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ABSTRACT

Industry 5.0 reframes manufacturing around human-centric
concerns: resilient operations, safe work, and decisions peo-
ple can understand and contest. For PHM, that means elevat-
ing human-based features: competency, recency of practice,
mentoring links, explainability, and fair exposure, rather than
relying only on sensors or opaque models. Today those sig-
nals sit in ticket logs and massive databases, making them
hard to audit, transfer, or reuse at scale. We suggest ON-
GOING, a representation layer framework that turns unstruc-
tured maintenance text into a human-auditable Knowledge
Grid and a complex but modular feature vector, indepen-
dent of any particular embedding model or projector. At its
core, the grid tracks technician experiences by increment-
ing a part of the Knowledge Grid whenever tickets are re-
solved. Two mechanisms capture more advanced dynam-
ics: knowledge transfer between people (e.g., mentorship)
via a convex blend of Knowledge Grids, and neighborhood
propagation that diffuses experience increases to semanti-
cally adjacent tasks through a Gaussian kernel. From each
grid we derive interpretable features, such as hypervolume,
sparsity, or maximum knowledge, that summarize knowl-
edge distribution more accurately for better downstream use
(e.g., dispatching optimizer models, LLMs, production fore-
cast models). We implement the framework on a partner
company’s data, and deploy an instance at-scale (50000 tick-
ets, 100 technicians) in real-time, using a multilingual sen-
tence encoder and a toroidal SOM for ticket embedding. On
our deployed instance, we designed a technician recommen-
dation use-case. A maintenance expert study with human
feedback over 55 real tickets found that grid-based recom-
mendation were judged more pertinent than a scalar-based
and a vector-based knowledge modeling approaches. Cru-
cially, dispatchers could articulate rationales from visible
grid neighborhoods and feature attributions, preserving inter-
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pretability. Beyond dispatch support, the Knowledge Grid
enables training planning (identify coverage gaps), fairness
monitoring (avoid single-point failure through over-reliance
on “heroes”), and promotes workload balancing.

1. INTRODUCTION

Modern maintenance organizations increasingly accumulate
unstructured, high-volume ticket logs in their ERP. These logs
contain extensive documentation about workers’ preferences,
skills, and expert knowledge. Yet most workforce tooling still
reduces expertise to a primitive aggregated knowledge scalar,
coarse skills matrix, or checklists maintained by supervisors,
which are hard to keep current and provide weak signals for
data-driven planning or automation (e.g., assignment, train-
ing) (Hadiyanto & Anggoro, 2025).

In parallel, Al systems for PHM are maturing. LLM agents
and graph models are now increasingly being considered for
operations support, but integration remains fragile unless hu-
man expertise is represented in a way that is both interpretable
to operators and useful to learning systems (Lukens, McCabe,
Gen, & Ali, 2024). We argue that representing technician
knowledge as an auditable spatial representation over ticket
semantics paves the way from ticket databases to operator in-
terpretability and ML readiness.

This paper addresses the representation problem through the
aspect of Technician Knowledge Modeling. We introduce a
method-agnostic framework that turns historical databases,
and real-time streams of maintenance tickets into a human-
readable and feature-rich label and category-agnostic repre-
sentation of technician knowledge. Concretely, we embed
ticket texts and project them onto a fixed n-dimensional grid,
yielding a knowledge grid whose geometry (what cells are
occupied, how mass is distributed, how far the extremes
lie) provides complex and precise metrics, features, and
visualization capabilities that humans can audit and that
downstream models can consume. Unlike optimization-
centric HR allocation methods (IP/Hungarian/heuristics) that
solve who-does-what-when, the focus of this framework is
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modeling: produce the most faithful, stable, and explain-
able description of what a technician knows and how that
knowledge evolves. The framework is generic to embedding
and projection choices, but we also provide an instantiation
of the framework already deployed in a real-life full-scale
production-line setting, both as a way to validate our ap-
proach and to provide examples of implementation choices.

The knowledge we model is intentionally abstract: there is
no fixed “unit of expertise.” Instead, a technician’s knowl-
edge is a function of how often they have solved similar
tasks (i.e., density in regions of the grid). We supplement
this relationship through two additional knowledge variation
mechanisms: a neighboring-knowledge propagation mech-
anism, to account for the phenomenon where a technician
knowledgeable about certain tickets will also likely be some-
how proficient in semantically close tickets, and a knowledge
transmission mechanism, to account for knowledge transfer
between technicians, when one technician may be deployed
to teach another about a certain type of machine or failure.
These additional mechanisms allow us to finally build and
update a Knowledge Grid for each technician, representing
their knowledge through the whole ticket logs space.

From this Knowledge Grid we can extract several features,
e.g., sparsity, inter-extremum distance, hypervolume, max-
imum density, cluster count and much more. For organi-
zations already exploring ticket automation, this bridges a
known gap: surveys show strong progress on ticket allo-
cation, but limited attention to complex, human-readable
knowledge representations that feed those models (Zangari,
Marcuzzo, Schiavinato, Gasparetto, & Albarelli, 2023).

Immediate use-cases appear from this Knowledge Modeling:
enrichment of ticket allocation model’s input features, train-
ing and team-making support to locate areas of knowledge
too few technicians are trained on, avoiding cases where a
technician becomes ultra-specialized which could be detri-
mental to their well-being, or identifying recruitment needs
in a growing team for example.

