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ABSTRACT 

Aircraft maintenance plays a crucial role in ensuring the 

safety and reliability of aircraft operations. Effective fault 

isolation and accurate part recommendation are essential 

tasks in the maintenance process. The accuracy of existing 

fault isolation solutions in complex situations (e.g. having 

multiple fault code scenarios) needs improvement. In this 

paper, we propose a novel approach of Hybrid Probabilistic 

Modeling based Fault Isolation Framework combining two 

solutions. One of the solutions is Pattern Similarity-based 

Probabilistic Modeling (PSPM) which leverages historical 

maintenance data to build a probabilistic model that captures 

patterns of faults and their associated parts replacement. By 

comparing the current fault symptoms to these patterns, this 

solution enables more accurate fault isolation and suggests 

suitable parts for replacement compared to legacy methods. 

On the other hand, the Physics Informed Probabilistic 

Modeling (PIPM) employs a Bayesian network to leverage 

system knowledge in terms of schematics, particularly in 

scenarios where historical data is sparse or non-existent. Both 

probabilistic modeling-based solutions complement each 

other, address gaps, and enhance the efficiency and 

effectiveness of aircraft fault isolation. 

Keywords: Aircraft maintenance, fault isolation, 

probabilistic modeling, Pattern Similarity-based Probabilistic 

Modeling, Physics Informed Probabilistic Modeling, 

Bayesian network. 

1. INTRODUCTION 

Airplane Health Management (AHM) is a globally accepted 

strategy to enhance operational availability and reduce 

maintenance costs across original equipment manufacturers 

(OEMs), airlines, and operators. Fault diagnostics and 

prognostics are key steps of AHM. Modern aircraft fault 

diagnostics techniques have evolved with the installation of 

more sensors, wider coverage for condition monitoring, and 

advancement of Built-In Test (BIT). Although the objective 

for maintainers is to return the aircraft back into service as 

soon as possible, inadequate means are available for the line 

maintainer to effectively diagnose from aircraft- or system-

level fault to a sub-system component level fault.  Preventing 

effective fault isolation may result in unnecessary part 

replacements. In scenarios involving co-occurring fault 

events, existing fault isolation methods often lead to 

unnecessary part replacements. This results in added costs 

associated with maintaining a large inventory of spares, 

multiple attempts to correct an issue, thereby increasing the 

Aircraft-On-Ground (AOG) time (IATA, 2022).  

Several research efforts (Adhikari, 2018) have been made in 

the field of fault isolation and part recommendation in the 

context of aircraft maintenance. The following survey of 

existing work across industries and academia reveals 

different approaches and techniques used to tackle this 

problem. 

Fault isolation can be broadly categorized into qualitative and 

quantitative methods. Rule-based, case-based, and graph 

theory-based are examples of qualitative methods, while 

Quantitative methods are Model-based (First Principle 

Physics -based and Data driven model), Machine learning 

(ML) Classifier-based, Fuzzy Reasoning-, Evidential 

Reasoning-, and Probabilistic Modeling-based approaches. 

The approaches for fault-isolation are selected based on the 
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following factors: on-board vs. off-board applications, 

volume of operational data available, scalability needed, and 

availability of system safety analysis / design related artifacts. 

One prevalent approach is rule-based reasoning (Kramer and 

Palowitch, 1987 & Ezhilarasu et al., 2019) where a set of 

rules is established to match observed fault symptoms with 

known fault patterns. These rules are typically derived from 

expert knowledge and experience. While rule-based systems 

can be effective in certain scenarios, they often lack the 

flexibility to handle complex or novel fault scenarios. 

Furthermore, developing and maintaining comprehensive 

rule sets can be labor-intensive, and it requires continuous 

updates as new fault patterns emerge. 

Case-based reasoning (CBR) (Boral et al., 2019 & Deng et 

al., 2014) solves problems by retrieving similar, previously 

solved problems and reusing their solutions. The case-based 

approach requires storing a set of cases where each case holds 

knowledge about a problem or situation occurring in the past 

along with the corresponding solution or action. The case-

base repository acts as a memory while the act of 

remembering is achieved using similarity-based retrieval. 

