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ABSTRACT

Faults in frequency-modulated continuous wave (FMCW)
radar systems can distort the radar signal and compromise
system performance, yet their signal-level impacts remain un-
derexplored. This paper presents a simulation-based analysis
of signal distortions caused by five representative fault be-
haviors including noise, gain, negate value, offset, and de-
lay, across three critical FMCW radar subsystems: waveform
generator, transmitter, and receiver. We examine the effects
of each fault on complex baseband signals and range esti-
mation accuracy, providing both qualitative and quantitative
evaluations. The results reveal distinct distortion patterns and
demonstrate that range errors and false negatives can occur,
prompting the need for diagnostic and fault-aware processing
strategies. Notably, noise, delay, and offset faults have the
most significant impact on signal integrity and range estima-
tion, while gain and negate value faults showed no measur-
able degradation in performance.

1. INTRODUCTION

Recent advancements and widespread integration of radar
technology across multiple sectors have significantly in-
creased the complexity of associated electronic systems
(Moghaddam, Aghdam, Filippi, & Eriksson, 2020). In au-
tomotive applications, radar subsystems are typically de-
ployed without ongoing maintenance, making fault detection
and mitigation a critical challenge for long-term reliability
(Matos, Bernardino, Duraes, & Cunha, 2024). The lack of
scalable fault detection strategies is especially problematic
for autonomous systems that require high reliability.

Frequency Modulated Continuous Wave (FMCW) radar ar-
chitectures consist of multiple modules (Jankiraman, 2018),
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including waveform generators, transmitters, receivers, and
digital signal processors, that are inherently susceptible to
hardware faults (Wileman & Perinpanayagam, 2013). The
nature of these faults varies widely depending on the af-
fected component, leading to diverse failure modes. While
hardware-level failures are well documented in existing lit-
erature, their direct impact on signal integrity, particularly in
terms of distortion, has received comparatively limited atten-
tion (Subburaj et al., 2018; Ginsburg et al., 2018). Fault-
induced signal anomalies in automotive radar subsystems can
degrade range estimation and target detection, compromis-
ing both system performance and driving safety. This under-
scores the need for simulation-based analysis to model and
evaluate distortion effects in FMCW radar systems.

Efforts to estimate the remaining useful life (RUL) of radar
Transmit/Receive (T/R) modules involved the use of least
squares-based parameter identification frameworks to model
degradation behavior (Murtala, Lee, & Park, 2023). In par-
allel, Zhai et al. proposed several data-driven prognostic
models for radar transmitters. These include a multivariate
Long Short-Term Memory (LSTM) network combined with
a multivariate Gaussian distribution for fault prediction (Zhai
& Fang, 2020), an unsupervised isolation forest approach
for degradation detection (Zhai, Shao, Li, & Fang, 2021),
and a hybrid model combining dynamic updated AutoRe-
gressive Integrated Moving Average (ARIMA) with multi-
variate isolation forest techniques (Zhai, Liu, Cheng, & Fang,
2022). Complementary research also introduced fault predic-
tion models using Vector Autoregression (VAR), enhanced by
advanced signal processing methods such as Piecewise Cu-
bic Hermite Interpolation and Wavelet Multivariate Denois-
ing (Murtala, Soojung, & Park, 2023). These methodologies
offer robust tools for modeling fault behavior and enhanc-
ing the reliability of radar systems, paving the way for pre-
dictive maintenance strategies that minimize downtime, re-
duce operational costs, and ensure sustained performance in
mission-critical applications. Similar approaches have been
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explored in broader industrial contexts, such as automated
machine learning frameworks for RUL prediction in cyber-
physical systems (Zoller, Mauthe, Zeiler, Lindauer, & Hu-
ber, 2025) and deep learning-based degradation modeling for
aerospace systems (Darrah, Lovberg, Frank, & Quinones-
Gruiero, 2022).

Beyond internal subsystem faults, radar performance is also
compromised by physical misalignments, which alter the
beam orientation of signals and reduce accuracy in object de-
tection. A comprehensive survey on radar misalignment de-
tection highlights the impact of vertical and horizontal de-
viations on system reliability, particularly in safety-critical
scenarios (Sharif, Murtala, & Choi, 2025). These misalign-
ments, while mechanical in nature, share common conse-
quence with electronic fault, both induce signal anomalies
that degrade radar functionality. The implications of radar
faults extend beyond technical performance to broader safety
outcomes (Burza, 2024). A machine learning-based study on
accident severity prediction demonstrates how sensor faults,
including radar sensors, influence the likelihood and severity
of vehicular collisions (Matos et al., 2024; Shafique, Rustam,
Murtala, Jurcut, & Choi, 2024). Additionally, recent work
on ghost object detection has revealed how signal anomalies,
whether caused by hardware faults, environmental interfer-
ence, or adversarial spoofing, can lead to false positives in
object recognition, posing serious risks to autonomous navi-
gation and decision-making (Kraus, Scheiner, Ritter, & Diet-
mayer, 2021; Murtala, Hur, & Park, 2025). These findings re-
inforce the need for robust fault modeling and signal integrity
analysis.