We deliberately separate framework from instantiation. The
framework defines clear interfaces (tickets, pre-embedding,
dimensionality reduction, knowledge features) which guaran-
tees human-readability, and ML-readiness. The real-life in-
stantiation we report uses a specific multilingual encoder and
a toroidal SOM, but these components may be replaced if a
site’s data or constraints differ. This separation is practical:
it lets sites keep their Enterprise Resource Planning (ERP),
Computerized Maintenance Management System (CMMS),
and it gives PHM teams freedom to evolve models without
rewriting downstream dashboards or planners.

This work advances human—AlI integration for PHM by con-

verting growing and opaque ticket tables into human-readable
maps and machine-useful features, creating an integration
layer between shop-floor expertise and learning systems, and
putting the focus back on human operators by representing
their knowledge as model-trainable features, aligning with
emerging human-centric PHM guidance that stresses trans-
parency and usability for maintenance workers (Denu, David,
Mangione, & Landry, 2024).

We are explicit about boundaries. There is a cold-start for
new technicians; ticket text quality matters; and very high-
resolution grids increase storage pressure (compute is not the
bottleneck). None are blockers in practice: cold-start can
borrow from fleet priors, low-signal text can be stabilized
via templates or weak ontologies, and grid resolution can be
right-sized per site. Finally, we emphasize that our contribu-
tion is not an optimizer. We complement optimizers and dis-
patchers by supplying better quality human-knowledge rep-
resentations and features. In that sense, the knowledge grid
is a missing layer in the PHM stack: it treats the human as
a first-class system with a complex state, not just a resource
with availability.

Contributions :

e Framework: A general framework for continuous,
human-readable representation of technician knowledge.
Per-technician Knowledge Grids derived from ticket text,
interpretable by supervisors yet usable as features for
ML.

* Open Implementation : A publicly available Python
Implementation of the Framework’s core mechanics:
Knowledge Grids, their Knowledge learning/forgetting
model, and a collection of associated features. (Avail-
able at https://github.com/AdrienBolling/ONGOING)

¢ Industrial Evidence: Industrial deployment evidence of
a use-case of technician assignment at plant scale (100
techs, 50000 tickets), favored by dispatchers and mainte-
nance managers over current baseline methods of scalar
and vector-based representations, validated through a
prospective comparison over 55 tickets

* Integration Guidance: Integration guidance covering
map sizing, SOM implementation choices, and opera-
tional considerations.

Section 2 reviews related work on the Human Resources Al-
location Problem (HRAP) and the literature about Human
Knowledge Modeling in Al Section 3 formalizes the frame-
work and mathematically defines the knowledge modeling
mechanisms and a collection of knowledge features. Sec-
tion 4 details the factory implementation, its environmental
setup, and details the validation process by defining chosen
technician allocation use-case and the comparison baselines,
and reporting the results. Section 5 discusses limitations and
deployment concerns. Finally Section 6 concludes with im-
plications related to PHM’s human-Al integration agenda.
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2. RELATED WORK
2.1. Human resources allocation problem

Traditionally, HRAP has been addressed using operations re-
search techniques, such as linear programming, Hungarian
methods, genetic algorithms, and ant colonies to list a few
(Bouajaja & Dridi, 2017). However, these methods often re-
quire simplifications and assumptions that may not hold in
dynamic, complex, and stochastic environments. Recent find-
ings (Ruiz-Rodriguez, Kubler, Robert, & Le Traon, 2024)
suggest that increasingly realistic environments, needed for
efficient real-life deployment, can’t be solved through meta-
heuristics or mathematical approaches. Over the last few
years however, these limitations are being challenged through
the use of more Al-centric methods, such as Reinforcement
Learning (RL) (Lv, Jiang, Wu, & Zhao, 2024) (Muklason
et al., 2024) (Bolling & Kubler, 2024) (Platten, Macfarlane,
Graus, & Mesbah, n.d.), Graph Neural Networks (Platten
et al., n.d.) (Lu, Ye, Chen, & Hentenryck, 2025) (Nguyen,
Truong, & Tran-Thanh, 2025) (Zhang et al., 2024), or LLM-
based approaches (Wasi, 2024) (Iso, Pezeshkpour, Bhutani,
& Hruschka, 2025).

The growing need for human-centric approaches in Industry
5.0 (Khanna, Kumari, & Karim, 2024) highlights the lack of
representative human-based features, in particular the ques-
tion of the representation of knowledge.

Accurately representing the skill, and by extension the knowl-
edge of a technician is crucial to the correct training and im-
plementation of any dispatching, assignment, or routing sys-
tem. Moreover, any advanced scheduling system considers
and expectation of the time a ticket will take to be treated,
which has been shown to be directly linked to the experience
of the technician (Jaber, Givi, & Neumann, 2013).

2.2. Human knowledge modeling

Table 2 presents a taxonomy of a recent representative sam-
ple of Al-oriented papers implementing a model of a human’s
knowledge. We identify five major fields of interest, not nec-
essarily exclusionary : Education, Human Resources (HR),
HRAP, Industrial, and Scheduling.

Looking at the type of representation currently present in the
Al literature, we notice 4 types of approaches, some similar
in nature :

* Scalar-based: This representation type is as simple as it
gets. All knowledge of the technician is aggregated un-
der a single value, making no distinction between areas
of knowledge. Although undoubtedly lightweight, easy
to implement, and likely to fit a vast range of situations,
this model fails to grasp non-trivial features of a human’s
knowledge.