The retrieved solutions are reused. However, this technique 

relies only on historical information, is time-consuming and 

may fail for cases not explicitly represented. The case-based 

repository grows with each event and can grow very large, 

making it difficult to manage. 

In Graph-based techniques, graphical representation of 

knowledge (e.g. Bond Graph (Liu and Yu, 2017), Temporal 

Causal Graph (Mosterman and Biswas, 1997), Timed Failure 

Propagation Graph: TFPG (Zhang et al., 2020), Multi Signal 

Dependency Modeling (Li-jia et al., 2018), Minimal Hitting 

Set (Kleer, 2016 & Pill et al., 2016) and Maximal clique 

(Bron-Kerbosch-algorithm) are the widely used techniques 

for domain knowledge representation, but creating the 

representative model can be time-consuming and it depends 

on the complexity of the system. 

Model-based techniques (Vohnout et al., 2012, Skliros et al., 

2021 & Marzat et al., 2013) track nominal system behavior 

using a first principal physics-based model or a data-driven 

surrogate model. Then, residuals are generated from the 

difference between the model’s estimated parameters and 

sensor measurements. Reasoning of residuals and derived 

features are used for fault isolation. 

Physics-based models (Ezhilarasu et al., 2021) require 

domain expertise, cost, and effort along with having 

challenges of scalability. Data-driven models (Brown et al., 

2007) require a large volume of operational sensor / 

maintenance data under all possible operational regimes.  

Another approach that has gained attention is the use of 

machine learning-based methods (Ezhilarasu et al., 2021 & 

Li et al., 2020). These techniques leverage historical 

maintenance data to train models capable of identifying fault 

patterns and recommending suitable parts. Supervised 

learning algorithms such as decision trees, support vector 

machines, and neural networks have been utilized to classify 

faults and predict part replacements. Additionally, data 

mining techniques, including clustering, association rule 

mining (Yang et al., 2009), and sequential pattern mining 

(Gao et al., 2013), have been employed to discover hidden 

patterns and relationships within maintenance data. These 

approaches aim to identify co-occurrence patterns between 

faults and parts, uncovering potential associations that may 

assist in fault isolation and part recommendation. These 

approaches offer the advantage of automation and data-

driven decision-making, but they often require large amounts 

of labeled data for training, which may be limited in the 

aircraft maintenance domain. 

Probabilistic modeling approaches have also been explored 

for fault isolation and part recommendation. These methods 

employ probabilistic graphical models, such as Bayesian 

networks (Cao et al., 2018, López et al., 2016 & Mengshoel 

et al., 2013), to represent the dependencies between faults, 

monitors, and parts. By utilizing historical maintenance data, 

these models can estimate the likelihood of specific faults and 

recommend the most probable parts for replacement. 

Probabilistic models provide a principled framework for 

reasoning under uncertainty and can handle missing or 

incomplete data, which is common in aircraft maintenance 

scenarios.  

Despite the advancements in fault isolation and part 

recommendation techniques, there are still challenges to be 

addressed. The complexity of aircraft systems, co-occurring 

fault code situations, variability in maintenance data quality, 

and the need for efficient decision-making pose ongoing 

research opportunities. However, the integration of multiple 

data sources such as sensor data, maintenance logs, and 

historical fault events can enhance the accuracy and 

reliability of fault isolation and part recommendation 

systems. 

In this paper, we propose a novel Hybrid Probabilistic 

modeling-based framework for fault isolation and part 

recommendation in aircraft maintenance which combines 

two techniques: Pattern Similarity-based Probabilistic 

Modeling (PSPM) and Bayesian network-based Physics-

Informed Probabilistic Modeling (PIPM). PSPM is 

applicable when a significant number of similar historical 

events are available for comparison with the current event, 

while PIPM plays a role in fault isolation through inferencing 

a Bayesian network constructed based on the system / sub-

system architecture / schematics and logics for fault codes, 

for cases lacking historical data. This combined framework 

offers the benefits of both data-driven and model-based 

solutions. 

