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ABSTRACT

Aircraft maintenance plays a crucial role in ensuring the
safety and reliability of aircraft operations. Effective fault
isolation and accurate part recommendation are essential
tasks in the maintenance process. The accuracy of existing
fault isolation solutions in complex situations (e.g. having
multiple fault code scenarios) needs improvement. In this
paper, we propose a novel approach of Hybrid Probabilistic
Modeling based Fault Isolation Framework combining two
solutions. One of the solutions is Pattern Similarity-based
Probabilistic Modeling (PSPM) which leverages historical
maintenance data to build a probabilistic model that captures
patterns of faults and their associated parts replacement. By
comparing the current fault symptoms to these patterns, this
solution enables more accurate fault isolation and suggests
suitable parts for replacement compared to legacy methods.
On the other hand, the Physics Informed Probabilistic
Modeling (PIPM) employs a Bayesian network to leverage
system knowledge in terms of schematics, particularly in
scenarios where historical data is sparse or non-existent. Both
probabilistic modeling-based solutions complement each
other, address gaps, and enhance the efficiency and
effectiveness of aircraft fault isolation.

Keywords: Aircraft ~ maintenance,  fault  isolation,
probabilistic modeling, Pattern Similarity-based Probabilistic
Modeling, Physics Informed Probabilistic Modeling,
Bayesian network.
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1. INTRODUCTION

Airplane Health Management (AHM) is a globally accepted
strategy to enhance operational availability and reduce
maintenance costs across original equipment manufacturers
(OEMs), airlines, and operators. Fault diagnostics and
prognostics are key steps of AHM. Modern aircraft fault
diagnostics techniques have evolved with the installation of
more sensors, wider coverage for condition monitoring, and
advancement of Built-In Test (BIT). Although the objective
for maintainers is to return the aircraft back into service as
soon as possible, inadequate means are available for the line
maintainer to effectively diagnose from aircraft- or system-
level fault to a sub-system component level fault. Preventing
effective fault isolation may result in unnecessary part
replacements. In scenarios involving co-occurring fault
events, existing fault isolation methods often lead to
unnecessary part replacements. This results in added costs
associated with maintaining a large inventory of spares,
multiple attempts to correct an issue, thereby increasing the
Aircraft-On-Ground (AOG) time (IATA, 2022).

Several research efforts (Adhikari, 2018) have been made in
the field of fault isolation and part recommendation in the
context of aircraft maintenance. The following survey of
existing work across industries and academia reveals
different approaches and techniques used to tackle this
problem.

Fault isolation can be broadly categorized into qualitative and
guantitative methods. Rule-based, case-based, and graph
theory-based are examples of qualitative methods, while
Quantitative methods are Model-based (First Principle
Physics -based and Data driven model), Machine learning
(ML) Classifier-based, Fuzzy Reasoning-, Evidential
Reasoning-, and Probabilistic Modeling-based approaches.
The approaches for fault-isolation are selected based on the
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following factors: on-board vs. off-board applications,
volume of operational data available, scalability needed, and
availability of system safety analysis / design related artifacts.

One prevalent approach is rule-based reasoning (Kramer and
Palowitch, 1987 & Ezhilarasu et al., 2019) where a set of
rules is established to match observed fault symptoms with
known fault patterns. These rules are typically derived from
expert knowledge and experience. While rule-based systems
can be effective in certain scenarios, they often lack the
flexibility to handle complex or novel fault scenarios.
Furthermore, developing and maintaining comprehensive
rule sets can be labor-intensive, and it requires continuous
updates as new fault patterns emerge.

Case-based reasoning (CBR) (Boral et al., 2019 & Deng et
al., 2014) solves problems by retrieving similar, previously
solved problems and reusing their solutions. The case-based
approach requires storing a set of cases where each case holds
knowledge about a problem or situation occurring in the past
along with the corresponding solution or action. The case-
base repository acts as a memory while the act of
remembering is achieved using similarity-based retrieval.
The retrieved solutions are reused. However, this technique
relies only on historical information, is time-consuming and
may fail for cases not explicitly represented. The case-based
repository grows with each event and can grow very large,
making it difficult to manage.