* Vector-based: Vector-based approaches are a definite
improvement over scalar-based approaches. The core

Table 1. Acronyms used in Table 2.

Notation Description

Edu Education

HR Human Resources
HRAP Human Resources Assignment Problem
Indus Industrial

Sche Scheduling

Stu Student

Emp Employee

Tech Technician

Dyn Dynamic

Sta Static

L Learning

F Forgetting

Vec Vector

Mat Matrix

Sca Scalar

RNN Recurrent Neural Network
GNN Graph Neural Network
Opt Optimization

Pip Pipeline

Heur Heuristic

RL Reinforcement Learning
Ana Analysis

ML Machine Learning

DP Dynamic Programming
Sim Simulation

MA Memetic Algorithm

DL Deep Learning

TS Tree Search

idea is to segment the knowledge of our technician in
several predefined categories. Such categories will usu-
ally greatly improve the usability of the model, however
they often lack proper granularity, and require the data to
be previously labeled into these categories, which may
be a long and expensive process when an organization
decides to upgrade its infrastructure and switch to more
detailed categories.

e Matrix-based: Matrix-based approaches can be consid-
ered a variation of the usual vector-based approach, as
these matrices will usually be built as the cross-product
of two sets of categories of different semantics (e.g.,
“electrical/mechanical” and the type of machine).

e Neural Network-based: Neural Network-based ap-
proaches usually rely on a memory-able architecture
(e.g., Gated Recurrent Unit (GRU) cells, Long Short
Term Memory (LSTM) units, or Recurrent Neural Net-
works (RNN)-like networks in general). The ticket text
or an embedding of it will be fed through the RNN cell,
but a definite measure of knowledge won’t be outputted.
It is only implicitly stored in the RNN cell which output
will be a non-human-readable representation of techni-
cian knowledge.

In practice, current state-of-the-art approaches offer a hard
trade-off between human-readability of a technician’s knowl-
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Table 2. Summary table of the litterature review under the following criteria : Field, type of Human agent, type of Knowledge
modeled, Evolution of the knowledge if applicable, Representation of the knowledge, Number of Categories of knowledge if
applicable, the type of model the knowledge serves as an Input to.

Article Field Human Know. Var. Repr. Num. Cat. Input
(Liu et al., 2019) Edu Stu Dyn L,F Vec - RNN
(Liang, Peng, Pu, & Wu, 2022) Edu Stu Dyn L,F Mat - RNN
(Hashemifar & Sahebi, 2025) Edu Stu Dyn L,F RNN - RNN
(Wasi, 2024) HR Emp Sta - Vec 10 - 20 GNN
(Lee & Ahn, 2020) HR Emp Sta - Vec 10-20 Opt
(Alvarez, Mohammed, & Lastra, 2025) HR Tech Dyn L Vec 5-10 Pip
(Zhang et al., 2024) HRAP Tech Sta - Vec - GNN
(Gongalves, Alvelos, & Moura, 2025) HRAP Emp Sta - Vec - Opt
(Muraretu, Ilie, & Ilie, 2017) HRAP Emp Sta - Vec 5-10 Heur
(Lv et al., 2024) HRAP Emp Sta - Vec - RL
(Tien & Prabhu, 2018) Indus Tech Dyn L,F Sca 1 Ana
(Long-fei, Nakamura, & Kondo, 2020) Indus Tech Dyn L Vec - ML
(Szwarc & Golinska-Dawson, 2024) Indus Tech Dyn L,F Sca 1 Opt
(Muklason et al., 2024) HRAP Emp Sta - Vec 2-5 RL
(Henao, Mercado, & Gonzilez, 2023) Indus Tech Dyn L. F Vec - Opt
(Ranasinghe, Senanayake, & Grosse, 2024) Indus Tech Dyn L,F Sca 1 Ana
(X. Chen, Li, Lin, & Ding, 2024) Indus Tech Sta - Vec 5-10 DP
(Denu et al., 2024) Indus Tech Dyn L Sca 1 Sim
(Xu, Xie, & Hall, 2025) Indus Tech Dyn L F Sca 1 Opt
(Saber, Leyman, & Aghezzaf, 2024) Indus, HRAP Tech Sta - Vec 5-10 Heur
(Han & Gong, 2025) Indus, HRAP Tech Dyn L,F Sca 1 MA
(Imran Hasan Tusar & Sarker, 2024) Indus, Sche Tech Sta - Vec 5-10 Opt
(Heuser & Tauer, 2023) Indus, Sche Tech Dyn L,F Vec - Opt
(Safaei & Kiassat, 2018) Sche Tech Sta - Vec 5-10 Heur
(Stein, Hildebrandt, & Thomas, 2024) Sche Tech Sta - Sca 1 RL
(Felberbauer, Gutjahr, & Doerner, 2019) Sche Emp Sta - Vec 5-10 Opt
(Yang, Li, Luo, Li, & Wen, 2025) Sche Tech Dyn L,F Vec 1 Heur, Sim
(Z. Chen, De Causmaecker, & Dou, 2023) Sche Emp Sta - Vec 2-5 DL, TS

edge model (so planners/auditors can reason about it) and
suitability as an input feature for modern downstream com-
plex learning systems (GNNs for assignment/routing, LLM
agents for tool-use, RL for dispatch). Interpretable models
(scalar, vector, matrix) are easy to audit and map to real
skill taxonomies, but they saturate fast, missing cross-skill
interactions, recency effects, task-specific transfer, complex
human learning and forgetting behaviors, and context. Latent
models (RNN/GRU/LSTM states, transformer embeddings,
graph embeddings) capture those effects and usually win
on predictive/control metrics, but they’re opaque and harder
to govern. Complex explainability methods need to be em-
ployed to even start to crack the black box.

