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ABSTRACT

Bearings are critical components for ensuring smooth
rotational motion in mechanical systems, and reliable
operation requires continuous condition monitoring for fault
diagnosis. Recently, there has been growing interest in
diagnosing bearing conditions using artificial intelligence,
particularly deep learning-based approaches. However, in
real industrial environments, limitations such as high sensor
cost and restricted data storage often lead to the use of low
sampling frequency sensor data, which poses challenges in
developing accurate diagnosis models. To address this issue,
this paper proposes a bearing fault diagnosis method based
on knowledge distillation to enhance the utility of low
sampling frequency data. High-frequency acceleration data
were collected under both normal and faulty conditions and
subsequently downsampled for knowledge distillation. A 1D
CNN-based teacher model was trained using high-frequency
data, and multiple loss functions were designed to distill both
final predictions and intermediate features into a student
model trained on low sampling frequency data. The
performance comparison between models with and without
knowledge distillation verified the effectiveness of the
proposed approach. The results demonstrate the feasibility of
developing fault diagnosis models using low sampling
frequency data in real industrial settings and suggest an
effective knowledge distillation strategy.
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1. INTRODUCTION

In rotating machinery, bearings are critical components that
support the rotational motion of the shaft, reduce friction, and
ensure precision and stability. In particular, rolling bearings
offer advantages such as low friction loss, high load-carrying
capacity, and excellent mechanical efficiency, making them
widely used across various industrial applications. However,
faults in bearings pose serious threats to the reliability and
safety of the entire system, often leading to unexpected
equipment shutdowns or cascading failures. Such faults can
result in reduced equipment availability, decreased
productivity, and increased maintenance costs. Therefore,
early fault diagnosis and preventive maintenance of bearings
are essential tasks in industrial settings (Jia, Lei, Shan & Lin,
2015).

In recent years, Artificial Intelligence (Al), especially Deep
Learning (DL)-based diagnostic techniques, has gained
significant attention in the field of bearing fault diagnosis. DL
models can automatically learn and generalize from complex
vibration signals and fault patterns, achieving higher
diagnostic accuracy and flexibility compared to conventional
methods. Zhang, Zhang, Wange, and Habetler (2019)
conducted a comprehensive review comparing Machine
Learning (ML) and DL algorithms, concluding that DL
methods outperform conventional machine learning
techniques in feature extraction and classification
performance for bearing fault diagnosis. Siddique, Saleem,
Umar, Kim, and Kim (2025) proposed a hybrid DL
architecture combining Continuous Wavelet Transform
(CWT)-based time—frequency feature extraction with
attention-enhanced BiLSTM and 1D convolutional ResNet,
demonstrating robust diagnostic performance under noisy
environments and nonstationary signal conditions. Cui,
Zhang, Zhong, Hou, Chen, Cai, and Kim (2025) developed a
lightweight DL model that incorporates a multiscale feature
extraction structure with a Ghost module and Efficient
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Channel Attention (ECA), achieving over 99.4% diagnostic
accuracy while maintaining computational efficiency,
thereby significantly improving practical applicability.

Although Al-based bearing fault diagnosis techniques have
shown high performance across diverse conditions, most
studies rely on high sampling frequency data. While high
sampling frequency data can precisely capture variations in
rotational speed, load, and environmental factors, they are
often expensive to obtain, require substantial resources for
data acquisition, storage, and real-time processing, and face
installation constraints in industrial environments. In many
real-world cases, only low sampling frequency data are
available, resulting in the loss of high frequency fault
components and a significant degradation in diagnostic
performance.

To address this limitation, this study proposes a method for
achieving high diagnostic accuracy in low sampling
frequency environments by applying the Knowledge
Distillation (KD) technique. Specifically, knowledge
acquired by a teacher model trained on high sampling
frequency data is transferred to a student model trained on
low sampling frequency data, thereby compensating for
information loss and overcoming the performance limitations
of conventional low frequency models. This approach
enables cost-effective, lightweight sensor systems to deliver
stable and accurate fault diagnosis in industrial applications,
which is the core contribution of this work.