PSPM looks for similar patterns in historical Maintenance 

Messages (MMSGs), Flight Deck Effects (FDEs), and 

associated part replacement data as Final Fix, and it provides 

enhanced fault isolation and part replacement 
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recommendations. Final fix part is identified when a fault 

code does not occur over some consecutive flight legs after 

the fix was done. This paper also presents a fleet level 

evaluation of a Boeing aircraft model in operation.  This 

paper presents the results of PIPM use in a selection of use 

cases.  

The remainder of this paper is organized as follows: section 

2 highlights enhanced fault isolation and Fix Effectiveness 

overview. Section 3 details the methodology and techniques 

employed in the PIPM solution with a use case study. Section 

4 presents a PSPM overview and fleet level evaluation. 

Finally, Section 5 concludes the paper and outlines future 

directions for research in this domain. 

2. ENHANCED FAULT ISOLATION AND FIX EFFECTIVENESS 

OVERVIEW 

Our objective is to develop a Probabilistic Modeling-based 

framework / solution for enhanced fault isolation and part 

recommendation to perform enhanced fault isolation for co-

occurring and single fault code events. Based on the historical 

maintenance logs, it is observed that unnecessary LRU 

removal happens during fault isolation, especially in cases of 

co-occurring (multiple) fault code scenarios. 

 

Figure 1: A scenario of occurrence of multiple fault codes 

and unnecessary part replacement before final fix 

Figure 1 contains an example that can explain the existing 

gap and potential value addition through enhanced fault 

isolation. Four MMSGs and four FDEs were triggered due to 

a fault in the Trim Air System of a Boeing aircraft model in 

a flight leg of a tail of an airline. Two unnecessary 

replacements happened before the actual root cause or Final 

Fix was identified. For such multiple fault scenarios, there is 

a need for improvement in fault isolation due to a higher 

likelihood of unnecessary maintenance costs and aircraft 

downtime accrued. Another example can be found in section 

IV-C (Figure 9). Figure 2 shows the distribution of MMSGs 

under single and various co-occurring MMSG categories 

(48.34%) as triggered in historical fleet operation of a Boeing 

aircraft model. This is the motivation behind this 

Probabilistic Modeling-based approach, which can improve 

Fault Isolation / Part Prediction accuracy primarily for the 

events with co-occurring MMSGs.  

 

Figure 2: Distribution of triggered MMSGs in historical 

fleet operation of a Boeing aircraft model. 

In the context of AHM, fault isolation is required in two 

stages (Figure 3): during the early degradation phase, and 

after the functional failure indicated by triggering of fault 

codes (e.g., MMSGs and FDEs). In this work, our focus is to 

isolate the faults after fault codes are triggered (the second 

phase). However, the same concept can be extended to the 

first phase: a point prior to the triggering of a fault code such 

as during precursor anomaly detection (detection of 

degradation). 

 

Figure 3: Focus area of fault isolation 

The technology vision (Figure 4) for probabilistic modeling-

based fault isolation as identified is to combine PSPM and 

PIPM for enhanced fault isolation 

For PSPM, the key enablers are Pattern Mining and Cosine 

Similarity or Jaccard Similarity. This is a data driven 

approach applicable when a sufficient number of historical 

records (at-least 3 to 5) of similar fault code patterns are 

present with replaced equipment names / numbers for a given 

pattern.  In PIPM, the key enabler is a Bayesian network that 

embeds schematics of systems, logic for MMSGs, FMEA 

(Failure Mode and Effect Analysis), etc. within the network 

model. PIPM is useful when there is a limited number of 

records of a given pattern of fault codes or when an event that 

has never occurred in history is observed. 
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Figure 4: Technology Vision of Probabilistic Modeling 

based Fault Isolation 

Innovation around both methods of Probabilistic Modeling-

based fault isolation are carried out. The Bayesian network-

based method (PIPM) has been demonstrated with the Trim 

Air System (Refer to Section III B, Case Study Using PIPM). 

Further maturity of PIPM and scalability are under study. 

PSPM is implemented for all Air Transport Association 

(ATA) chapters of various aircraft models, demonstrating its 

scalability and key performance indicators of fault isolation. 