To bridge this gap we introduce ONGOING: a Technician
Knowledge Modeling Framework serving as a compromise
between the human-readability of scalar, vector, and matrix
based approaches, and the strengths of powerful but costly
methods such as LLMs, RNNS, transformers and GMMs,
namely their ability to provide a continuous, category-free
representation of knowledge, and to provide downstream
learning models with high quality input features character-
izing the technician knowledge.

3. MODEL AND FRAMEWORK
3.1. Overview

ONGOING is a method-agnostic framework that turns his-
torical and streaming maintenance tickets into a knowledge
representation for each technician and team. The pipeline is
simple by design, as shown in Figure 1: tickets are extracted
from the company ERP, then encoded, projected through
dimensionality reduction, and fed into each technician’s own
Knowledge Grid.

These Knowledge Grids can then be audited by human
operators, or characterized as interpretable features and
machine-ready descriptors to feed downstream tasks, such
as assignment, scheduling, or neural network training. ON-
GOING separates representation from optimization: it does
not schedule work, it supplies complex human-knowledge
features and maps to whatever scheduler or predictor a site
already trusts. The framework exposes clean interfaces and
supports streaming updates for day-to-day stability, with peri-
odic retraining only when the underlying production process
undergoes significant material changes (e.g., a new machine

type).
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Figure 1. Workflow diagram of the proposed knowledge modeling framework

3.2. Knowledge modeling

3.2.1. Representing Knowledge: the Learning Forgetting
Curve Model

The base model of knowledge in our model is borrowed from
(Jaber et al., 2013), where knowledge is modeled as the time
saved when performing a task, relative to the time it would
take someone to perform this task for the first time, depicted
in Figure 2.

In this way, the learning curve can be expressed by Eq. 1 :

T, =Tyz~° (D)

where T, is the time to produce the xth unit, 7} is the time

to produce the first unit, x is the cumulative production, and
log(LR)

- log(2)

b is the learning exponent (0 < b < 1, where b =
and LR is the learning rate measured in percentage.

The forgetting curve can be considered a mirror image of the
learning curve, as expressed by Eq. 2

T, = Tya! )

where T}, is the time for the th unit of lost experience of the
forgetting curve, Ty is the intercept of the forgetting curve, x
is the amount of output that would have been accumulated if
interruption did not occur, and f is the forgetting exponent.

From this definition, we can define K as :

Time per unit

Learning i Forgetting ! Learning I:mp-ﬂingg

- work

le— work —»< pest

Time

Figure 2. Behavior of the learning-forgetting process over
time

K, =T, —T\ 3)

where K; is the knowledge of the i-th technician W;, and T,
is the time the technician W; takes to treat the task. We can
assume a fixed placeholder 77 = 1 across all technicians and
tasks to standardize knowledge scaling across the Knowledge
Grid. Our knowledge then becomes intrinsically linked to
ticket recurrence.

In practice, it is recommended to normalize knowledge even
further across the technician fleet. To avoid unhealthy perfor-
mance comparison between technicians, that could very well
be stemming from bias in the database construction rather
than a true skill gap, we will be normalizing each technician’s
knowledge across the grid between 0 and 1, with 1 represent-
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ing the place where they have the most knowledge, and 0 the
place where they have the least knowledge.

By scaling the knowledge like so, we don’t capture their ab-
solute knowledge levels but rather their distribution of knowl-
edge, which is a much more ethical metric. In particular, ag-
gregated Knowledge Grids, such as sector-level Knowledge
Grids, will use pre-normalized technician Knowledge Grids,
to prevent any form of absolute comparison.

3.2.2. Knowledge Grids

A knowledge grid is a n-dimensional representation of the
knowledge of a technician. It is modeled as a n-d array, where
each dimension is a dimension of z(u) defined in Eq. 4:

z(u) = red(emb(u)) 4

where red is the abstract function representing the dimen-
sionality reduction component, emb is the abstract function
representing the pre-embedding component, and w is the orig-
inal maintenance ticket.

We can then define G; the Knowledge Grid representing tech-
nician W, to finally get K;(u) = G;(z(u)) the knowledge
of technician W; for the ticket u. A heatmap representing a
2-d Knowledge Grid is given in Figure 3. Although human-
readability is not immediate on bare grids such as this one,
they can easily be enriched through processes such as clus-
tering and 3-d visualization. Examples are provided in Ap-
pendix under Figure 7, Figure 8, and Figure 9. These figures
have been placed in Appendix to avoid violating guidelines
regarding 3-d visualizations, and are as such considered op-
tional.

=10

- 0.8

- 0.6

0.0

Figure 3. Visualization of a 2-d Knowledge Grid through a
heatmap.

3.3. Additional Knowledge mechanisms

1. Knowledge transfer: considering maintenance experts’
knowledge, we assume that a technician 7; may transfer
part of his knowledge to another technician 7T through
supervision, a mechanism mentioned by (Maria et al.,
n.d.) as a cornerstone of knowledge in organizations. We
represent it as a weighted average between the two lo-
cal knowledge, the one assigned and the one supervising.
This average is weighted by a parameter 7 representing
how much of the information is transferred. This param-
eter is a global parameter.

