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ABSTRACT

Accurate gearbox fault diagnosis under varying operational
speeds is critical for industrial predictive maintenance. A
significant challenge is domain shift, where models trained
under one condition fail to generalize to another, especially
when only healthy data from the target domain is available
for training. This study proposes a novel domain adaptation
framework, CDANet, that directly leverages raw sensor data
to perform multi-class fault classification without manual fea-
ture engineering. The model combines a lightweight CNN-
based temporal feature extractor with a frozen DistilBERT
encoder to capture transferable, domain-invariant representa-
tions, combined with a maximum mean discrepancy loss to
align the feature distributions between the source and target
domains using only healthy samples. Experimental results
demonstrate that our proposed model significantly outper-
forms conventional deep learning approaches, achieving high
classification accuracy across six domain adaptation tasks.
This work validates the effectiveness of applying pre-trained
models in domain adaptation for gearbox fault diagnosis un-
der real-world domain shift constraints.

1. INTRODUCTION

Prognostics and health management (PHM) has become a
crucial part of maintenance strategies for industrial applica-
tions, significantly improving operational reliability, safety,
and cost-effectiveness. Specifically, effective fault diagno-
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sis in gearbox systems is essential due to their significant
impact on system performance. Failures in gearboxes can
result in substantial downtime and increased maintenance
costs. Recent reviews indicate that PHM helps reduce un-
expected breakdowns, optimize maintenance schedules, and
accurately predict component lifespan, thus providing tangi-
ble economic and operational benefits (Soualhi et al., 2018;
Huang et al., 2024).

Traditionally, machine learning (ML) techniques in gearbox
fault diagnosis heavily rely on feature extraction method-
ologies to capture essential diagnostic information from col-
lected data. Time-domain features, such as root mean square
(RMS), kurtosis, skewness, and peak values, have been
widely adopted and proven particularly effective in identify-
ing various gearbox faults. Extensive extraction and selec-
tion of these features can significantly impact diagnostic per-
formance, particularly in scenarios with limited data avail-
ability (Kumar, Singh, Kumar, & Sarangi, 2025). Moreover,
additional systematic feature design approaches have further
demonstrated their effectiveness in improving calibration and
diagnostic accuracy across various machinery applications,
including semiconductor manufacturing (Ji, Sumiya, et al.,
2025).

Recent advancements in deep learning (DL) have further en-
hanced diagnostic capabilities, particularly in planetary gear-
box systems. DL methods offer automatic extraction of fault
features directly from raw vibration signals, reducing the de-
pendence on domain-specific expertise and facilitating more
reliable and generalized fault diagnosis. A notable approach
integrates convolutional neural networks (CNNs) with trans-
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former models, leveraging both local feature extraction and
global sequence modeling, resulting in robust fault diagno-
sis capabilities that achieve high accuracy and reliability (Ji,
Minami, & Lee, 2025).

However, a significant challenge that persists in real-world
scenarios is domain shift, where operational conditions and
system behaviors differ substantially between training and
testing environments. Domain shift can severely degrade
model performance, prompting extensive research into do-
main adaptation (DA) methods. DA is particularly valu-
able in addressing discrepancies in operational behaviors and
conditions between the source and target domains, improv-
ing the robustness and generalization of diagnostic models.
Recent studies have proposed various DA methodologies,
such as adversarial learning, adaptive domain adversarial net-
works, conditional domain adversarial networks, and max-
imum mean discrepancy-based approaches (Ahmad et al.,
2024).