PIPM is described briefly in section III. PSPM is described 

in more details in section IV.  

3. PHYSICS INFORMED PROBABILISTIC MODELING 

(PIPM) – BAYESIAN NETWORK BASED 

Bayesian networks are at the center of the PIPM based fault 

isolation solution. This section describes an overview of 

Bayesian networks (BNs), how to construct scalable BNs 

from a dependency file (a text file defining logical 

relationships across nodes of a system along with various 

properties) defined based on system schematics and other 

design inputs, as well as reasoning or inferencing of BNs 

based on given measurements / evidences. A case study of 

PIPM is presented in this section. 

3.1. Overview of PIPM 

Bayesian networks or Bayesian belief networks are one of the 

probabilistic methods used for reasoning under uncertainty. 

It has been successfully applied in a wide range of domains 

such as the safety and reliability domains. A Bayesian 

network (BN) is a probabilistic graphical model that 

represents a set of variables and their conditional 

dependencies via a directed acyclic graph (DAG) through a 

conditional probability table (CPT).  

According to conditional independence and the chain rule, 

BNs represent the joint probability distribution P(X) of 

variables of any Bayesian network as: 

 

BNs can update the prior probability of any event given new 

information (posterior probability), called evidence M taking 

advantage of the Bayes theorem: 

 

 

Figure 5: Example a simple Bayesian network (BN) 

Let us illustrate a Bayesian network with a simple Grass-Wet-

Sprinkler example (Figure 5) where two events can cause the 

grass to become wet (W): an active sprinkler (S) or rain (R). 

The presence of clouds has a direct effect on the use of the 

sprinkler and on the possibility of rain. When the sky is 

cloudy (C), the sprinkler (S) is usually not active. This 

situation can be modeled with a Bayesian network. Each 

variable has two possible values: T (for true) and F (for false). 

Conditional Probability Tables for the respective nodes are 

defined based on historical data / experience. Once the 

Bayesian network is constructed, inferencing / reasoning can 

be done with known values of various nodes. i.e. evidences. 

A Bayesian network specifies a joint distribution in a 

structured form. The full joint distribution:  p(X1, X2,....XN) 

= Π p(Xi | parents(Xi)), which comes from the graph-

structured approximation. Accordingly, from the Grass-Wet-

Sprinkler BN structure, the joint probability may be 

expressed as: 

 P (C, S, R, W) = P(C) P(S|C) P(R|C) P(W|S, R).  

The left-hand side is the probability that all of the following 

events are true: it is cloudy, the sprinkler is on, it is raining, 

and the grass is wet (P (C, S, R, W)). This gets computed by 

multiplying the probability that it is cloudy (P(C)) by that of 

the sprinkler being on (P(S|C)) or that it is raining given that 

it is cloudy (P(R|C)), as well as by the probability that the 

grass is wet, given that the sprinkler is on or that it is raining 

(P(W|S, R)). 

The basic task is, given an observation, to infer the 

probability of an event. For example, it is cloudy: what is the 

probability that the grass is wet? We want to compute P(W = 

T|C = T). (P(WT|CT) to simplify notation). Re-writing this 

request in terms of the joint probability:  
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The denominator is known: 0.5. The numerator may be 

expressed as a marginal distribution: 

  

where the summation is over the variable being T, or being 

F. 

From the simple example P(CT) has simply been cancelled 

from the numerator and denominator): P(WT|CT) = 0.99 × 0.1 

× 0.8 + 0.90 × 0.1 × 0.2 +0.90 × 0.9 × 0.8 + 0.00 × 0.9 × 0.2 

= 0.7452. If the grass is wet and the sprinkler is off, what is 

the probability of sky being cloudy? If the sprinkler is on 

what is the probability of the grass being wet? Reasoning can 

flow in any direction: bottom-up or top-down. Using this 

reasoning, the root cause behind the grass being wet can be 

isolated.  

Similarly, we can use BNs for aircraft system fault isolation. 

