
phases. Once the estimation of heat transfer coefficients is
performed for significant number of flights in the low
frequency Aircraft Condition Monitoring System (ACMS)
data, it can be also characterized similar to the Design
parameter estimation.

Estimated design and health parameters are used for Digital
System Model to execute against operational data, which can
support deriving advanced features (e.g. Residual features
between Digital Twin and Sensor data) for prognostics
solution and indicate failure much ahead of
warning/maintenance message. Advanced features can be
either derived by comparing sensor data or operational
Digital Twin features.

4.3 D&P APPROACH

Advanced feature generation for D&P solution, are mainly
based upon the residuals computed from both Operational
and Digital System Models. For a selected test data (of any
operator) the residual features are generated by comparison
of parameters and values computed from Digital System
Model to Operational Digital Twin will be used for anomaly
detection and can be enhanced by performing various data
analytics approaches to the residuals.

Estimated heat transfer coefficient from the HX Operational
Digital Twin itself depicted better explainable degradation
trend as shown in below figure 16.

Heat transfer coefficient

Flight Legs

Figure 16. Estimated heat transfer coefficients over
successive flights using ACMS data indicating a drift in the
heat transfer coefficient at the region of replacement.

The above result is for low frequency ACMS data set, for a
window ahead of HX replacement.

5. CONCLUSION

Digital Twins (DT) have demonstrated significant potential
across industries by enabling cost savings in design, testing,
inspection, and maintenance, improving knowledge transfer,
enhancing data transparency, and integrating supply chains.
However, key challenges remain for their implementation in
Integrated Vehicle Health Management (IVHM). These
include balancing model fidelity with development cost and
complexity, optimizing sensor deployment without
increasing vehicle weight, managing large-scale data storage
and high-speed computation needs, and ensuring
cybersecurity against threats inherent in cloud-based data
sharing. Additionally, intellectual property concerns limit

12
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data sharing, hindering the creation of fully representative
DTs.

Despite these challenges, recent advances and decreasing
technology costs present opportunities for further research.
Most existing DTs focus on components or subsystems, with
few addressing integrated system-level models that emulate
interactions across entire vehicles. Developing modular,
black-box DT representations that can interconnect offers a
promising path toward comprehensive vehicle-level Digital
Twins. Such integration can enhance IVHM effectiveness
and optimize condition-based maintenance strategies,
ultimately improving vehicle safety and operational
efficiency.
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