This study presents a simulation-based analysis of five rep-
resentative fault behaviors induced across three critical sub-
systems of automotive radar, the waveform generator, trans-
mitter, and receiver. It investigates how these faults affect the
integrity of complex radar signals and compromise the accu-
racy of range estimation. The analysis includes both quantita-
tive evaluations, assessing impact through performance met-
rics, and qualitative assessments that characterize the nature
and structure of the observed distortions. By integrating these
complementary approaches, the study offers a comprehensive
view of how subsystem faults manifest at the signal level and
influence downstream radar processing performance. The
analysis advances fault modeling in automotive radar and
supports the development of predictive maintenance strate-
gies.

This paper is organized as follows: Section 2 introduces the
FMCW radar architecture and operational principles, and re-
views common fault types along with related literature. Sec-
tion 3 details the simulation-based methodology. Section 4
presents and analyzes the results. Finally, Section 5 con-
cludes the paper and outlines potential directions for future
research.

2. BACKGROUND
2.1. Common Fault Types in Radar System

The reliable operation of radar system depends on the coordi-
nated performance of its key subsystems, including the wave-
form generator, transmitter, receiver, and digital signal pro-
cessor. Each of these components is susceptible to specific
degradation mechanisms that can impair overall system per-
formance. If left undetected, such degradations may lead to
severe consequences, including reduced resolution, shortened
detection range, and increased false alarm rates. This section
reviews common fault types observed in radar systems, out-
lining their underlying physical causes and the operational
precursors that often signal their presence.

Wileman and Perinpanayagam conducted a comprehensive
analysis of fault mechanisms in radar and radio frequency
(RF) systems, applying Failure Modes, Effects, and Ceriti-
cality Analysis (FMECA) to identify high-risk components
(Wileman & Perinpanayagam, 2013). Their study linked
semiconductor wear-out and other degradation processes to
system-level health indicators, and established a framework
for Prognostics and Health Management (PHM) planning
grounded in physics-of-failure principles.

Kulevome et al. developed a PHM framework tailored to
radar systems, emphasizing operational fidelity and system-
level diagnostics (Kulevome et al., 2021). Their methodology
involved identifying critical subsystems, deploying sensors,
and modeling degradation to estimate Remaining Useful Life
(RUL). Although the paper did not explicitly describe the use
of FMEA, its structure aligned with fault isolation and per-
formance monitoring strategies. Sensor data were processed
to support fault detection and enable adaptive maintenance
planning.

Hou et al. proposed a data-driven technique for selecting
degradation-sensitive parameters in phased array radar trans-
mitter/receiver modules (Hou et al., 2018). Their method tar-
geted fault precursors specific to the transmitter and receiver
subsystems using association rule mining, which filtered out
variables with weak statistical relevance to fault modes. By
calculating support and confidence metrics from Built-In Test
Equipment (BITE) data, the authors identified key indicators
such as output power, transmitter channel gain, noise coef-
ficient, and stray signal suppression. These parameters re-
flected degradation under transmitter, receiver, or combined
fault conditions. The approach reduced RUL estimation error
and improved fault detection accuracy at the module level,
thereby strengthening predictive maintenance capabilities.

Bak and Kim extended prior methodologies by introducing a
data-driven approach for identifying potential antenna defects
during the radar manufacturing process (Bak & Kim, 2023).
Their objective was to mitigate degradation in transmitter and
receiver subsystems by addressing faults at the production
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stage. The authors formulated the task as a multi-output re-
gression problem and addressed multicollinearity by employ-
ing ensemble learning techniques, including Random Forest,
LightGBM, Gradient Boosting, Ridge, and Lasso models.
The modeling pipeline was implemented using AutoML via
PyCaret, which facilitated automated feature selection, model
training, and hyperparameter optimization. The final ensem-
ble model achieved mean absolute error of 0.6928 and a root
mean square error of 1.2065, outperforming baseline machine
learning and deep learning models. The study demonstrated
that identifying antenna-related degradation during manufac-
turing can reduce downstream faults in transmitter and re-
ceiver subsystems.