Kb:(Kg—i-AKb)(l—T)—l-KgXT 5)
where KP is the knowledge prior to the increase.

2. Knowledge propagation: through the analysis of
psychological works (Singley & Anderson, 1989),
(Thorndike & Woodworth, 1901) and the analysis of
maintenance experts, we assume that knowledge about
a certain maintenance operation can be transferred to
neighboring operations. This could be translated in sev-
eral ways : knowledge about a machine, about the brand,
about the type of failure. To represent this behavior,
each increase in a technician’s knowledge grid will be
propagated in a neighborhood using a Gaussian kernel
K with the following

AK ify = z(u), the ticket treated

0 else

Let G2 (y) = {
(6)

and AK
Lets = 7
s >~ convolve(GA, K) ™

in
Gnew — GOld + COTLUOZU@(GAa K) X S (8)

3.4. Knowledge features

Auxiliary notation. Let G denote the set of grid cells. Each
cell g € G has a fixed representative location (e.g., center)
rg € R" in the reduced space. Let vy : R" — G be the
cell-assignment rule that maps a point z to a cell y(z). For
technician W;, define the occupancy

Nilgl = > 1{y(z(w) =g}, T; = > Nilg]
wEU,; g€eg

and finally S; = {g € G : N;[g] > 0} as well as the normal-
ized density p;[g] = N;[g]/T;. Consistently, the knowledge
returned by the grid for a ticket » can be taken as

Ki(u) = Ni[r(2(w)] or Kj*™(u) = piy(z(w))].
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Hypervolume (coverage span). The axis-aligned hyper-
volume covered by the occupied cells in the reduced space
is
_ k (K
HV, = H (gréagfré ) — gélslirfg )), ®

optionally normalized by the grid’s total span ﬁ\\/i =
HV, / TT,_; (maxgeg r —mingeg rék)) . It measures how
broadly the technician’s knowledge extends across the re-

duced space.

Interquartile range (IQR of cell densities). Let V;, =
{pilg] : g € S;} be the set of nonzero cell densities. If
Q1(V;) and Q3(V;) are the 25th and 75th percentiles, then

IQR; = Q3(Vi) — Q1 (V). (10)

Higher values indicate greater concentration (heterogeneity)
among occupied cells.

Maximum knowledge (peak specialization).
knowledge level is

The peak

MaxK; = max N;[g],

MaxK; = ], (11
na ax maxp lg), (D)

capturing the most frequent region of solved tickets.

Sparsity (coverage complement). A simple sparsity mea-
sure (bounded in [0, 1]) is the complement of occupancy cov-
erage:

|5
gl
An “effective” sparsity that accounts for uneven densities is
the complement of the participation ratio:

(X eopild)” 1
2

C—. 13
S ITAPERT R

Sparsity, = 1 — (12)

Sparsityfff =1 -

Novelty of a ticket. Given a new ticket v* with embedding
z* = z(u*), define a chosen distance d : R" x R"” — R>
(e.g., Euclidean) on the reduced space. Novelty relative to
technician W is the distance to the nearest occupied cell:
Novelty; (u*) = min d(z*,r). (14)
gEeS;
A scale-free variant divides by a technician-specific reference
distance (e.g., median historical assignment distance), to sta-
bilize thresholds across technicians.

NGOING Framework

- — Maintenance tickets —

Ticket pre-embedding

|

Dii ionality reduction
11T l

e . . .

EHRSHH < Knowledge grids —— Knowledge Grid computing

A

|

Knowledge feature

<+ Knowledge features — .
extraction

Figure 4. Summary diagram of implementation building
blocks

4. EXPERIMENTS

Our framework aims to model knowledge, a metric for which
there is no recorded ground-truth, nor standardized tests that
could serve as a benchmark. One could argue that skill tests
exist in social science literature, however such tests only
address one specific category of skill at a time, whereas
our approach aims to model knowledge in a continuous,
category-free manner. As such, our chosen method of bench-
marking has been a real-life, at scale implementation and
comparison, in the production plant of one of our partner
companies, a first-tier cutting tools manufacturer. The results
will be defined as the satisfaction rates given by maintenance
managers when comparing maintenance workers’ knowledge
modeled by both our baselines and the ONGOING frame-
work, through a certain use-case scenario.

The following section details how we instantiated each part
of our framework, defined in Figure 4, as well as the data we
used, and a description of the environment we deployed our
solution in. To preserve the anonymity of both the individuals
and the company data, ranges will be preferred over exact
figures during the description of the environment, and the
data sample will be anonymised.

4.1. Environmental Setup

The environmental setup chosen to deploy our framework
is a production plant of one of our manufacturing partners.
More precisely, we aim to model the knowledge of a fleet of
maintenance technicians spanning several sectors of produc-
tion. An approximate scale for every core parameter of the
environment is given in Table 3
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Table 3. Approximate scale of the production line setup pa-
rameters

Parameter Approximate scale
Num. Technicians 100

Num. Sectors 20

Num. Type Machines 150

Num. Machine Manufacturers 40

Num. Tickets 50000
Tickets Time Span (years) 5

Table 4. Schematic and altered sample of proprietary data

Field Example Value

Short Desc.  ’robot stuck”

Machine ID  "HAUSER S55-400”

Long Desc.  “During second phase, robot getting stuck

into abutment : see error message 41.”