2. METHODOLOGY

2.1. Knowledge Distillation

Knowledge Distillation was first proposed by Hinton,
Vinyals, and Dean (2015) as a technique to transfer the
knowledge learned by a complex and high-performing large-
scale model (Teacher) to a smaller and more lightweight
model (Student), thereby achieving model compression and
faster inference  while maintaining performance.
Traditionally, knowledge distillation aims to reduce the
number of parameters or memory usage without significant
loss in accuracy. Romero, Ballas, Kahou, Chassang, Gatta,
and Bengio (2015) extended this concept by proposing
feature-based distillation, which transfers not only the output
predictions but also the intermediate feature maps from the
Teacher to the Student, allowing the Student to better mimic
the representational capacity of the Teacher.

The loss function of knowledge distillation generally consists
of the Cross-Entropy (CE) loss with respect to the original
labels and the distillation loss that mimics the Teacher’s
output probability distribution. In this study, an additional
Mean Squared Error (MSE) loss is applied to the intermediate
feature maps, and the final loss function is defined as follows:

Ltotal
=1 -P[A-a) Lee(0(Zs),9) + aT? (1)
*Leg(0(Z5/T),0(Z:/T))| + B - MSE(F,, Fy)

The total loss function L. consists of two main components:

1. Output-based knowledge distillation term: This
combines the standard classification loss Lz (0(Zs), §),
with the distillation lossL¢z (o (Zs/T),(Z;/T)), which
encourages the Student model to replicate the Teacher’s
softened output probability distribution. The weighting
parameter « balances these two terms, while the
temperature scaling factor T adjusts the smoothness of
the output distribution to convey richer information
about inter-class relationships. The multiplication by T2
compensates for the gradient scaling effect introduced by
temperature scaling.

2. Feature-based distillation term: This is formulated as the
mean squared error (MSE) between the intermediate
feature maps of the Student and Teacher, MSE (F;, F}),
encouraging the Student to replicate the Teacher’s
internal representations. The parameter f controls the
trade-off between output-based and feature-based
distillation losses.

By adjusting a and S, the framework allows flexible control
over the influence of hard label supervision, output-level
distillation, and feature-level distillation. This design ensures
that the Student model learns not only the final decision
boundaries of the Teacher but also its intermediate feature
representations, which is particularly beneficial in scenarios
with low sampling frequency input data.

2.2. Proposed Framework

In this study, knowledge distillation is applied not for model
compression, but to overcome limitations in data frequency
resolution. In real industrial environments, it is often difficult
to reliably collect high sampling frequency data due to
constraints such as sensor cost, installation space, and data
transmission bandwidth. To address this, the proposed
method trains the Teacher model using high sampling
frequency data only during the training stage, and in the
inference stage, performs fault diagnosis using only the
Student model that takes low sampling frequency data as
input, as illustrated in Figure 1, thereby achieving high
diagnostic performance without requiring high-frequency
data during deployment.

The proposed framework consists of the following steps:

1. Teacher model training: Train the Teacher model using
high-sampling-frequency data to effectively extract
fault-related features in the high frequency domain. In
this study, 1D Convolutional Neural Network (1D
CNN)-based architecture is used.

2. Student model construction: Design the Student model
with the same architecture as the Teacher model but use
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low sampling frequency input data obtained through
downsampling to reflect sensor constraints in industrial
environments.

3. Distillation training process: During Student training,
use both the output-based distillation loss, which mimics
the Teacher model’s final output probability distribution,
and the feature-based distillation loss, which mimics the
intermediate layer features.

4. Model deployment stage: Once training is complete, the
Teacher model and high sampling frequency data are no
longer required, and fault diagnosis is performed solely

by the Student model using low sampling frequency data.
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Figure 1. Framework of Knowledge Distillation-based fault
diagnosis model

3. EXPERIMENT SETUP AND DATA PREPARATION

3.1. High Frequency Data Acquisition

In this study, a bearing fault diagnosis experiment was
conducted using a bearing simulator available in our
laboratory, shown as Figure 2. The simulator consists of a
driving motor, a shaft, and bearings. The fault type used in
the experiment was a ball fault, and data were collected for
both healthy and faulty bearings. The shaft rotational speed
was set to 2,000 rpm(33.33 Hz), and a high-performance
accelerometer was used to acquire continuous vibration
signals at a sampling frequency of 1,000 Hz for 100 seconds.
The acquired signals were segmented into samples of 0.2
seconds each, resulting in 500 high-frequency samples for
both the healthy and faulty conditions. Figure 3 presents
examples of high-frequency signals from healthy and faulty
bearings.