2.2. Existing Fault Detection and Diagnosis Approaches

Once the fault modes and their precursors have been identi-
fied, the focus shifts to methods that can reliably detect and
diagnose these faults during radar operation. Advances in
computational power and algorithm design have enabled the
development of sophisticated frameworks capable of fusing
multi-source information, extracting complex features from
noisy radio frequency (RF) signals, and adapting to evolv-
ing fault patterns. The following works illustrate the di-
versity of detection and diagnosis strategies proposed for
radar systems, encompassing adaptive signal decomposition,
attention-based deep learning, and comparative evaluations of
artificial intelligence techniques.

To address the limitations of traditional Built-In Test Equip-
ment (BITE), which is typically constrained to subsystem-
level fault identification and may lead to unnecessary module
replacements. Liu et al. proposed a Bayesian network-based
fault diagnosis method tailored for radar receiver chains (Liu,
Bi, Gu, Wei, & Liu, 2022). Their approach integrates ex-
pert knowledge of radar architecture, historical maintenance
records, and real-time multi-sensor data, including humid-
ity, temperature, signal phase, current, and voltage, to en-
able device-level fault localization. The Bayesian network
(BN) model represents probabilistic dependencies between
fault symptoms and 21 identified fault points, with condi-
tional probability tables derived from empirical data. Ap-
plied to operational radar monitoring datasets, the BN-based
method demonstrated improved fault localization accuracy,
reduced diagnostic costs, and shortened mean time to repair.
This highlights the practical benefits of combining probabilis-
tic reasoning with multi-source information fusion.

Building upon earlier studies, Tang et al. introduced a non-
invasive diagnostic technique specifically designed for highly
integrated multiple-input multiple-output (MIMO) RF front-
end modules, where access to internal test points is limited
(Tang et al., 2023). Their method consists of three major
steps, fault mode identification using Failure Mode and Ef-
fects Analysis (FMEA), signal decomposition via Variational

Mode Decomposition (VMD), and classification using an in-
terleaved group convolutional neural network. The VMD en-
hances fault feature sparsity by reducing model overlap in
the frequency domain, while the dual convolutional architec-
ture lowers computational load and parameter count without
compromising classification performance. Although this ap-
proach captures how hardware degradations alter frequency
characteristics, it is primarily used for fault type classifica-
tion rather than detailed analysis of baseband distortions and
radar performance. The method achieved a classification ac-
curacy of 94.44% within 6.4 seconds, demonstrating the ef-
fectiveness of combining adaptive signal decomposition with
efficient deep learning for rapid fault localization. A com-
plementary technique by Tang et al. employs a deep learn-
ing model known as Convolutional Attention Network (CAN)
alongside Enhanced Synchro extracting Transform (EST) to
generate high resolution time-frequency maps (Tang et al.,
2025). This feature-oriented approach processes complex-
valued signals and has been validated on a MIMO radar plat-
form. Unlike the earlier method, which prioritizes lower com-
plexity and real-time readiness, this technique emphasizes
precision and robustness in feature extraction.

Liu et al. also provided a broader review of machine learn-
ing techniques for fault diagnosis in RF and analog circuits
(Liu et al., 2022). Their study examined a wide range of al-
gorithms, including artificial neural networks (ANN), support
vector machines (SVM), decision trees, and ensemble learn-
ing methods such as random forests and boosting techniques.
For each method, the authors evaluated key performance di-
mensions such as diagnostic accuracy, model interpretability,
training complexity, and computational efficiency. While not
exclusively focused on radar systems, this review offers valu-
able guidance for selecting appropriate fault diagnosis tech-
niques based on system constraints and application require-
ments, particularly in RF-intensive environments.

3. SIMULATION METHODOLOGY AND FAULT MODELS

The simulation methodology employed in this study is illus-
trated in Figure 1, which identifies the three radar subsys-
tems where fault injection is performed: the FMCW wave-
form generator, the transmitter, and the receiver. Faults are
not injected into the digital signal processing (DSP) unit, as it
falls outside the scope of this analysis. This section provides
a detailed overview of the signal flow and fault injection strat-
egy across the selected subsystems. The simulation focuses
on how faults alter the behavior of the radar signal at vari-
ous stages, enabling a controlled evaluation of fault-induced
distortions. Each subsystem is modeled to reflect its func-
tional role in a typical automotive FMCW radar architecture,
allowing for targeted fault scenarios that mimic real-world
degradation patterns.
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Figure 1. Automotive radar subsystems and fault injection
points.