By constructing the Bayesian network using the sub-

system/system schematics and the logic of MMSGs and 

FDEs, we can compute Conditional Probability Tables which 

show the cause-effect relationships across nodes (i.e. 

components) within the network (a directed acyclic graph). 

To generate evidence for Bayesian network inference, 

existing sensor measurements related to the sub-system are 

discretized into health states (e.g. 'Nominal' or 'Degraded') 

using statistical/machine learning techniques. Constraint 

programming-based optimization eliminates conflicting 

nominal evidences which appears due to very low 

degradation of parameters. Various modules of the 

framework are shown in Figure 6. 

 

 

Figure 6: Overview of the Bayesian network-based Fault 

Isolation Framework 

Figure 7 describes the necessary steps to be followed for 

building the scalable Bayesian network, to inferencing from 

the BN using discretized sensor measurements as evidence 

from snapshot data of the Airplane Conditioning and 

Monitoring System (ACMS) for a given flight. For each 

subsystem, dependency across various nodes are defined in 

text form (in Microsoft Excel) from the schematics of sub-

systems and logics of MMSGs and FDEs. Then, high-level 

specifications are merged together to form a system level 

dependency and a high-level specification file. A Python-

based framework has been developed for the automatic 

generation of the Bayesian network.  

 

Figure 7: Implementation / Automation of Bayesian 

network 

This module converts high level specifications into a *.net 

file which defines various node attributes and CPT for each 

node in a specific format. A CPT is computed from node 

operation (e.g. ‘AND’, ‘OR’, ‘NOT’, ‘EQUAL’, etc.) defined 

in a high-level specification file. As an example (Figure 8), 

for ‘C’ node having node operation as ‘AND’ with parent 

nodes ‘A’ and ‘B’, the computed CPT in specific syntax as 

per *.net file is defined as: “potential (C | A B) {data = (((1 

0)( 0 1))(( 0 1)( 0 1)));}”. Similarly, for ‘E’ node having node 

operation as ‘OR’ with parent nodes ‘C’ and ‘D’, the 

computed CPT in specific syntax as per *.net file is defined 

as: “potential (E | C  D ){ data = ((( 1 0)( 1 0))(( 1 0)( 0 1)));}”. 

Once the Bayesian network is generated, discretized sensor 

data (“Degraded”, “Nominal”) and MMSGs and FDEs 

triggered in the given flight are used for Bayesian network 

inferencing. Initial validation of inference of constructed 

Bayesian networks was done using the Java SamIam tool, 

developed by A. Darwiche’s Automated Reasoning Group 

(UCLA), which is a comprehensive tool for modeling and 

reasoning with Bayesian networks. A Python based 

application was developed for the discretization of sensor 

data, generation of an evidence list and inferencing of BNs 

for fault isolation using the ‘pyAgrum’ package. 

http://reasoning.cs.ucla.edu/samiam/
https://webia.lip6.fr/~phw/aGrUM/docs/last/notebooks/Tutorial.ipynb.html
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Figure 8: Example of a simple BN with ‘OR’ node 

operation (at node C) and ‘AND’ node operation (at node E) 

3.2. Case Study using PIPM 

For demonstrating PIPM, the scenario to isolate the valve 

fault or a sensor fault, as explained in Figure 1 is considered. 

This is related to the Trim Air System (TAS) of a Cabin Air 

Compressor Temperature Control System (CACTCS) of a 

Boeing aircraft model in operation.  

The CACTCS consists of Cabin Air Compressors (CAC), 

Pressurized Air Conditioning Kits (PACK) and Trim Air 

Systems (TAS). The CAC provides pressurized hot air from 

which a percentage of air is supplied to the PACK; the 

remaining percentage gets mixed with cold air from the 

PACK exit in the TAS before being supplied to cabin zones 

for air conditioning and cabin pressurization.  

 

 

Figure 9: Trim Air system and its interconnection 

A Bayesian network was constructed for the Trim Air 

System. Various steps are shown in Figure 10, where the data 

in this morphed due to proprietary restrictions. Inferencing of 

the Bayesian network proved that the zone X AFT duct 

temperature sensor was degraded for a particular flight. This 

is matched with the part replacement as mentioned in the 

maintenance report of the flight leg. Analysis of this scenario 

using PIPM revealed that this degradation could be detected 

and isolated almost 22 flight legs in advance. 