In Graph-based techniques, graphical representation of
knowledge (e.g. Bond Graph (Liu and Yu, 2017), Temporal
Causal Graph (Mosterman and Biswas, 1997), Timed Failure
Propagation Graph: TFPG (Zhang et al., 2020), Multi Signal
Dependency Modeling (Li-jia et al., 2018), Minimal Hitting
Set (Kleer, 2016 & Pill et al., 2016) and Maximal clique
(Bron-Kerbosch-algorithm) are the widely used techniques
for domain knowledge representation, but creating the
representative model can be time-consuming and it depends
on the complexity of the system.

Model-based techniques (Vohnout et al., 2012, Skliros et al.,
2021 & Marzat et al., 2013) track nominal system behavior
using a first principal physics-based model or a data-driven
surrogate model. Then, residuals are generated from the
difference between the model’s estimated parameters and
sensor measurements. Reasoning of residuals and derived
features are used for fault isolation.

Physics-based models (Ezhilarasu et al., 2021) require
domain expertise, cost, and effort along with having
challenges of scalability. Data-driven models (Brown et al.,
2007) require a large volume of operational sensor /
maintenance data under all possible operational regimes.

Another approach that has gained attention is the use of
machine learning-based methods (Ezhilarasu et al., 2021 &
Li et al.,, 2020). These techniques leverage historical
maintenance data to train models capable of identifying fault
patterns and recommending suitable parts. Supervised

learning algorithms such as decision trees, support vector
machines, and neural networks have been utilized to classify
faults and predict part replacements. Additionally, data
mining techniques, including clustering, association rule
mining (Yang et al., 2009), and sequential pattern mining
(Gao et al., 2013), have been employed to discover hidden
patterns and relationships within maintenance data. These
approaches aim to identify co-occurrence patterns between
faults and parts, uncovering potential associations that may
assist in fault isolation and part recommendation. These
approaches offer the advantage of automation and data-
driven decision-making, but they often require large amounts
of labeled data for training, which may be limited in the
aircraft maintenance domain.

Probabilistic modeling approaches have also been explored
for fault isolation and part recommendation. These methods
employ probabilistic graphical models, such as Bayesian
networks (Cao et al., 2018, Lépez et al., 2016 & Mengshoel
et al., 2013), to represent the dependencies between faults,
monitors, and parts. By utilizing historical maintenance data,
these models can estimate the likelihood of specific faults and
recommend the most probable parts for replacement.
Probabilistic models provide a principled framework for
reasoning under uncertainty and can handle missing or
incomplete data, which is common in aircraft maintenance
scenarios.

Despite the advancements in fault isolation and part
recommendation techniques, there are still challenges to be
addressed. The complexity of aircraft systems, co-occurring
fault code situations, variability in maintenance data quality,
and the need for efficient decision-making pose ongoing
research opportunities. However, the integration of multiple
data sources such as sensor data, maintenance logs, and
historical fault events can enhance the accuracy and
reliability of fault isolation and part recommendation
systems.

In this paper, we propose a novel Hybrid Probabilistic
modeling-based framework for fault isolation and part
recommendation in aircraft maintenance which combines
two techniques: Pattern Similarity-based Probabilistic
Modeling (PSPM) and Bayesian network-based Physics-
Informed Probabilistic Modeling (PIPM). PSPM is
applicable when a significant number of similar historical
events are available for comparison with the current event,
while PIPM plays a role in fault isolation through inferencing
a Bayesian network constructed based on the system / sub-
system architecture / schematics and logics for fault codes,
for cases lacking historical data. This combined framework
offers the benefits of both data-driven and model-based
solutions.

PSPM looks for similar patterns in historical Maintenance
Messages (MMSGs), Flight Deck Effects (FDEs), and
associated part replacement data as Final Fix, and it provides
enhanced fault isolation and part replacement
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recommendations. Final fix part is identified when a fault
code does not occur over some consecutive flight legs after
the fix was done. This paper also presents a fleet level
evaluation of a Boeing aircraft model in operation. This
paper presents the results of PIPM use in a selection of use
cases.

The remainder of this paper is organized as follows: section
2 highlights enhanced fault isolation and Fix Effectiveness
overview. Section 3 details the methodology and techniques
employed in the PIPM solution with a use case study. Section
4 presents a PSPM overview and fleet level evaluation.
Finally, Section 5 concludes the paper and outlines future
directions for research in this domain.