3.1. FMCW Radar Signal Chain

FMCW automotive radar system operates by generating and
processing chirp signals, frequency-modulated waveforms
that vary linearly over time. These signals are used to esti-
mate the range and velocity of detected targets through beat
frequency analysis and Doppler shift measurements. The
radar signal chain consists of three primary subsystems where
fault signals are injected:

¢ Waveform generator: This unit synthesizes a contin-
uous sequence of linearly frequency-modulated chirps.
Each chirp is defined by its start frequency, fy, band-
width B, chirp duration T, and slope S = B/T, in Hz/s,
which determines the rate of frequency change. In the
ideal case, fj increases linearly with time within each
chirp period, producing a sawtooth-like frequency-time
profile as illustrated in the spectrogram plot in Figure 2b.
The waveform signal can be expressed as,

s(t) = Aed@PtHS) o<y < T, ¢))

where A is the amplitude of the baseband chirp (see Fig-
ure 2a for the Amplitude-time waveform plot).

e Transmitter: This converts the generated baseband
chirp into an RF signal suitable for propagation through
free space. The complex baseband signal is mixed with
a local oscillator (LO) to produce an RF signal centered
fe» which is typically 77 GHz in automotive radar ap-
plications. The chirp is amplified by a power amplifier
(PA) and radiated through the transmit antenna to space.
The ideal transmitted waveform maintains the frequency
slope and phase linearity of the chirp. Any nonlineari-
ties in the PA or LO leakage introduce spectral distortion.
The signal is given as,

s(t) = Agppel?fet. s(t), 2)

where App represents the physical RF amplitude gain
after all hardware effects up to the antenna port (e.g., fil-
ters, amplifiers). The value of Agrp can vary with fre-
quency, temperature, and operating point of the PA.

FMCW waveform: real part, sweep 1

Amplitude (V)

Frequency (kHz)
Power/frequency (dB/Hz)

0.5 1 1.5 2 2.5 3 35
Time (ms)

(b)

Figure 2. (a) Amplitude-Time and (b) Frequency-Time plot
of FMCW waveform.

* Receiver: This susbsystem captures reflected RF signals
from multiple targets and converts them into baseband
for digital processing. The incoming RF echo is mixed
with a replica of the transmitted chirp, producing an in-
termediate frequency (IF) beat signal whose frequency
is proportional to range of target. A low-pass filter sup-
presses high-frequency components and noise, isolating
the beat frequency f,. The filtered IF signal is then sam-
pled by an analog-to-digital converter (ADC), resulting
in a discrete-time complex baseband signal suitable for
range estimation. The transmitted RF chirp, after reflect-
ing off one or more targets, arrives at the receive antenna
as,

= Z Ay cos(2m fo(t — i) + TS (t— 7)? + n(t)).

k=1
3)
After downconverting the received signal, the radar
mixes s, (t) with a copy of the transmitted signal to esti-
mate the baseband received signal as,
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K
Srop (t) — ZAkej(QTrfft—ﬂ'ST,f) + n(t), (4)
k=1

where K is the number of targets, Ay, is the attenuation
factor for target k, it includes path loss, antenna gain,
and radar cross section (RCS) information of the target.
Ty is 2Ry /¢, round trip time delay for range Ry, and ¢ is
the speed of light. flf is the beat frequency for target k,
directly proportional to Ry,. w577 is the term for mixing,
and lastly, n is additive RF noise.

A clear understanding of the FMCW radar signal chain is es-
sential for analyzing how faults introduced at different stages
affect signal integrity and system behavior. Faults in any of
these subsystems introduce distortions that propagate through
the signal chain, influencing downstream components and
overall radar performance. This foundational structure en-
ables targeted fault injection and supports the simulation
framework described in the following subsections.

3.2. Simulation Environment

The radar signal chain and fault models were implemented
in MATLAB R2024b (The MathWorks Inc., 2024) using the
Radar Toolbox (MathWorks, 2024b), Simulink (MathWorks,
2024c), and the Fault Analyzer toolbox(MathWorks, 2024a).
The simulation environment involves the automotive radar
(waveform generator, transmitter, receiver, and digital signal
processor), a target car, and the propagation channel. The
general setup of the Simulink simulation is shown in Figure
3.

The radar was configured to operate at 77 GHz, with the chirp
parameters, transmitter, and receiver amplifier specifications
defined according to the values listed in Table 1. Using pa-
rameterized Simulink models in combination with the built-
in diagnostic and fault injection capabilities of the Fault An-
alyzer, faults were systematically introduced into individual
radar subsystems while maintaining identical baseline condi-
tions for fair performance comparison. Simulink was chosen
for this work due to its ability to integrate high-level algo-
rithm design with detailed physical modeling, enabling accu-
rate signal-level analysis and flexible fault injection within a
unified simulation framework.

3.3. Fault Models

The fault injection models considered in this study are
sourced from the Fault Analyzer toolbox (MathWorks,
2024a). To simulate realistic degradation scenarios in au-
tomotive radar systems, we selected five representative fault
behaviors, noise, gain, negate value, offset by one, and unit
delay, based on their prevalence in radar hardware failure
modes.