 
Figure 10: Steps of fault isolation for TAS using PIPM 

To construct the Bayesian network, the logic for FDE “TRIM 

VALVE ZONE X” is used, along with the node dependency 

based on interconnection of components as shown in Figure 

11, where the data in this morphed due to proprietary 

restrictions.  

  

Figure 11: Section of BN with logics of FDEs and 

dependency based on schematics 

Conventionally, Fault Tree or Failure Mode and Effect 

Analysis (FMEA) are used for various reasoning algorithms 

including Bayesian networks. In this approach, besides Fault 

Tree / FMEA, structural dependency across nodes through 

system schematics and MMSG logics are also used to 

construct the BN. Though the initial results are promising, 

there is a need for further research for scalability of BN-based 

fault isolation solution. 
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4. PATTERN SIMILARITY BASED PROBABILISTIC 

MODELING (PSPM) 

PSPM underwent various phases of Technology Maturity: 

concept development, prototype development, 

implementation, and scalable deployment for various aircraft 

models and transition to products / services. This section 

starts with an overview of PSPM followed by fleet level 

evaluation results. 

4.1. Overview of PSPM 

PSPM looks for similar patterns in the historical MMSGs and 

FDEs as well as the associated part replacement data as Final 

Fix. It then provides enhanced fault isolation and part 

replacement recommendations. It is to be noted that the 

PSPM solution is built upon MMSGs, fault codes, and their 

corresponding maintenance actions. As a result, the solution 

remains effective regardless of the aircraft's service life. 

PSPM has two modules: a data pre-processing module 

(PSPM Module 1), and a part prediction module (PSPM 

Module 2).  

In PSPM Module 1, historical MMSGs and FDEs are 

downloaded from the Analytics Data Warehouse (A 

centralized, enterprise-scale repository that consolidates data 

from many source systems) for the entire fleet of an aircraft 

model and then unique patterns based on fault codes 

correlation are identified. Part replacements confirmed as the 

Final Fix are downloaded from the maintenance logbook. 

Then it combines these into a single database that maps flight 

legs, aircraft tails, unique patterns, and associated part 

replacement data. PSPM Module 1 also has a provision to 

incorporate sensor data degradation and exceedance patterns 

across consecutive flight legs.  

The PSPM Module 2 uses PSPM DB (computed by PSPM 

Module 1) and applies a pattern similarity-based approach 

with adaptive thresholding to recommend the top five parts 

with their likelihood of failure (which depicts confidence on 

recommendation) along with maintenance recommendations 

presenting various historical maintenance actions for similar 

patterns.  

 

Figure 12: PSPM Functional Block Diagram 

Both Cosine (cos()) and Jaccard Similarity (J)- based 

approaches with adaptive thresholding are implemented. 

Comparing both approaches it has been observed that the 

Jaccard Similarity-based approach shows improved 

performance.  

Equations for Cosine and Jaccard Similarity:  

 

 

Through the adaptive thresholding logic, PSPM tries to 

ensure that it provides recommendations to a given pattern 

with better likelihood. If historical part replacements for 

similar patterns are found with lesser pattern similarity (< 

40%) and part replacement likelihood (< 40%), PSPM does 

not provide any part replacement recommendation for that 

pattern. The pattern similarity score & part replacement 

likelihood are tuned for better results. 

The key technical features of PSPM include: 

• Identification of unique MMSG and FDE Warning 

patterns in the entire fleet data for a specific aircraft 

model and associate them with their maintenance actions 

along with their part replacement details. 

• Utilization of similarity-based algorithms to find the 

closest match of a given pattern for flight legs exceeding 

a specified threshold. 

• Display of the top five part numbers along with their 

respective likelihood of failure, the distribution of 

similar MMSG/FDE patterns, and the historical 

maintenance actions distribution. 

• Adaptive thresholding for automatic selection of the 

similarity threshold. 

• Integration of sensor data for identifying feature 

exceedance and generating feature trend patterns. 