In addition to these established approaches, this study ex-
plores the potential of leveraging pre-trained model-based do-
main adaptation techniques, particularly in scenarios where
only healthy samples from the target domain are available, as
a promising direction for enhancing multi-class gearbox fault
diagnosis. While large language models (LLMs), such as Dis-
tilBERT (Sanh, Debut, Chaumond, & Wolf, 2019; Shin, Park,
Baek, & Kim, 2023), are originally designed for textual data,
this study explores a novel application of their internal com-
ponents—specifically, the feed-forward sublayers, residual
connections, and layer normalization operations trained dur-
ing pretraining. By adapting these transferable components to
non-textual time series data, the proposed approach demon-
strates a new direction in cross-domain representation learn-
ing. This enables the model to generalize effectively across
differing operational conditions, even with limited labeled in-
formation from the target domain. To achieve this, the model
is trained using a joint loss function comprising two compo-
nents: (1) a multi-class cross-entropy loss computed using
all labeled samples from the source domain, and (2) a do-
main adaptation loss based on Maximum Mean Discrepancy
(MMD), calculated exclusively from healthy class samples in
both source and target domains. The MMD loss encourages
the alignment of feature distributions between domains and
mitigates the impact of domain shift. The research addresses
a partial domain adaptation scenario and contributes toward
more robust and deployable diagnostic frameworks in real-
world gearbox health monitoring applications.

The remainder of this paper is shown as follows. Section 2
describes an overview of related work. Section 3 details the
proposed methodology. Section 4 illustrates the experimen-
tal tasks and evaluates the performance. Finally, Section 5
concludes the paper.

2. RELATED WORKS

DA has emerged as a crucial solution for addressing the chal-
lenges posed by domain shift, significantly impacting ma-
chinery diagnostics and prognostics. In industrial machin-
ery applications, failures due to faults in critical components,
such as bearings and gearboxes, greatly influence operational
safety and reliability. However, machine learning-based di-
agnostic models often struggle with limited labeled data and
poor generalization across varied operational conditions, ne-
cessitating robust DA methods to enhance their applicability
and accuracy (Yao, Kang, Zhou, Rawa, & Abusorrah, 2023).

Several recent domain adaptation methodologies have been
developed to address these limitations. (Ye, Yan, Jiang,
& Chen, 2025) introduced a multi-branch attention coupled
convolutional domain adaptation network (MACCDAN) de-
signed for intelligent fault recognition under unlabeled sam-
ple scenarios. MACCDAN employs a cross-attention cou-
pled module and global feature aggregation, complemented
by a maximum-similarity minimum-discrepancy adversarial
loss to enhance cross-domain feature alignment. Similarly,
(Shao, Jiang, Zhang, Zhou, & Huang, 2025) proposed a
pseudo-label progressive learning guided wavelet class-aware
adaptive network, leveraging discrete wavelet transforms and
pseudo-label refinement to improve cross-domain fault diag-
nosis performance for gearboxes. Additionally, (Khanal et
al., 2025) developed a domain-specific dual network utilizing
multisource domain data, combining deep convolutional neu-
ral networks with convolutional block attention modules for
improved transfer fault prognosis.

Domain adaptation techniques have also been integrated into
digital twin frameworks to further address data scarcity is-
sues. (Zhu, Deng, Tang, Yang, & Li, 2025) proposed a dig-
ital twin-enabled entropy regularized wavelet attention do-
main adaptation network specifically for gearbox fault di-
agnosis, which employs entropy regularization and wavelet-
based feature extraction to bridge discrepancies between sim-
ulation and real operational data. Similarly, (Zhang, Li, &
Wang, 2025) introduced a joint domain-adaptive transformer
for remaining useful life (RUL) prediction, effectively align-
ing global feature distributions across different domains.

Moreover, the challenge of data scarcity and the diffi-
culty of acquiring real-world fault data have led researchers
to explore simulation-to-real (S2R) domain adaptation ap-
proaches. (Ji, Wang, Inoue, & Kanemaru, 2025) developed
a hybrid physics-based and data-driven framework, employ-
ing topological data analysis and domain adaptation tech-
niques to bridge gaps between simulated and real motor fault
data. (Wang, Taal, & Fink, 2021) proposed integrating ex-
pert knowledge with domain adaptation, utilizing synthetic
fault data generated through expert-informed methods, sub-
sequently adapted to real data using an imbalance-robust DA
approach. (Lou, Kumar, & Xiang, 2022) similarly employed
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finite element method (FEM)-based simulation data com-
bined with generative adversarial network (GAN)-based do-
main adaptation, effectively reducing discrepancies between
simulated and measured fault signals for machinery diagno-
sis. These advancements underscore the critical role of DA
methods in machinery diagnostics, addressing domain shift
challenges and enhancing diagnostic model reliability and ro-
bustness in real-world industrial applications.