2. ENHANCED FAULT ISOLATION AND FIX EFFECTIVENESS
OVERVIEW

Our objective is to develop a Probabilistic Modeling-based
framework / solution for enhanced fault isolation and part
recommendation to perform enhanced fault isolation for co-
occurring and single fault code events. Based on the historical
maintenance logs, it is observed that unnecessary LRU
removal happens during fault isolation, especially in cases of
co-occurring (multiple) fault code scenarios.

Maintenance Messages / Flight Deck Warnings triggered in a Flight Leg

{21-66211; 21-66212; 21-66215; 21-66222; 21614400; 21614600; 21613141; 21610341}

[ Zone D Trim Valve removed and [ >
replaced
LH Trim PROSV Valve removed and >
Zone D Temp Sensor removed g Correct / Final Fix
45 and replaced
V

Two y Partr

Unnecessary

before Actual Root cause was identified

Figure 1: A scenario of occurrence of multiple fault codes
and unnecessary part replacement before final fix

Figure 1 contains an example that can explain the existing
gap and potential value addition through enhanced fault
isolation. Four MMSGs and four FDEs were triggered due to
a fault in the Trim Air System of a Boeing aircraft model in
a flight leg of a tail of an airline. Two unnecessary
replacements happened before the actual root cause or Final
Fix was identified. For such multiple fault scenarios, there is
a need for improvement in fault isolation due to a higher
likelihood of unnecessary maintenance costs and aircraft
downtime accrued. Another example can be found in section
IV-C (Figure 9). Figure 2 shows the distribution of MMSGs
under single and various co-occurring MMSG categories
(48.34%) as triggered in historical fleet operation of a Boeing
aircraft model. This is the motivation behind this
Probabilistic Modeling-based approach, which can improve

Fault Isolation / Part Prediction accuracy primarily for the
events with co-occurring MMSGs.

Events with cooccurring
Maintenance Messages

» Single MMSG
10.43%

48.34% = 2MMSG

= 3MMSG
= 4MMSG

= 5MMSG & More

'
: Probabilistic Modelling
| based solution impacts here

: primarily

Figure 2: Distribution of triggered MMSGs in historical
fleet operation of a Boeing aircraft model.

In the context of AHM, fault isolation is required in two
stages (Figure 3): during the early degradation phase, and
after the functional failure indicated by triggering of fault
codes (e.g., MMSGs and FDEs). In this work, our focus is to
isolate the faults after fault codes are triggered (the second
phase). However, the same concept can be extended to the
first phase: a point prior to the triggering of a fault code such
as during precursor anomaly detection (detection of
degradation).

Degradation starts

Fault codes triggered
#

Condition

Remaining Life

Figure 3: Focus area of fault isolation

The technology vision (Figure 4) for probabilistic modeling-
based fault isolation as identified is to combine PSPM and
PIPM for enhanced fault isolation

For PSPM, the key enablers are Pattern Mining and Cosine
Similarity or Jaccard Similarity. This is a data driven
approach applicable when a sufficient number of historical
records (at-least 3 to 5) of similar fault code patterns are
present with replaced equipment names / numbers for a given
pattern. In PIPM, the key enabler is a Bayesian network that
embeds schematics of systems, logic for MMSGs, FMEA
(Failure Mode and Effect Analysis), etc. within the network
model. PIPM is useful when there is a limited number of
records of a given pattern of fault codes or when an event that
has never occurred in history is observed.
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Figure 4: Technology Vision of Probabilistic Modeling
based Fault Isolation

Innovation around both methods of Probabilistic Modeling-
based fault isolation are carried out. The Bayesian network-
based method (PIPM) has been demonstrated with the Trim
Air System (Refer to Section 111 B, Case Study Using PIPM).
Further maturity of PIPM and scalability are under study.
PSPM is implemented for all Air Transport Association
(ATA) chapters of various aircraft models, demonstrating its
scalability and key performance indicators of fault isolation.
PIPM is described briefly in section I1l. PSPM is described
in more details in section V.

3. PHYSICS INFORMED PROBABILISTIC MODELING
(PIPM) — BAYESIAN NETWORK BASED

Bayesian networks are at the center of the PIPM based fault
isolation solution. This section describes an overview of
Bayesian networks (BNs), how to construct scalable BNs
from a dependency file (a text file defining logical
relationships across nodes of a system along with various
properties) defined based on system schematics and other
design inputs, as well as reasoning or inferencing of BNs
based on given measurements / evidences. A case study of
PIPM is presented in this section.