Table 1. Simulation Parameters.

Radar [ Value
Operating Frequency (GHz) 77
FMCW bandwidth(GHz) 1.5
Sweep duration (s) 0.001
Sample Rate (MHz) 1.5

Tx Reference Impedance (Ohms) | 50

Tx PA gain (dB) 30

Tx LNA gain (dB) 40
Signal propagation speed (m/s) 299,792,458
Simulation Duration (s) 0.5
Probality of false alarm 0.0001

These faults reflect common physical and electronic degra-
dation mechanisms, noise reflects thermal and electronic in-
terference in analog components (Moghaddam et al., 2020),
gain variations arise from amplifier aging or power instability,
negate simulates polarity inversion due to digital logic faults,
offset captures DC bias shifts from component drift, and de-
lay represents timing mismatches caused by clock jitter or
synchronization loss (Sanches, 2023; Skolnik, 2008). Each
fault was individually injected into one of the radar subsys-
tems, waveform generator, transmitter, or receiver, and ac-
tivated at the start of the simulation. As a result, the fault
signals altered the original subsystem signals. Illustrations of
these fault behaviors are shown in Figure 4.

The settings and subsystem locations for each fault are sum-
marized in Table 2. Specifically, the noise fault adds a random
signal component to the subsystem output, simulating inter-
ference or degradation. This results in a distorted version of
the original signal, reducing its clarity and potentially mask-
ing key features such as frequency or phase. In contrast, a
gain fault duplicates the original signal and amplifies its am-
plitude, resulting in a higher magnitude version of the original
signal. A negate fault multiplies the original signal by a neg-
ative value, effectively inverting its polarity. This can distort
phase relationships and interfere with downstream process-
ing that assumes positive signal orientation. An offset-by-one
fault subtracts a constant value of one from the original sig-
nal, introducing a fixed bias. This shift can affect amplitude-
sensitive operations and degrade signal fidelity. Finally, a de-

Free Space
Channel Target

wavetorn I

Transmitter

Receiver

Figure 3. Simulation setup in Simulink.
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Figure 4. Fault behaviors from Fault Analyzer Toolbox.

Table 2. Fault behavior parameters and settings.

Fault[ Behaviors | Parameters | Subsystems | Trigger
I Noise Mean = 0,
Variance = 1 Waveform,
2 Gain X2 Transmitter (PA), Always
3 Negate x-1 and on
Value Receiver (LNA)
4 Offset by | Y=U + Bias;
one Bias=-1
5 Delay 500 time
steps

lay fault defers the subsystem output by 500 discrete simu-
lation time steps. This temporal misalignment simulates la-
tency or timing errors, which can disrupt synchronization and
impair range or velocity estimation.

3.4. Metrics

The impact of injected faults on radar range estimation is
quantified using two primary metrics:

* Mean Squared Error (MSE).

This metric evaluates the deviation between the esti-
mated range and the ground truth. It captures the cu-
mulative effect of signal distortions introduced by faults
across the radar processing chain. A higher MSE indi-
cates reduced accuracy in target localization.

*  Number of Missing Detections ().

This metric counts the instances where valid targets fail
to be detected due to fault-induced degradation. Missing
detections may result from signal attenuation, spectral
distortion, or misclassification during digital processing.
It serves as a direct indicator of system reliability under
fault conditions. Range values with nan output, zero, or
negative values are counted as missing detections.

Together, these metrics provide a comprehensive assessment
of how faults affect both the precision and robustness of
radar-based range estimation.

4. RESULTS AND DISCUSSION

To evaluate the impact of subsystem faults on FMCW radar
performance, a controlled simulation scenario was designed
with a single target vehicle positioned directly in front of the
radar boresight. Five discrete target ranges of 5, 20, 40, 60,
and 100 m; and four radial velocities of 0, 5, 10, and 22 m/s
were considered, representing typical short to medium-range
automotive use cases. For each of the fifteen fault models,
comprising five waveform generator faults, five transmitter
faults, and five receiver faults, the complete range—velocity
set was simulated under identical environmental and radar
configuration conditions. This structured experimental de-
sign ensured consistent fault isolation as only one fault be-
havior was injected into the automotive radar sensor at a time.