3. METHODOLOGY
3.1. Problem Statement

Gearbox fault diagnosis is essential in maintaining opera-
tional reliability and safety of machinery systems. The pri-
mary components of interest for this diagnosis include gears
and bearings. Fault conditions, such as gear wear and bear-
ing corrosion, significantly degrade system performance and
increase maintenance costs. Specifically, gear wear typically
results from prolonged mechanical friction and contact stress
within the gearbox, while bearing corrosion is often attributed
to environmental factors such as moisture and contaminants.

Formally, we define our source domain dataset as D, =
{(z%,y?)}=,, consisting of labeled samples across three
classes: healthy, gear wear, and bearing corrosion. The target
domain dataset is represented as D; = { (7, y/)}},. Impor-
tantly, during training, we only utilize a small subset of the
target domain data, D', which contains exclusively healthy
class samples. The remainder of the unseen target domain
data, D', encompassing all three classes, is used to evaluate
the model’s multi-class classification performance.

3.2. Data Collection and Preprocessing

An industrial planetary gearbox system subjected to different
operational conditions was used to collect this dataset. The
experimental setup is shown in Figure 1. The dataset com-
prises three classes: (1) healthy samples, (2) faulty samples
due to gear wear at a planetary gear in the gearbox, and (3)
faulty samples due to corrosion at a ball bearing in the servo
motor.

The data used in this study are collected under three work-
ing regimes corresponding to rotational speeds of 500, 1000,
and 3000 RPM. For each speed regime, 12 distinct command
patterns under high servo gain settings are executed, totaling
36 patterns across all conditions. Each command pattern, in-
cluding both forward (positive) and backward (negative) ro-
tations, is repeated 100 times for the healthy and gear wear
classes, and 88 times for the bearing corrosion class. The
recorded signals comprise feedback torque current, command
velocity, feedback velocity, command position, and feedback
position, all sampled at a fixed interval of 444 pus. In this
study, the feedback torque current is utilized as the primary
signal for analysis. The raw feedback torque current contains
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Figure 1. The experimental configuration for the manufactur-
ing system.

both transient and steady-state components. To capture stable
machine behavior, only the steady-state portion of the feed-
back torque current signal is extracted and truncated to a fixed
length of 4000 sampling points.

3.3. Framework Architecture

In this study, the proposed CNN-DistilBERT Network
(CDANet) model, is to perform time series classification
by combining a convolutional neural network (CNN) with
a pretrained DistilBERT transformer encoder. The overall
architecture is illustrated in Figure 2.

The model takes a univariate time series as input, represented
as a one-dimensional vector of length . A lightweight CNN-
based feature extractor is employed to learn local temporal
patterns. It consists of two 1D convolutional layers. The first
convolutional layer uses 16 filters with a kernel size of 3 and
padding of 1, followed by a ReLU activation. The second
convolutional layer uses 32 filters with the same configura-
tion and is also followed by a ReLLU activation. The output
feature maps are average-pooled along the temporal dimen-
sion to produce a fixed-length 32-dimensional feature vector.
This vector is then projected to a 768-dimensional embedding
space using a fully connected layer, aligning with the hidden
dimension of the DistilBERT model. The projected embed-
ding is reshaped to simulate a single-token sequence and is
directly passed into the pretrained DistilBERT encoder. Due
to the single-token input, the self-attention mechanism in the
transformer layers is bypassed, and the model primarily uti-
lizes the feed-forward sublayers, along with residual connec-
tions and layer normalization operations, within each trans-
former block. The DistilBERT parameters are frozen during
training to reduce computational cost and prevent overfitting.
The output of the encoder corresponds to the first token repre-
sentation (analogous to a [CLS] token in BERT-based archi-
tectures), which is a 768-dimensional vector is extracted and
passed through a final fully connected classification layer to
generate class logits.
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Figure 2. Architecture of the proposed CNN-DistilBERT Adaptation Network (CDANet) model.