3.1. Overview of PIPM

Bayesian networks or Bayesian belief networks are one of the
probabilistic methods used for reasoning under uncertainty.
It has been successfully applied in a wide range of domains
such as the safety and reliability domains. A Bayesian
network (BN) is a probabilistic graphical model that
represents a set of variables and their conditional
dependencies via a directed acyclic graph (DAG) through a
conditional probability table (CPT).

According to conditional independence and the chain rule,
BNs represent the joint probability distribution P(X) of
variables of any Bayesian network as:

P(X)= ﬁ p(X, /! parents (X))
BNs can update the prior probability of any event given new
information (posterior probability), called evidence M taking
advantage of the Bayes theorem:

POX | M) = P(X,M)  P(X,M)

P(M) %P(X,M)

Cloudy

[ c_|Pisic) | [ | Piric) |
T 0.10 Sprinkler T 0.80
F 050 F 020

[s_|R_|Povis) |
T T 09
T F 0.80
F T 0.80
F F 0.01

Figure 5: Example a simple Bayesian network (BN)

Let us illustrate a Bayesian network with a simple Grass-Wet-
Sprinkler example (Figure 5) where two events can cause the
grass to become wet (W): an active sprinkler (S) or rain (R).
The presence of clouds has a direct effect on the use of the
sprinkler and on the possibility of rain. When the sky is
cloudy (C), the sprinkler (S) is usually not active. This
situation can be modeled with a Bayesian network. Each
variable has two possible values: T (for true) and F (for false).
Conditional Probability Tables for the respective nodes are
defined based on historical data / experience. Once the
Bayesian network is constructed, inferencing / reasoning can
be done with known values of various nodes. i.e. evidences.
A Bayesian network specifies a joint distribution in a
structured form. The full joint distribution: p(X1, X2,....XN)
= II p(Xi | parents(Xi)), which comes from the graph-
structured approximation. Accordingly, from the Grass-Wet-
Sprinkler BN structure, the joint probability may be
expressed as:

P (C, S, R, W) =P(C) P(S|C) P(RIC) P(WIS, R).

The left-hand side is the probability that all of the following
events are true: it is cloudy, the sprinkler is on, it is raining,
and the grass is wet (P (C, S, R, W)). This gets computed by
multiplying the probability that it is cloudy (P(C)) by that of
the sprinkler being on (P(S|C)) or that it is raining given that
it is cloudy (P(R|C)), as well as by the probability that the
grass is wet, given that the sprinkler is on or that it is raining
(P(WIS, R)).

The basic task is, given an observation, to infer the
probability of an event. For example, it is cloudy: what is the
probability that the grass is wet? We want to compute P(W =
T|IC = T). (P(W+|Cy) to simplify notation). Re-writing this
request in terms of the joint probability:

P(Wr, Cr)

P(Wy|Cr) = TPCE)
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The denominator is known: 0.5. The numerator may be
expressed as a marginal distribution:

P(Wr,Cy) = ;%P(W’T.S, R,Cy)
= X3 P(WlS, R)P(S|Cr)P(RICr)P(Cr)

where the summation is over the variable being T, or being
F.

From the simple example P(Cy) has simply been cancelled
from the numerator and denominator): P(W+|Ct) =0.99 x 0.1
x 0.8+ 0.90 x 0.1 x 0.2+0.90 x 0.9 x 0.8 +0.00 x 0.9 x 0.2
= 0.7452. If the grass is wet and the sprinkler is off, what is
the probability of sky being cloudy? If the sprinkler is on
what is the probability of the grass being wet? Reasoning can
flow in any direction: bottom-up or top-down. Using this
reasoning, the root cause behind the grass being wet can be
isolated.

Similarly, we can use BNs for aircraft system fault isolation.
By constructing the Bayesian network using the sub-
system/system schematics and the logic of MMSGs and
FDEs, we can compute Conditional Probability Tables which
show the cause-effect relationships across nodes (i.e.
components) within the network (a directed acyclic graph).
To generate evidence for Bayesian network inference,
existing sensor measurements related to the sub-system are
discretized into health states (e.g. 'Nominal' or 'Degraded')
using statistical/machine learning techniques. Constraint
programming-based optimization eliminates conflicting
nominal evidences which appears due to very low
degradation of parameters. Various modules of the
framework are shown in Figure 6.