4.2. Baselines

Among the methods identified in Table 2, the two traditional
approaches of representing knowledge as a scalar and as a
vector were chosen as baselines. Both RNN and matrix rep-
resentations will be left out of the comparison as they don’t
appear to be suited to the current use-case and thus can not
be used as baselines. In particular, RNN encodings don’t ex-
plicitly provide a readily accessible knowledge level, and any
matrix representation could have been assimilated to a vector-
based representation in our case.

For fairness purposes, both the scalar and vector-based ap-
proaches will be considered dynamic, with the same Learning
and Forgetting mechanisms used by the ONGOING frame-
work, as defined in Subsection 3.2.

4.3. Data

As stated previously, company data is not to be released, as
the databases of maintenance tickets logs are deemed to con-
tain sensitive data about both employees of the company, and
proprietary manufacturing processes.

The format of the data however, as well as cherry-picked
anonymised and translated examples is provided to serve as a
reference point for potential future users of the framework.

Although other features of the maintenance ticket logs may
be used in heuristics in other parts of the full workflow, the
current schematic of sanitized ticket data used is shown in
Table 4

4.4. Ongoing Implementation
4.4.1. Pre-embedding

We use a multilingual sentence transformer, distiluse-base-
multilingual-cased-v2 from (Reimers & Gurevych, 2019), as

the pre-embedding layer because our tickets are free-text and
span multiple languages (primarily French, with some En-
glish and German). This model produces language-agnostic
512-dimensional sentence embeddings that align semanti-
cally similar tickets across languages, while staying compact
enough for efficient storage, fast streaming updates, and clean
dimensionality reduction into our knowledge grids. Given the
unstructured nature of our tickets, as well as human-related
constraints such as spelling mistakes, no unified vocabulary,
nor standardized text structure for either problem or solution
formulation, an NLP encoder is the right first layer. In a
case where tickets are highly categorized with consistent tax-
onomies, a simpler statistical approach (e.g., Multiple Cor-
respondence Analysis, MCA) on categorical features could
have been a reasonable first baseline.

4.4.2. Dimensionality reduction

We use a Self-Organizing Map (SOM) for dimensionality re-
duction for its ability to preserve topological neighborhoods:
semantically similar tickets remain adjacent after projection,
which is exactly what our neighbor-based knowledge propa-
gation needs. A SOM is an unsupervised neural projection in
which each input vector is matched to a neuron of the map:
the best-matching unit (BMU). This BMU’s weight vector is
then updated with the input vector, finally resulting in a 2-
d map whose geometry reflects the structure of the original
space. (Kohonen, 2001) Focusing on topology lets us aggres-
sively compress high-dimensional embeddings into a 2-d map
while discarding fine-grained geometry associated to seman-
tics we do not need for the knowledge grid, and the SOM’s
vector-quantization behavior naturally produces clusterable,
well-structured maps that help downstream analysis (Vesanto
& Alhoniemi, 2000).

To mitigate the classic border effect (edge units having fewer
neighbors), we train a toroidal SOM, the grid wraps around
so opposite edges are adjacent, which is a standard option
in established SOM tooling and explicitly reduces bound-
ary artifacts (Mount & Weaver, 2011). Finally, to avoid a
few units monopolizing assignments, we add a frequency-
sensitive penalty so over-winning neurons are temporarily
discouraged, promoting a more balanced distribution across
the map.

4.4.3. Knowledge Grid computing

The choice of the SOM results in a 2-d space for the reduced
ticket logs, which will be matched by the Knowledge Grids
structure, resulting in human-readable grids. Due to the
number of ticket logs at our disposal (50000), each grid has
been empirically determined, through trial-and-error to have
a shape of 100 by 100, allowing for enough room for clusters
of data to appear, but not so much that it would result in a
mostly empty grid. A suggested approach to finding a correct
grid shape in relation to your data, is that 100 by 100 seems
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to be a soft ceiling of interpretability vs performance for high
amounts of ticket logs (more than 10000), whereas 10 by 10
is the minimum that holds significance and interpretability
for low amounts of data (less than 1000). For amounts of
ticket logs in the 1000 to 10000 range, exploring options such
as 30 by 30, or 50 by 50 is a strong compromise.

A working Python package has been made publicly avail-
able at https://github.com/AdrienBolling/ONGOING for re-
producibility and testing purposes. The core logic is written
entirely in JAX, and leverages its Just-In-Time (JIT) compil-
ing capabilities.

4.4.4. Knowledge feature extraction

As stated previously, a working Python package is available
for testing. This package ships with several Knowledge Fea-
tures as defined in Section 3.4 :

* Hypervolume

* Inter-Quartile Range

*  Maximum Knowledge
» Sparsity

* Ticket Novelty

In addition to these features, the specific structure of the data,
namely the production sector-specific nature of technicians,
allowed us to build sector-level Knowledge Grids by aggre-
gating the corresponding technicians’ Knowledge Grids.
Ticket clustering was then performed on these higher-level
grids, to identify clusters of tickets, which created the possi-
bility of analysing the distribution of knowledge among the
fleet of technicians.