Starting with the waveform generator, the effects of the faults
on the original signal are shown in Figure 5. 'In contrast to
Figure 2a, the sampling rate was reduced to 5 kHz to better
illustrate the actual impact of the fault. =~ Among the fault
types, the noise and delay faults caused the most significant
disruptions to the original signal. The noise fault introduced
spectral distortion and amplitude fluctuations, degrading sig-
nal clarity and increasing the likelihood of misinterpretation
during processing. The delay fault caused temporal misalign-
ment by shifting the signal in time, resulting in a 500-step
lag that disrupted synchronization with the receiver and im-
paired range estimation accuracy. The remaining faults, gain,
negate, and offset, had negligible effects on waveform in-
tegrity, with changes that were largely imperceptible in the
time-domain signal structure.

Similar fault effects were observed in the transmitter subsys-
tem, as illustrated in Figure 6. While the coupler and power
amplifier do not actively attenuate noise, their configuration
can influence how injected noise propagates through the sig-
nal chain. As a result, some noise components may be par-
tially suppressed, but residual artifacts still persist and con-
tribute to signal degradation.

In contrast, the impact of faults in the receiver subsystem was
more pronounced, as shown in Figure 7. The receiver cap-
tured additional noise components, including thermal noise
and environmental interference, which compounded the dis-
tortion introduced by the injected faults. The offset fault sig-
nificantly reduced the amplitude of the received signal, weak-
ening signal strength and lowering detection reliability. Ad-
ditionally, delay faults in both the transmitter and receiver in-
troduced a consistent 500 time-step shift in the signal. This
temporal misalignment caused the delay plots to appear as
displaced replicas of the original waveform, underscoring the
disruptive effect of timing faults on radar signal synchroniza-
tion.

"Note: For clarity, all waveform plots in Figure 5, 6, and 7 are generated
using a 5 kHz downsampled version of the baseband signal. This does not
affect the validity of the computed metrics, which are based on the 1.5 MHz
sampling frequency.
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U

Negate Value

i

0 0.1 0.2 0.3 0.4 0.5 0 01 0.2 0.3 04 0.5
Simulation time (s) Simulation time (s)

1

Amplitude (V)

M

Amplitude (V)

Figure 6. Faults injected in power amplifier of transmitter.

The Fast Fourier Transform (FFT) was applied during range
processing with automatic window selection to enhance spec-
tral resolution. Target ranges were estimated using the Cell
Averaging Constant False Alarm Rate technique for object
detection, with the probability of false alarm set to 1 x 104
The MSE and number of missed detections for fault effects on
waveform, transmitter, and receiver are presented in Tables 3,
4, and 5, respectively?.

In the waveform generator, delay faults were the most dis-
ruptive, producing undefined MSE values and the highest
number of missed detections. Offset faults followed with the
second-highest average MSE, particularly missing the detec-
tion of stationary targets due to amplitude attenuation. Noise
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Figure 7. Faults injected in low noise amplifier of receiver.

faults ranked third, contributing to moderate signal distortion
and detection failures.

In the transmitter subsystem, noise faults produced the high-
est average MSE and the most missed detections among the
five fault types, indicating significant signal degradation prior
to transmission. Delay faults followed, introducing temporal
misalignment that moderately affected range estimation and
detection accuracy. Offset faults had the least impact in this
subsystem, with the lowest average MSE and fewer missed
detections.

In the receiver subsystem, offset faults were the most severe,
leading to complete signal attenuation, undefined MSE val-
ues, and the highest missed detection count (501). Noise
faults followed closely, with 470 average missed detections
and highest average MSE. Delay faults had a moderate im-
pact. Negate and gain faults across all three subsystems
showed no measurable effect. Both resulted in an MSE of
0 and 4 missed detections, indicating no significant alteration
to the signal or detection process It is also important to note
that the initial 4 missed detections observed across all sub-
systems are expected. During the first few consecutive time
steps, the radar system requires time to collect and process
the initial return signals. As a result, early missed detections
are a normal part of the simulation startup behavior and do
not reflect fault-induced degradation.

The fault-induced distortions observed in the simulations
have significant implications for automotive radar perfor-
mance in safety-critical scenarios. Noise faults, which con-
sistently produced high MSE and missed detections, pose a
serious threat to object recognition and range estimation. Off-
set fault, particularly in the waveform and receiver subsys-

2It is important to note that in Tables 3 and 5, a dash (") is used to represent
case where the MSE was either infinite or undefined (NaN). These instances
typically occurred under severe fault conditions.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

tem, further compromise signal integrity and detection relia-
bility. These vulnerabilities can directly affect core function-
alities such as collision avoidance, adaptive cruise control,
and lane-keeping assistance. Without fault-aware processing,
radar systems may fail silently, thus missing targets or incor-
rectly estimating ranges without triggering alerts. By iden-
tifying distinct fault signatures and quantifying their impact,
our findings support the integration of diagnostic intelligence
into radar signal chains. Moreover, this fault characterization
enhances sensor fusion strategies, allowing systems like Li-
DAR and cameras to compensate for radar weaknesses. This
is especially critical in adverse weather or low-visibility con-
ditions where radar is often the primary sensor. Ultimately,
our results contribute to the development of robust, fault-
tolerant FMCW radar architectures that can maintain perfor-
mance and safety even under degraded conditions.