Suppliar Data Production Data In-sarvica Data

4“ L
" g
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/ .
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Figure 6: Overview of the Bayesian network-based Fault
Isolation Framework

Figure 7 describes the necessary steps to be followed for
building the scalable Bayesian network, to inferencing from
the BN using discretized sensor measurements as evidence
from snapshot data of the Airplane Conditioning and
Monitoring System (ACMS) for a given flight. For each
subsystem, dependency across various nodes are defined in

text form (in Microsoft Excel) from the schematics of sub-
systems and logics of MMSGs and FDEs. Then, high-level
specifications are merged together to form a system level
dependency and a high-level specification file. A Python-
based framework has been developed for the automatic
generation of the Bayesian network.

Architecture of sub- —s Define High Level Specs
syslenisystem

FMECA, Faut Tree

Cartroler Logic

Seleted EICAS
Massage/
Maintenance
Message

Figure 7: Implementation / Automation of Bayesian
network

This module converts high level specifications into a *.net
file which defines various node attributes and CPT for each
node in a specific format. A CPT is computed from node
operation (e.g. ‘AND’, ‘OR’, ‘NOT”’, ‘EQUAL’, etc.) defined
in a high-level specification file. As an example (Figure 8),
for ‘C’ node having node operation as ‘AND’ with parent
nodes ‘A’ and ‘B’, the computed CPT in specific syntax as
per *.net file is defined as: “potential (C | A B) {data = (((1
0)(0 1))((01)(01)));}”. Similarly, for ‘E’ node having node
operation as ‘OR’ with parent nodes ‘C’ and ‘D’, the
computed CPT in specific syntax as per *.net file is defined
as: “potential (E|C D){data=((( 10)(10))((10)(0 1)));}”.
Once the Bayesian network is generated, discretized sensor
data (“Degraded”, ‘Nominal”) and MMSGs and FDEs
triggered in the given flight are used for Bayesian network
inferencing. Initial validation of inference of constructed
Bayesian networks was done using the Java Samlam tool,
developed by A. Darwiche’s Automated Reasoning Group
(UCLA), which is a comprehensive tool for modeling and
reasoning with Bayesian networks. A Python based
application was developed for the discretization of sensor
data, generation of an evidence list and inferencing of BNs
for fault isolation using the ‘pyAgrum’ package.


http://reasoning.cs.ucla.edu/samiam/
https://webia.lip6.fr/~phw/aGrUM/docs/last/notebooks/Tutorial.ipynb.html
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Figure 8: Example of a simple BN with ‘OR’ node
operation (at node C) and ‘AND’ node operation (at node E)

3.2. Case Study using PIPM

For demonstrating PIPM, the scenario to isolate the valve
fault or a sensor fault, as explained in Figure 1 is considered.
This is related to the Trim Air System (TAS) of a Cabin Air
Compressor Temperature Control System (CACTCS) of a
Boeing aircraft model in operation.

The CACTCS consists of Cabin Air Compressors (CAC),
Pressurized Air Conditioning Kits (PACK) and Trim Air
Systems (TAS). The CAC provides pressurized hot air from
which a percentage of air is supplied to the PACK; the
remaining percentage gets mixed with cold air from the
PACK exit in the TAS before being supplied to cabin zones
for air conditioning and cabin pressurization.

Maintenance Messages  Flight Deck Effects 7
Sensordata (ACMS Snapshot data)

ECS Performancein Aircraft/ System Level

i L Computabon of features

v
Select Evidences for
backwrard inference

2 00.COKR KR

ECS Performancein Sub-system/

CompanentLevel

Malntenance Messages/ |
CACR Flight Dack Effects _L_.
Sensor data (ACMS

“
Trim e Systen - il focus Snapshot data) AN + Campuaon of fealures )

Reasoning using Bayesian
Network

Forward Inference — Health Aggregation .

Backward Inference — fault isolation

Gelect Evidences for
fonward inference
.

Figure 9: Trim Air system and its interconnection

A Bayesian network was constructed for the Trim Air
System. Various steps are shown in Figure 10, where the data
in this morphed due to proprietary restrictions. Inferencing of
the Bayesian network proved that the zone X AFT duct
temperature sensor was degraded for a particular flight. This
is matched with the part replacement as mentioned in the
maintenance report of the flight leg. Analysis of this scenario

using PIPM revealed that this degradation could be detected
and isolated almost 22 flight legs in advance.