4.5. Validation through a use-case: Technician recom-
mendation

To validate our Knowledge Modeling Method against the
baselines, we design a simple but solution-oriented use-
case with the company. Given a fleet of technicians, and
an incoming maintenance ticket: suggest the technician
most suited for the task. A core difficulty lies here, the most
suited technician may not always be the most knowledgeable.

e Scalar-based knowledge baseline :

The scalar-based baseline works as follows: assuming a
fully instantiated and trained fleet of technicians, each of
them having their knowledge modeled by a scalar, we
extract three individuals: the best technician overall, the
worst technician overall, the median technician overall.

As it is not possible to extract more fine-grain informa-
tion about the type of knowledge a technician possesses,
our best approach is to use common statistical features to

answer with these three cases that represent usual man-
agers’ approaches to technician allocation: ”Do I want to
treat the ticket as fast as possible, moderately fast to save
my best technicians for more urgent matters, or do I want
to train my least performing technicians”.

* Vector-based knowledge baseline :

The vector-based baseline implementation works as fol-
lows: we categorize each ticket according to the type of
machines it is related to (in the order of 150 categories
as stated in Table 3). Then, assuming a fully instantiated
and trained fleet of technicians, we restrict each techni-
cian’s knowledge to the domain of the ticket (here the
type of machine of the maintenance ticket). The rest of
the setup is strictly analogous to the scalar-based base-
line, applied to this restricted knowledge.

* ONGOING Framework :

Our solution using the ONGOING Framework (summa-
rized in Figure 5) works as follows: assuming a fully
instantiated and trained implementation, we project the
given maintenance ticket into the knowledge grid via the
ONGOING NLP encoder and SOM. From the resulting
region, we extract each technician’s local feature vec-
tor (e.g., metrics already maintained by ONGOING). We
then cast technician selection as a multi-objective com-
parison and compute a Pareto front where technicians
are the candidate solutions and the extracted features are
the objectives. If a technician strictly Pareto-dominates
all others, we recommend that single, fully dominating
choice. Otherwise, we return the non-dominated set, a
shortlist of partially dominating candidates, so supervi-
sors can decide with full transparency.

ERP -
= . ) NLP model ONGOING
T o | — Maintenance ticket — 1|
- +SOM Framework
= = | |
Ticket Technician knowledge
embedding features
CMMS - PARETO |
] Y — L & J
==Y = oD =

Suggested technician

Figure 5. Summary diagram of ONGOING solution to the
real-life validation use-case

4.6. Results

We gathered evaluations of each baselines’ suggestions
through a total of 55 maintenance tickets, separate from the
training set, extracted from the ERP’s stream, these tickets
will not be provided for the same privacy reasons as the
testing set.
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Table 5. Comprehensive results of the use-case expert evalu-
ation

Method Pertinent Non-Pertinent
Scalar-based 7 48
Vector-based 17 38
ONGOING 41 14

Each suggestion was submitted to binary evaluation “Perti-
nent” or “Non-Pertinent” by Maintenance experts usually in
charge of ticket dispatching. The results are presented in Fig-
ure 6 as a bar plot, and precisely reported in Table 5.

=
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o
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=

w
=}

o
=

S

Proportion of Pertinent Suggestions (% of tickets)

o

ONGOING Framework

Scalar-based Vector-based

Figure 6. Comparative bar plot of the use-case experiment
results.

Results show a more positive response to ONGOING’s
modeling of knowledge through the use-case of technician
recommendation. The number and complexity of features
that can be extracted allow for more transparency and a more
informed choice, along with more flexibility in the objectives
of the selection.

Even though the validation phase seems underwhelming at
first glance, it is to be noted that this method was actually
benchmarked on a very qualitative output : human knowledge
representation, for which no know ground truths or standard-
ized benchmarks exist. The only way for us to validate the
ability of our framework to model technician knowledge in
a satisfying way is to get human feedback from maintenance
experts about a real-life testing deployment, a usually hardly
feasible operation.

5. LIMITATIONS AND ETHICAL CONCERNS

Even though this framework could look like a drop-in solu-
tion for some, several technical limitations and ethical risks
may arise in case of a careless real-life deployment. Below is
a list of currently identified pitfalls, with concrete mitigation
strategies for deployment.

5.1. Technical limitations

e Storage capabilities: The nature of the Knowledge
Grids makes it so that the need storage space scales ex-
ponentially with the number of dimensions the final em-
beddings will get. Even 5-d 100 by 100 grids of 32-bit
floats are considerably expensive in storage. If need be,
to avoid this bottleneck, we recommend re-implementing
the Knowledge Grids with either a sparse-matrix archi-
tecture, or a fragmented architecture that can be progres-
sively loaded in RAM.

¢ Data quality and coverage: Ticket text is known to
be messy, short, multilingual, filled with specific jargon
and abbreviations, inconsistent, and riddled with mis-
takes. Certain tasks may also be severely under-reported
(e.g., quick routine fixes, where a technician would spend
more time creating the maintenance report than treating
the issue), thus skewing technician grids and knowledge
distribution.
To mitigate this issue several strategies are available: en-
force minimal ticket structure through properly defined
ERP fields, normalize language and domain vocabulary,
filter outliers, and periodically rebalance under-logged
areas.