To address domain shift issues in fault diagnosis, our model
employs a joint optimization strategy integrating classifica-
tion and domain discrepancy losses. Specifically, the classifi-
cation loss, denoted as L., uses labeled samples from source
and target domains, formulated as:

1 Ns C
Le= 2.2 Hy: = c}log(ii) (D

i=1 c=1

Here, N is the total number of samples, C' represents the
number of classes, y; is the actual class of the i*” sample, Ui,c
denotes the predicted probability of class c for the i*” sample,
and 1{-} is the indicator function.

To mitigate domain discrepancy, particularly for healthy op-
erational states, the Maximum Mean Discrepancy (MMD)
measure is applied. Let Z() and Z(tH) denote fea-
ture vectors extracted from the DistilBERT’s final layer for
healthy samples in source and target domains. The MMD
loss Lasarp is given by:

Lyyp = MMD?*(Z&H) | z(HH) )

where M M D?(-,-) quantifies feature distribution discrepan-
cies within a reproducing kernel Hilbert space (RKHS).

Finally, the overall loss function integrates these two losses
as:

Liotat = oL + BLyvp 3)

Hyperparameters o > 0 and S > 0 control the balance be-
tween achieving accurate classification and maintaining do-
main invariance, ensuring robust fault diagnosis across di-
verse operational conditions.

During training stage, the network parameters can be trained
in each epoch as:

OL. OLyvmp

0<+—0-9 - —_— 4
“ (O‘ 20 P o0 @
where 6 represents the parameters of the network model, and

d is the learning rate.

Table 1. Data Distribution in Training and Testing Stages.

Stage Data Gearbox Bearing
Healthy \ Wear | Corrosion
Training | Source Data 1200 1200 1056
Target Data for DA 60 0 0
Testing Target Data 1140 1200 1056

4. RESULT AND DISCUSSION
4.1. Experimental tasks

Each of the source and target domains comprises 3456 sam-
ples shown in Table 1, consisting of 1200 healthy gearbox
samples, 1200 faulty gearbox samples (exhibiting wear), and
1056 faulty bearing samples (exhibiting corrosion). For do-
main adaptation, 5% (60 samples) of the healthy samples
from the target domain are integrated into the source domain
during the training phase. The remaining target domain sam-
ples are reserved exclusively for the testing phase. The train-
ing set is partitioned, with 90% of the data allocated for model
training and the remaining 10% for validation. A fixed ran-
dom seed is used during sampling to ensure reproducibility.
To evaluate the model’s performance under domain adapta-
tion, we designed six tasks based on differences in rotational
speed between the source and target domains. These rpm dif-
ferences are set at 500, 1000, and 3000. A summary of these
tasks can be found in Table 2. The hyperparameter settings
for the proposed CDANet model are detailed as follows. The
model is trained using a batch size of 8 for 100 epochs. The
initial learning rate is set to 0.0008 and optimized using the
Adam optimizer. A learning rate scheduler is employed with
a step decay strategy, where the learning rate is multiplied by
a factor of 0.96 every 5 epochs. The loss function in CDANet
consists of two components: the classification loss and the
domain adaptation loss. The weighting coefficients are set as
«a = 1.0 for the cross-entropy loss and 5 = 0.1 for the MMD
loss.
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Table 2. Overview of the Designed Experiments.

Domain Adaptation Task \ Source Domain \ Target Domain

T1 500 rpm 1000 rpm
T2 500 rpm 3000 rpm
T3 1000 rpm 500 rpm
T4 1000 rpm 3000 rpm
T5 3000 rpm 500 rpm
T6 3000 rpm 1000 rpm

4.2. Performance Evaluation

From Table 3, we first observe that the baseline CNN model
DA exhibits relatively high accuracy on tasks T4 and T6,
achieving 96.35% and 96.79%, respectively. Both tasks in-
volve DA between 1000 rpm and 3000 rpm, suggesting that
the signal characteristics between these two operating condi-
tions share inherent similarities that the model can leverage
effectively, even without explicit domain alignment.