High Level Specs
in Excel

Sub-system
Schematics

Sensor data (ACMS
Data) for Current Flight

Discretization of
sensor data

Automatic Generation
of Bayesian Network

Bayesian Network
in text file

Inference of Bayesian
Network

Bayesian Network for =y - e
Trim Air System ——
7

Isolated Fault : Region X AFT duct
ire sensor ‘Degraded’

Figure 10: Steps of fault isolation for TAS using PIPM

To construct the Bayesian network, the logic for FDE “TRIM
VALVE ZONE X” is used, along with the node dependency
based on interconnection of components as shown in Figure
11, where the data in this morphed due to proprietary
restrictions.

Figure 11: Section of BN with logics of FDEs and
dependency based on schematics

Conventionally, Fault Tree or Failure Mode and Effect
Analysis (FMEA) are used for various reasoning algorithms
including Bayesian networks. In this approach, besides Fault
Tree / FMEA, structural dependency across nodes through
system schematics and MMSG logics are also used to
construct the BN. Though the initial results are promising,
there is a need for further research for scalability of BN-based
fault isolation solution.
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4, PATTERN SIMILARITY BASED PROBABILISTIC
MODELING (PSPM)

PSPM underwent various phases of Technology Maturity:
concept development, prototype development,
implementation, and scalable deployment for various aircraft
models and transition to products / services. This section
starts with an overview of PSPM followed by fleet level
evaluation results.

4.1. Overview of PSPM

PSPM looks for similar patterns in the historical MMSGs and
FDEs as well as the associated part replacement data as Final
Fix. It then provides enhanced fault isolation and part
replacement recommendations. It is to be noted that the
PSPM solution is built upon MMSGs, fault codes, and their
corresponding maintenance actions. As a result, the solution
remains effective regardless of the aircraft's service life.
PSPM has two modules: a data pre-processing module
(PSPM Module 1), and a part prediction module (PSPM
Module 2).

In PSPM Module 1, historical MMSGs and FDEs are
downloaded from the Analytics Data Warehouse (A
centralized, enterprise-scale repository that consolidates data
from many source systems) for the entire fleet of an aircraft
model and then unique patterns based on fault codes
correlation are identified. Part replacements confirmed as the
Final Fix are downloaded from the maintenance logbook.
Then it combines these into a single database that maps flight
legs, aircraft tails, unique patterns, and associated part
replacement data. PSPM Module 1 also has a provision to
incorporate sensor data degradation and exceedance patterns
across consecutive flight legs.

The PSPM Module 2 uses PSPM DB (computed by PSPM
Module 1) and applies a pattern similarity-based approach
with adaptive thresholding to recommend the top five parts
with their likelihood of failure (which depicts confidence on
recommendation) along with maintenance recommendations
presenting various historical maintenance actions for similar
patterns.

Data Pre-processing Module

Fault codes
Fa“EaEt‘;e"’s ] Dat Identify Map with
an?llzad = Unique = Part
Part Patlerns Replacement
eplaoemenlb
bl HEEEEIE

MMSG-FDE similarity
_______
Model for Part
Prediction /Isolation ) I PIN Distribution
N

] x §
Predicted PINs: PN1, PN2, PN3 : " .
[ “with likelihood ] [ Maintenance Actions Distribution ] .

Figure 12: PSPM Functional Block Diagram

» Pre-pracessing &
mapping over
historical Fleet Data

¥
Estimation / Prediction Module

Input: pattern for
a given flight

Both Cosine (cos(0)) and Jaccard Similarity (J)- based
approaches with adaptive thresholding are implemented.
Comparing both approaches it has been observed that the
Jaccard  Similarity-based approach shows improved
performance.

Equations for Cosine and Jaccard Similarity:

3° A:B;
similarity = cos(f) = A-B _ = —,
Il A[l[B F [z
> A, > B
i=1 Vi—l
|AnB| |AnB
JAB) = =
|AuB| |A|+|B| - |AnB]

Through the adaptive thresholding logic, PSPM tries to
ensure that it provides recommendations to a given pattern
with better likelihood. If historical part replacements for
similar patterns are found with lesser pattern similarity (<
40%) and part replacement likelihood (< 40%), PSPM does
not provide any part replacement recommendation for that
pattern. The pattern similarity score & part replacement
likelihood are tuned for better results.