¢ Representation error from projection: A 2-d toroidal
SOM preserves neighborhood structure only approxi-
mately. Dense regions can collapse, sparse regions over-
stretch, and cluster boundaries can be misleading on the
map edges despite the torus. To mitigate these issues, re-
port trustworthiness/continuity metrics, keep “map size
vs. data volume” within validated bounds, and perform
sanity-check with alternative projections (UMAP/PCA)
during validation.

e Cold-start and sparse technician histories: New tech-
nicians (or new domains) start with empty or highly un-
certain grids, which can unfairly depress recommenda-
tions. To mitigate these risks, initialize with prior knowl-
edge about a technician’s qualifications, and put in place
some heavy mentorship updates through documented co-
work.

e Attribution, not availability nor optimization: The
grid reflects what was logged, not availability, location,
or safety constraints. Using it alone for assignment will
fail in real operations. To mitigate this pitfall, combine
this framework with standard constraints (shift, location,
certifications), and treat the grid as a capability signal,
not an optimizer.

5.2. Ethical risks

* Historical bias and feedback loops: If past assign-
ments favored certain technicians or teams, the grid can
entrench that pattern: “the rich get richer,” while oth-
ers lose exposure and growth. To prevent that, lean to-
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wards training-oriented usage, introduce rotation poli-
cies, exploration bonuses for under-exposed technicians,
and fairness constraints. Monitor exposure and opportu-
nity metrics across seniority, shift, site, and contract type.
Do not use grids as de-facto performance scores.

*  Worker impact and misuse: A human-readable grid
can be misread as a ranking or used punitively in HR
decisions. That’s outside this system’s scope. This must
absolutely be prevented: introduce a formal policy: to
not use this Knowledge Modeling for disciplinary, pay,
or hiring decisions. Use for training design, staffing bal-
ance, and decision support only. Provide appeal channels
when a technician disagrees with their grid. Keep the in-
tended safeguard in place of not modeling the absolute
knowledge of a technician but rather his knowledge dis-
tribution.

* Consent and transparency: Technicians should under-
stand what the grid is, what it isn’t, and how it af-
fects day-to-day work. To ensure transparency and in-
formed consent, introduce mandatory on-boarding, ex-
plainer materials, opt-in pilots when feasible, and in-tool
“why this recommendation” explanations. Employees
are more likely to put their trust in a tool they understand
fully.

6. CONCLUSION

We introduced the Knowledge Grid, a representation layer
that turns noisy, multilingual ticket narratives into an inter-
pretable continuous and category-free Knowledge Grid for
each technician and team, and into complex and diverse fea-
tures that downstream policies can consume. The grid is
method-agnostic (any sentence embedder; any projector), but
the instantiated pipeline: multilingual embeddings, toroidal
SOM, conserved neighborhood updates, proved sufficient to
support real-life at-scale usage. Two mechanisms capture
how knowledge actually moves on the shop floor: transfer
between people and propagation across semantically adjacent
tasks. Together, they reduce cold-start pain, highlight latent
specialization, and make implicit expertise quantifiable.

Through a concrete use-case of technician assignment ex-
tended from our instantiated solution, we showed that grid-
based technician suggestions are overwhelmingly preferred
by dispatchers over common baselines, such as vector-based
representations. Crucially, the representation remains trans-
parent: decision rationales can be traced to visible neighbor-
hoods and to a small but extendable set of features (hypervol-
ume, sparsity, overlap, recency density), enabling planners to
contest or support recommendations with evidence. This is
the key contribution for PHM: not a black-box optimizer, but
a durable, human-readable knowledge representation that ex-
isting workflows can plug into.

This framework however suffers from certain limitations.

First, our evidence, although promising, is thinly reported
and should be extended through larger-scale testing phases
at the plant-level through additional use-cases. Second, the
current implementation, although valuable due to a success-
ful at-scale deployment, suffers from the privacy it implies,
a next step will be to instantiate this framework on publicly-
available maintenance ticket logs datasets. Future work will
include establishing full ablation studies to report on the
relative usefulness of each part of our framework, alternative
projectors will be explored and additional features and con-
straints will be formulated as lightweight policies on top of
the implementation, to ensure an ethical solution.

Notably the grid-based approach enables priority-aware dis-
patch shortlists that remain human-auditable, training plans
by exposing coverage gaps, and fairness monitoring via expo-
sure trajectories. These are concrete ways to reduce response
time, spread expertise, and avoid single-point failure through
over-reliance on a few experts.

In summary, the Knowledge Grid makes technician knowl-
edge measurable, transferable, and explainable. It is a prag-
matic step toward PHM decision support that respects human
expertise while unlocking model-readiness from the constant
stream of maintenance text.
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APPENDIX

Below are Figure 7, Figure 8, and Figure 9. Both Figure 8,
and Figure 9 represent technician-level Knowledge Grids,
whereas Figure 7 represents a sector-level Knowledge Grid.
All Knowledge Grids have been anonymised, cluster sum-
mary labels have been removed due to sensitive information.
However the clustering remains, showing possibilities of pro-
gressively enriching individual Knowledge Grids. In addi-
tion, we clearly notice different profiles of technicians at a
glance between Figure 8, and Figure 9. Figure 8 models a
very specialized technician, whereas Figure 9 models a jack-
of-all trades profile.

Figure 7. Anonymised visualization of a 2-d sector-level
Knowledge Grid aggregate with 3-d representation.

Figure 8. Anonymised visualization of a 2-d Knowledge Grid
with 3-d representation belonging to a specialized archetype
of technician.

Figure 9. Anonymised visualization of a 2-d Knowledge Grid
with 3-d representation belonging to a generalist archetype of
technician.
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