When incorporating MMD into the CNN architecture
(CNN+MMD), performance shows slight improvement on
most tasks. For example, the accuracy increases from 71.17%
to 75.80% in T1, from 70.97% to 74.85% in T2, and from
74.76% to 76.03% in T3. These results show that MMD
contributes to mitigating domain shift by partially aligning
the feature distributions between source and target domains.
However, in TS, the performance decreases from 85.66%
(CNN) to 79.59% (CNN+MMD), indicating that MMD-
based DA may not be effective under certain challenging
transfer scenarios.

When incorporating MMD into the CNN architecture
(CNN+MMD), performance shows slight improvement on
most tasks. For example, the accuracy increases from 71.17%
to 75.80% in T1, from 70.97% to 74.85% in T2, and from
74.76% to 76.03% in T3. However, in TS5, the performance
decreases from 85.66% (CNN) to 79.59% (CNN+MMD).
These results show that CNN+MMD contributes to mitigat-
ing domain shift by partially aligning the feature distribu-
tions, as evidenced in T1, T2, T3, and T6. In contrast, under
certain challenging transfer scenarios, such as T4 and T3,
this model may not be effective in improving performance.

The proposed CDANet (CNN+MMD+DistilBERT) model
achieves the highest accuracy across all DA tasks. In par-
ticular, tasks with large domain gaps—such as T1, T2, and
T3—benefit substantially from this architecture. CDANet
improves the accuracy from 71.17% (CNN) and 75.80%
(CNN+MMD) to 92.46% in T1, from 70.97% and 74.85%
t0 92.29% in T2, and from 74.76% and 76.03% to 91.17% in
T3. Even for T4 and T6, where CNN already performs well,
CDANet further boosts performance to 98.88% and 99.44%,
respectively. Most notably, in task TS—where the perfor-
mance of CNN+MMD drops below the baseline—CDANet

Table 3. Accuracy (%) on Each Domain Adaptation Task
Across Different Models.

Task Model (Accuracy %)
CNN | CNN+MMD | CNN+MMD+DistilBERT

T1 71.17 75.80 92.46
T2 70.97 74.85 92.29
T3 74.76 76.03 91.17
T4 96.35 96.17 98.88
T5 85.66 79.59 96.05
T6 96.79 99.20 99.44

significantly enhances the accuracy to 96.05%, highlighting
its superior ability to adapt across complex and imbalanced
domain shifts.

To better understand the performance of the proposed
CDANet model, the confusion matrices for tasks T1-T6
are analyzed in Figure 3. The proposed CDANet model
performs well overall, particularly in tasks T4 and T6, where
all classes are classified with minimal errors. However, in
tasks such as T1 and T2, a noticeable number of Healthy
samples are misclassified as Wear and Corrosion classes,
and a substantial portion of Corrosion samples are misclas-
sified as Wear. Task T3 shows the reverse trend, with many
Wear samples (239 out of 1200) misclassified as Corrosion.
Task T5 also exhibits moderate confusion, particularly with
Wear samples being misclassified as either Healthy (22 sam-
ples) or Corrosion (84 samples), and 28 Corrosion samples
incorrectly predicted as Healthy.

5. CONCLUSION

This study proposes a novel framework, the CNN-
DistilBERT Adaptation Network (CDANet) model, that
integrates CNN feature extraction, a frozen DistilBERT en-
coder, and MMD-based alignment to address multi-class
gearbox fault diagnosis under real-world domain shift con-
ditions. The proposed method is particularly effective when
the target domain contains only healthy samples during train-
ing—a common challenge in industrial scenarios. Through
comprehensive experiments across six domain adaptation
tasks, CDANet consistently outperforms conventional CNN
and CNN+MMD models, achieving substantial improve-
ments in classification accuracy, especially in tasks involving
large domain gaps. These findings underscore the value
of pre-trained architectures for time-series diagnostics and
reinforce the effectiveness of integrating domain alignment
and robust representation learning to address partial domain
adaptation challenges in real-world industrial scenarios.
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Figure 3. Confusion matrices of the proposed CDANet model on test data for domain adaptation tasks T1-T6.

vided us with gearbox data and many valuable insights about
motion system.
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