• Implementation of sequential pattern mining (Prefix-

projected Sequential Pattern Mining, Peiet et al., 2001) 

to predict the next probable event in a sequence. 

• Inclusion of sensitivity analysis, allowing maintenance 

personnel to find the distribution of MMSG/FDE 

patterns for a given part number and display, thereby 

enhancing decision support for fault isolation and part 

replacement. 
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4.2. PSPM Fleet Level Evaluation Study 

Fleet level evaluation was done for a single Boeing aircraft 

model for which the data pool consisted of more than a 

thousand aircraft tails with flight legs ranging over almost 14 

years. All instances of part replacements across every ATA 

chapter were downloaded for that aircraft model having over 

200K fault events. A fleet level evaluation of PSPM solution 

was performed by taking all the fault events mapped to part 

replacements. As PSPM is instance-based fault isolation 

solution, when a fault code pattern triggered in a flight leg 

(i.e., test event) from the PSPM database is taken for 

evaluation, all other fault code patterns in the historical fleet 

represent training set. Similarly, part recommendation was 

predicted for every fault code pattern in the database, and the 

following metrics were computed: accuracy, precision, recall 

and F1 score. 

Metrics 
Delta for Co-Occurring 

Fault Events (%) 

Top Part 

Recommendation 

Accuracy 5.42 

Precision 4.96 

Recall 5.42 

F1 Score 6.73 

Table 1: PSPM Top part Recommendation evaluation 

results for a Boeing aircraft model at fleet level 

Metrics were calculated for the ‘Top Part Recommendation’ 

(i.e. the top part recommended matches with the ground truth 

replacement) and the ‘Top 5 Parts Recommendation’ (i.e. one 

of the top five parts recommended matches with the ground 

truth replacement) for all ATA chapters of a Boeing aircraft 

model. Table 1 shows the Top part recommendation delta 

between PSPM’s pattern-based approach and the traditional 

approach of recommending for each individual MMSG. It has 

been observed that the PSPM demonstrates an improvement 

of over 5% in part recommendation for pattern-based co-

occurring fault events when compared to the traditional 

method of replacements based on individual fault codes. 

Table 2 shows the overall PSPM evaluation results (for both 

cooccurring and single fault events) for Top 5 parts 

recommendation. With the Top 5 parts recommendation, 

PSPM achieves prediction accuracy of 96.9%. 

Metrics Scores (%), for both 

cooccurring & single faults 

Top 5 Parts 

Recommendation 

Accuracy 96.9 

Precision 97.09 

Recall 96.9 

F1 Score 96.74 

Table 2: PSPM Top 5 parts Recommendation evaluation 

results of a Boeing aircraft model at Fleet level 

Data quality and volume in PSPM pre-processed data as well 

as emergence of new failure-mode patterns impacts the 

PSPM part recommendation KPIs. However, if the pre-

processed fleet level data is not adequate, PSPM prediction 

accuracy suffers for some ATA chapters. 

5. CONCLUSION 

In this paper two innovative approaches of Probabilistic 

Modeling based enhanced fault isolation are described with 

application and results: Pattern Similarity-based Probabilistic 

Modeling (PSPM) and Physics Informed Probabilistic 

Modeling (PIPM). The development, implementation, and 

fleet-level validation of PSPM are discussed in detail, 

demonstrating its effectiveness in isolating faults in both 

single and co-occurring fault code scenarios. PSPM has 

proven to be a robust solution for pattern-based fault 

diagnosis. 

The Bayesian network-based PIPM approach also shows 

significant potential, particularly in cases involving rare or 

novel fault events where historical pattern data is limited. 

However, further research is required to validate the 

scalability of PIPM, especially in leveraging system 

schematics and the underlying logic of fault codes and 

warnings to construct comprehensive probabilistic networks. 

Additionally, exploring sensor-related pattern analysis and 

sequential pattern mining will be critical to advancing fault 

isolation capabilities and improving fix effectiveness. 

Ultimately, the integration of PIPM with PSPM is expected 

to yield a more powerful and comprehensive fault isolation 

framework. 
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