4.1. Generalization to Real Systems

While this study is based entirely on simulated data, the fault
behaviors modeled as noise, gain variation, polarity inver-
sion, offset, and delay are grounded in degradation mecha-
nisms commonly observed in real automotive radar systems
(Fleck, May, Daniel, & Davies, 2021). These fault types have
been documented in industry reports and academic literature
as representative of hardware-level anomalies affecting radar
signal integrity and performance. Although access to radar
measurement hardware is currently limited, the simulation
framework provides a controlled and scalable environment
for analyzing fault propagation across subsystems. Future
work will focus on extending this framework to real radar
signal data, contingent on collaboration with radar manufac-
turers or research institutions equipped with suitable testbeds.
Such validation would enable deeper insights into fault man-
ifestation under operational conditions and support the devel-
opment of fault-tolerant radar processing algorithms.

4.2. Velocity Estimation and Doppler Fault Modeling

Although the primary focus of this study is on range estima-
tion, radar systems also rely on Doppler processing to esti-
mate target velocity. Certain fault behaviors, particularly de-
lay and noise can distort the frequency content of radar re-
turns, leading to inaccurate velocity estimates. In our simu-
lation, we observed that delay faults introduce temporal mis-
alignments, while noise faults inject spectral artifacts that can
shift or obscure Doppler peaks. These distortions may result
in velocity bias, jitter, or false velocity readings, especially in
multi-target scenarios.

While velocity estimation was not evaluated in this study,
these preliminary observations highlight the importance of
extending fault analysis into the Doppler domain. Future
work will incorporate Doppler signal modeling to assess how
fault-induced distortions affect velocity estimation accuracy.

Table 3. Range estimation error (MSE) and number of missed
detections («) for each fault injected to the waveform. All
MSE values are in m?.

Dist]Vel. Noise Gain  [Negate Offset Delay
(m) |(m/s) a «a a «a a
0 18.39 175]0 410 4124.98 501]- 501
5 3 26.65 147[0 410 4136.04 47- 501
10 [39.56 137]0 410 45431 4- 50T
22 [81.86 104]0 410 A[TT7.85 4 - 50T
0 285.42 165]0 410 41399.62  |501]- 501
20 P 294779 9710 410 41441774 4 - 50T
10 1349.26 106[0 410 41496.16 47- 50T
22 [5269.85 550 410 411024130 | 4 |- 501
0 1061.28 [141]0 410 4]1598.49 [501]- 501
20 P 1T41.57 [841]0 410 411687.50 | 4 |- 501
10 [TT71.2T 800 410 4[1786.86 | 4 |- 50T
22 133303 [53 [0 410 41207192 [ 4 |- 50T
0 2207.00 [129]0 410 413596.62  |501]- 501
60 P 2869.06 [ 66 [0 410 4373646 | 4 |- 50T
10 [2349.88 [70]0 410 4387777 |4 |- 50T
22 12500.54 3410 410 414290.24 | 4 - 501
0 5366.82 [113]0 410 419990.78  [501]- 501
100 P 5269.85 550 410 411024130 | 4 |- 501
10 [6069.96 [51[0 410 4[T0467.03 [ 4 |- 50T
22 542536 [10]0 410 ATTI3T.67 | 4 |- 50T

This extension will support the development of fault-tolerant
radar algorithms for both range and velocity sensing in auto-
motive applications.

4.3. Multi-Target and Environmental Extensions

The current study simulates a single-target scenario with dis-
crete range and velocity values to isolate and analyze the im-
pact of individual fault types on radar signal integrity. While
this controlled setup enables clear attribution of fault effects,
real-world automotive environments often involve multiple
targets and environmental clutter. These factors introduce ad-
ditional challenges such as target occlusion, multipath inter-

Table 4. Range estimation error (MSE) and number of missed
detections («) for each fault in the transmitter. All MSE val-
ues are in m?.