Figure 2. Bearing simulator and sensor setup position

0.100

0.075 4
0.050 q
0.025
0.000 4

amplitude

—0.025
—0.050 1

—0.075 1

—0.100

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
time (s}

(a) Normal bearing vibration data
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(b) Fault bearing vibration data
Figure 3. High frequency sensor data graph

3.2. Low Frequency Data Preparation Using Decimation

To emulate the constraints of sensors typically used in
industrial environments, the collected high frequency data
(1,000 Hz) were converted into low frequency data using a
decimation technique. First, a low-pass filter was applied to
remove high frequency components and prevent aliasing that
may occur during downsampling. Then, the signals were
downsampled to a sampling frequency of 100 Hz. Both
healthy and faulty datasets underwent the same procedure,
and examples of the resulting low-frequency signals are
shown in Figure 4.
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(b) Fault bearing vibration data
Figure 4. Low frequency sensor data graph using decimation

Compared to the original high frequency data, the
transformed low frequency data exhibited the following
characteristic changes. First, the removal of high-frequency
components simplified and smoothed the signal waveform.
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Second, the overall amplitude decreased. Third, fine
vibration details and irregular peaks present in the high
frequency range disappeared, making it more difficult to
directly identify fault indications. Fourth, in the frequency
domain, the energy became concentrated in the low
frequency range, while the energy in the high frequency
range dropped significantly.

In addition, Fast Fourier Transform (FFT) analysis was
conducted to compare the frequency-domain characteristics
of high frequency and low frequency data. In Figure 5, The
results showed that the rotational frequency component at
approximately 33.33 Hz was clearly observable in both high
frequency and low frequency data. However, the fault
frequency component at approximately 100 Hz was distinct
in the high frequency data but could not be observed in the
low frequency data due to the sampling frequency limitation.
This indicates that fault-related features can be lost in low
frequency data, which serves as one of the key motivations

for applying the knowledge distillation approach in this study.

Rotating Freq. (33.33Hz)

Normal Fault

(a) High Frequency data

Normal Fault

(b) Low Frequency data
Figure 5. FFT result of high and low frequency data

3.3. Dataset Composition

The dataset obtained from both high-frequency and low-
frequency measurements was divided into training and
validation sets to develop and evaluate the diagnostic models.
The splitting ratio was set to 4:1. As a result, the training set
consisted of 400 samples for each condition (normal and
fault), while the validation set contained 100 samples for each
condition. This ensured that both datasets maintained class
balance, preventing bias toward a specific condition during
the training process and allowing for a reliable evaluation of
model performance.

4. RESULTS

4.1. Model Architecture

In this study, both the Teacher and Student models for
bearing fault diagnosis were implemented using an identical
1D Convolutional Neural Network (1D CNN) architecture.
The input layer accepts raw time-series sensor data, followed

by a feature extraction module composed of four 1D
convolutional layers and one max pooling layer.

The first convolutional layer employs four filters with a
kernel size of three and uses the ReL U (Rectified Linear Unit)
activation function to extract low-level features. The second
convolutional layer uses eight filters with the same kernel
size and activation function. This is followed by a max
pooling layer with a pool size of two and a stride of two,
which reduces the temporal dimension by half while retaining
critical patterns and suppressing noise. The third and fourth
convolutional layers utilize 16 and 32 filters respectively,
both with a kernel size of three and ReLU activation, to
capture high-level features effectively.

Instead of feeding the extracted features directly into a fully
connected layer, a Global Average Pooling (GAP) layer is
applied to compute global statistics for each channel, thereby
reducing the number of parameters and preventing overfitting.
The subsequent hidden layer consists of eight neurons, also
using the ReLU activation function for non-linear
transformation. Finally, the output layer consists of two
neurons with a Softmax activation function to produce
probability distributions over the normal and fault classes.

For training, the Adam optimizer and categorical
crossentropy loss function were employed, with a batch size
of 32, learning rate of 0.001, and 1000 epochs.