The key technical features of PSPM include:

e Identification of unigue MMSG and FDE Warning
patterns in the entire fleet data for a specific aircraft
model and associate them with their maintenance actions
along with their part replacement details.

e Utilization of similarity-based algorithms to find the
closest match of a given pattern for flight legs exceeding
a specified threshold.

o Display of the top five part numbers along with their
respective likelihood of failure, the distribution of
similar  MMSG/FDE patterns, and the historical
maintenance actions distribution.

e Adaptive thresholding for automatic selection of the
similarity threshold.

e Integration of sensor data for identifying feature
exceedance and generating feature trend patterns.

e Implementation of sequential pattern mining (Prefix-
projected Sequential Pattern Mining, Peiet et al., 2001)
to predict the next probable event in a sequence.

e Inclusion of sensitivity analysis, allowing maintenance
personnel to find the distribution of MMSG/FDE
patterns for a given part number and display, thereby
enhancing decision support for fault isolation and part
replacement.
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4.2. PSPM Fleet Level Evaluation Study

Fleet level evaluation was done for a single Boeing aircraft
model for which the data pool consisted of more than a
thousand aircraft tails with flight legs ranging over almost 14
years. All instances of part replacements across every ATA
chapter were downloaded for that aircraft model having over
200K fault events. A fleet level evaluation of PSPM solution
was performed by taking all the fault events mapped to part
replacements. As PSPM is instance-based fault isolation
solution, when a fault code pattern triggered in a flight leg
(i.e., test event) from the PSPM database is taken for
evaluation, all other fault code patterns in the historical fleet
represent training set. Similarly, part recommendation was
predicted for every fault code pattern in the database, and the
following metrics were computed: accuracy, precision, recall
and F1 score.

Delta for Co-Occurring

Metrics Fault Events (%)
Accuracy 5.42
Top Part Precision 4.96
Recommendation Recall 5.42
F1 Score 6.73

Table 1: PSPM Top part Recommendation evaluation
results for a Boeing aircraft model at fleet level

Metrics were calculated for the ‘Top Part Recommendation’
(i.e. the top part recommended matches with the ground truth
replacement) and the ‘Top 5 Parts Recommendation’ (i.e. one
of the top five parts recommended matches with the ground
truth replacement) for all ATA chapters of a Boeing aircraft
model. Table 1 shows the Top part recommendation delta
between PSPM’s pattern-based approach and the traditional
approach of recommending for each individual MMSG. It has
been observed that the PSPM demonstrates an improvement
of over 5% in part recommendation for pattern-based co-
occurring fault events when compared to the traditional
method of replacements based on individual fault codes.
Table 2 shows the overall PSPM evaluation results (for both
cooccurring and single fault events) for Top 5 parts
recommendation. With the Top 5 parts recommendation,
PSPM achieves prediction accuracy of 96.9%.

Metrics Scores (%), for both
cooccurring & single faults
Accuracy 96.9
Top 5 Parts Precision 97.09
Recommendation Recall 96.9
F1 Score 96.74

Table 2: PSPM Top 5 parts Recommendation evaluation
results of a Boeing aircraft model at Fleet level

Data quality and volume in PSPM pre-processed data as well
as emergence of new failure-mode patterns impacts the

PSPM part recommendation KPIs. However, if the pre-
processed fleet level data is not adequate, PSPM prediction
accuracy suffers for some ATA chapters.

5. CONCLUSION

In this paper two innovative approaches of Probabilistic
Modeling based enhanced fault isolation are described with
application and results: Pattern Similarity-based Probabilistic
Modeling (PSPM) and Physics Informed Probabilistic
Modeling (PIPM). The development, implementation, and
fleet-level validation of PSPM are discussed in detail,
demonstrating its effectiveness in isolating faults in both
single and co-occurring fault code scenarios. PSPM has
proven to be a robust solution for pattern-based fault
diagnosis.

The Bayesian network-based PIPM approach also shows
significant potential, particularly in cases involving rare or
novel fault events where historical pattern data is limited.
However, further research is required to validate the
scalability of PIPM, especially in leveraging system
schematics and the underlying logic of fault codes and
warnings to construct comprehensive probabilistic networks.
Additionally, exploring sensor-related pattern analysis and
sequential pattern mining will be critical to advancing fault
isolation capabilities and improving fix effectiveness.
Ultimately, the integration of PIPM with PSPM is expected
to yield a more powerful and comprehensive fault isolation
framework.
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