Dist]Vel. | Noise Gain Negate Offset Delay
(m) |(m/s) a a a a a
0 15142.68 [44]0 4]0 4]4.27e-9 [4]99.86 |4
5 5 10047.16 [21]0 410 411.23e-7  [4]99.86 4
10 [T8074.65 [42]0 470 4T.29e-7 [4]99.86 |4
22 116526.67 [30]0 410 410.0T 4199.86 4
0 14452.04 410 410 416.36e-9  [4]99.86 |4
20 5 14983.74 125]0 410 413.55e-8  [4]99.86 4
10 [17505.40 [37]0 410 411.37e-7  [4]99.86 4
22 |15882.8T [20]0 410 416.10e-9  [4[99.94 14
0  [21703.78 [43]0 410 4]7.0Te-9 [4[99.86 |4
20 P T0TT3.03 [T6[0 410 4]9.34e-9  [4]99.86 |4
10 |21482.23 48]0 470 4T 47e-7T [4]99.85 |4
22 15634.91 [31]0 410 411.48e-7  [4]99.85 4
0 14494.5T [30]0 410 41738e-9  [4]99.86 |4
60 5 17172.99 126]0 410 414.56e-9  [4]99.86 4
10 [26453.49 [42]0 410 411.48e-7  [4]99.85 4
22 |I5185.08 |24]0 410 411.40e-7  [4[99.84 14
0  [21790.9T [42]0 410 4]7.97e-9 14[99.86 |4
100 P 1588281 [20[0 410 4]6.10e-9  [4]99.94 |4
10 [21975.7T [36]0 470 4[T38e-7 [4[99.85 [4
22 119313.26 |28]0 410 413e-3 4199.99 4
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Table 5. Range estimation error (MSE(1m?)) and number of
missed detections («) for each fault injected in the receiver.

All MSE values are in m?

Dist. [Vel. Noise Gain  [Negate [Offset Delay
(m) |(m/s) a a a a a
0 129086.53 [469]0 410 4]- 501199.86 [4
5 5 129011.47 [468]0 410 41- 501[100.70 4
10 [130346.68 [470[0 410 4[- 501[99.87 |4
22 [132250.03 [470[0 410 4= 501[100.06 |4
0 135273.24 [470[0 410 4]- 501]99.86 |4
20 5 135570.63 [470]0 410 41- 50I[100.68 4
10 135808.33 [470]0 410 41- 50I[100.05 |4
22 166272.21 [470]0 410 41- 501[100.13 4
0 141685.30 [470]0 410 4]- 501[99.86 |4
40 5 142026.05 [470]0 410 41- 501[100.38 4
10 142312.19 [470]0 410 41- 501199.92 14
22 143419.25 [470]0 410 4]- 501]100.09 |4
0 148896.61 [470[0 410 4]- 501]99.86 |4
60 I 149290.37 [470[0 1410 [4]- [501[T00.30 |4
10 149658.46 [470]0 410 41- 50I[T00.15 4
22 150828.72 [470]0 410 41- 501[100.04 4
0 165717.09 [470]0 410 4]- 50199.86 |4
100 5 166272.21 [470]0 410 41- 501[100.13 4
10 [166731.84 [470[0 410 4- 501[100.03 4
22 |168083.95 [4700 [4]0 [4]- [501[T00.19 |4

ference, and overlapping signal returns, which can amplify or
mask the effects of hardware faults.

To extend the applicability of our framework, future work will
incorporate multi-target simulations with varying range pro-
files. This will allow us to evaluate how fault-induced dis-
tortions propagate in more complex scenes and affect target
discrimination, tracking stability, and false association rates.
Additionally, we plan to simulate environmental effects such
as ground clutter, rain, and multipath reflections to assess
how these external factors interact with internal subsystem
faults. These extensions will support a more comprehensive
understanding of radar fault resilience under realistic operat-
ing conditions.

5. CONCLUSION

This study presents a comprehensive simulation-based inves-
tigation into the signal-level impacts of faults within FMCW
radar subsystems. By analyzing five representative fault be-
haviours across the waveform generator, transmitter, and re-
ceiver, we demonstrate how each fault uniquely distorts com-
plex baseband signals and affects range estimation perfor-
mance. Our analysis shows that noise fault is the most detri-
mental, consistently yielding high MSE and missed detec-
tions across all subsystems. Delay and offset faults also sig-
nificantly impair signal integrity, particularly within the re-
ceiver chain. Importantly, we reveal that range errors and
missed detections can manifest, challenging conventional as-
sumptions and underscoring the need for fault-aware signal
processing. These insights lay the groundwork for future di-
agnostic frameworks and adaptive algorithms that can detect,
isolate, and mitigate fault-induced anomalies in real time.
By bridging the gap between fault modeling and signal-level

analysis, this work advances the understanding of radar vul-
nerability and supports the design of more resilient FMCW
radar systems for automotive applications. Looking ahead,
we plan to extend our analysis beyond isolated fault scenar-
ios by exploring cross-fault interactions and compound fault
behaviors. This will enable a deeper understanding of how
multiple simultaneous faults influence radar performance and
inform the design of robust, fault-tolerant FMCW radar ar-
chitectures.
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