4.2. Baseline Model Training Results Using Low
Frequency Data

When training the baseline model with only low frequency
data (100 Hz), as shown in Figure 6, the validation loss failed
to converge and exhibited divergence in the later stages. This
instability is attributed to the loss of critical fault frequency
components (around 100 Hz) during the downsampling
process, which made it difficult to distinguish between
normal and faulty conditions. In the training curves of Figure
6, the loss initially decreases slightly but validation loss
increases sharply in the later stages, indicating overfitting and
classification instability. The final validation accuracy was
60.5%, which is insufficient for reliable fault classification.
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Figure 6. Loss and accuracy of baseline model during

training



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

4.3. Teacher Model Training Results Using High
Frequency Data

When the same architecture was trained using high frequency
data (1000 Hz), as shown in Figure 7, both training and
validation losses decreased steadily, achieving a final
validation accuracy of 100%. This demonstrates that high
frequency data retains sufficient fault frequency components,
enabling clear discrimination between normal and faulty
conditions. Therefore, this high frequency trained model was
designated as the Teacher model, which was subsequently
used to enhance the performance of the low frequency
Student model through knowledge distillation.
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Figure 7. Loss and accuracy of Teacher model during
training

4.4. Knowledge Distillation and Optimization

Knowledge distillation was applied to transfer the knowledge
from the Teacher model to the Student model, aiming to
achieve high classification accuracy using only low
frequency data. In this study, both output-based distillation
loss and feature-based distillation loss were employed. The
weighting coefficient for standard knowledge distillation loss
(@), the weighting coefficient for balancing standard and
feature distillation losses (), and the temperature parameter
(7) for generating soft targets were all optimized.

The search ranges were set as follows: @ from 0.0 to 1.0 with
an interval of 0.1, £ from 0.0 to 1.0 with an interval of 0.1, T
from 1 to 8, and learning rate in {0.01, 0.001, 0.0001,
0.00001}. The optimal parameters were found to be = 0.1,
£ = 0.1, temperature = 2, and learning rate = 0.0001. With
these settings, as shown in Figure 8, both training and
validation accuracies reached 100 percent, indicating that the
Student model successfully overcame the information loss
caused by downsampling by effectively leveraging high-
frequency knowledge from the Teacher model.
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Figure 8. Loss and accuracy of knowledge distillation-based
Student model during training

4.5. Performance Comparison

The comparison of confusion matrices in Figure 9 highlights
the performance difference before and after applying
knowledge distillation. Without distillation as shown in
Figure 9 (a), a considerable portion of faulty samples were
misclassified as normal, significantly lowering fault
detection sensitivity. In fact, over half of the faulty samples
were incorrectly labeled, undermining the reliability of the
classification.

In contrast, after applying knowledge distillation as shown in
Figure 9 (b), all normal and faulty samples were correctly
classified, achieving 100% classification accuracy. This
indicates that the high frequency features transferred from the
Teacher model allowed the Student model to establish a more
precise decision boundary. Consequently, the proposed
knowledge distillation-based training strategy effectively
compensates for the limitations of low-resolution data and
demonstrates strong potential for real-world industrial
applications.

Normal_Pred
Normal_Pred

Abnormal_Pred
Abnormal_Pred

Normal_True

(a) Before KD

Abnormal_True

Normal_True

(b) After KD

Abnormal_True

Figure 9. Confusion matrix of before and after application
of knowledge distillation

5. CONCLUSION

This study proposed a knowledge distillation-based fault
diagnosis framework capable of achieving high diagnostic
accuracy using low sampling frequency sensor data. Through
bearing simulator experiments, the Teacher model trained on
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high-frequency data successfully transferred its knowledge to
the Student model trained on low sampling frequency data,
allowing comparable diagnostic performance. While the
proposed approach demonstrated the feasibility of accurate
diagnosis with low-cost sensing systems, it still requires high
sampling frequency data during training and may be sensitive
to sensor installation differences. Future research will focus
on applying the proposed method in real industrial
environments and extending it to various fault types, such as
inner race and outer race faults, to further verify its
generalizability.
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NOMENCLATURE

L total loss

Lcg cross-entropy loss

o softmax function

Zs logits from student model

Zr logits from teacher model

% ground-truth label

T temperature parameter

Fs intermediate feature map from student model
Fe intermediate feature map from teacher model
@ ratio between CE loss and distillation loss

)it ratio between output-based distillation loss and

feature-based distillation loss
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