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ABSTRACT 

Bearings are critical components for ensuring smooth 

rotational motion in mechanical systems, and reliable 

operation requires continuous condition monitoring for fault 

diagnosis. Recently, there has been growing interest in 

diagnosing bearing conditions using artificial intelligence, 

particularly deep learning-based approaches. However, in 

real industrial environments, limitations such as high sensor 

cost and restricted data storage often lead to the use of low 

sampling frequency sensor data, which poses challenges in 

developing accurate diagnosis models. To address this issue, 

this paper proposes a bearing fault diagnosis method based 

on knowledge distillation to enhance the utility of low 

sampling frequency data. High-frequency acceleration data 

were collected under both normal and faulty conditions and 

subsequently downsampled for knowledge distillation. A 1D 

CNN-based teacher model was trained using high-frequency 

data, and multiple loss functions were designed to distill both 

final predictions and intermediate features into a student 

model trained on low sampling frequency data. The 

performance comparison between models with and without 

knowledge distillation verified the effectiveness of the 

proposed approach. The results demonstrate the feasibility of 

developing fault diagnosis models using low sampling 

frequency data in real industrial settings and suggest an 

effective knowledge distillation strategy. 

Keywords: Knowledge Distillation, Bearing Fault Diagnosis, 

Low Sampling Frequency Data, 1D Convolutional Neural 

Network 

1. INTRODUCTION 

In rotating machinery, bearings are critical components that 

support the rotational motion of the shaft, reduce friction, and 

ensure precision and stability. In particular, rolling bearings 

offer advantages such as low friction loss, high load-carrying 

capacity, and excellent mechanical efficiency, making them 

widely used across various industrial applications. However, 

faults in bearings pose serious threats to the reliability and 

safety of the entire system, often leading to unexpected 

equipment shutdowns or cascading failures. Such faults can 

result in reduced equipment availability, decreased 

productivity, and increased maintenance costs. Therefore, 

early fault diagnosis and preventive maintenance of bearings 

are essential tasks in industrial settings (Jia, Lei, Shan & Lin, 

2015). 

In recent years, Artificial Intelligence (AI), especially Deep 

Learning (DL)-based diagnostic techniques, has gained 

significant attention in the field of bearing fault diagnosis. DL 

models can automatically learn and generalize from complex 

vibration signals and fault patterns, achieving higher 

diagnostic accuracy and flexibility compared to conventional 

methods. Zhang, Zhang, Wange, and Habetler (2019) 

conducted a comprehensive review comparing Machine 

Learning (ML) and DL algorithms, concluding that DL 

methods outperform conventional machine learning 

techniques in feature extraction and classification 

performance for bearing fault diagnosis. Siddique, Saleem, 

Umar, Kim, and Kim (2025) proposed a hybrid DL 

architecture combining Continuous Wavelet Transform 

(CWT)-based time–frequency feature extraction with 

attention-enhanced BiLSTM and 1D convolutional ResNet, 

demonstrating robust diagnostic performance under noisy 

environments and nonstationary signal conditions. Cui, 

Zhang, Zhong, Hou, Chen, Cai, and Kim (2025) developed a 

lightweight DL model that incorporates a multiscale feature 

extraction structure with a Ghost module and Efficient 
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Channel Attention (ECA), achieving over 99.4% diagnostic 

accuracy while maintaining computational efficiency, 

thereby significantly improving practical applicability. 

Although AI-based bearing fault diagnosis techniques have 

shown high performance across diverse conditions, most 

studies rely on high sampling frequency data. While high 

sampling frequency data can precisely capture variations in 

rotational speed, load, and environmental factors, they are 

often expensive to obtain, require substantial resources for 

data acquisition, storage, and real-time processing, and face 

installation constraints in industrial environments. In many 

real-world cases, only low sampling frequency data are 

available, resulting in the loss of high frequency fault 

components and a significant degradation in diagnostic 

performance. 

To address this limitation, this study proposes a method for 

achieving high diagnostic accuracy in low sampling 

frequency environments by applying the Knowledge 

Distillation (KD) technique. Specifically, knowledge 

acquired by a teacher model trained on high sampling 

frequency data is transferred to a student model trained on 

low sampling frequency data, thereby compensating for 

information loss and overcoming the performance limitations 

of conventional low frequency models. This approach 

enables cost-effective, lightweight sensor systems to deliver 

stable and accurate fault diagnosis in industrial applications, 

which is the core contribution of this work. 

2. METHODOLOGY 

2.1. Knowledge Distillation 

Knowledge Distillation was first proposed by Hinton, 

Vinyals, and Dean (2015) as a technique to transfer the 

knowledge learned by a complex and high-performing large-

scale model (Teacher) to a smaller and more lightweight 

model (Student), thereby achieving model compression and 

faster inference while maintaining performance. 

Traditionally, knowledge distillation aims to reduce the 

number of parameters or memory usage without significant 

loss in accuracy. Romero, Ballas, Kahou, Chassang, Gatta, 

and Bengio (2015) extended this concept by proposing 

feature-based distillation, which transfers not only the output 

predictions but also the intermediate feature maps from the 

Teacher to the Student, allowing the Student to better mimic 

the representational capacity of the Teacher. 

The loss function of knowledge distillation generally consists 

of the Cross-Entropy (CE) loss with respect to the original 

labels and the distillation loss that mimics the Teacher’s 

output probability distribution. In this study, an additional 

Mean Squared Error (MSE) loss is applied to the intermediate 

feature maps, and the final loss function is defined as follows: 

 

𝐿𝑡𝑜𝑡𝑎𝑙

= (1 − 𝛽)[(1 − 𝛼) ∙ 𝐿𝐶𝐸(𝜎(𝑍𝑠), 𝑦̂) +  𝛼𝑇2

∙ 𝐿𝐶𝐸(𝜎(𝑍𝑠 𝑇⁄ ), 𝜎(𝑍𝑡 𝑇⁄ ))] + 𝛽 ∙ 𝑀𝑆𝐸(𝐹𝑠, 𝐹𝑡) 

(1) 

The total loss function Ltotal  consists of two main components: 

1. Output-based knowledge distillation term: This 

combines the standard classification loss 𝐿𝐶𝐸(𝜎(𝑍𝑠), 𝑦̂), 

with the distillation loss𝐿𝐶𝐸(𝜎(𝑍𝑠 𝑇⁄ ), 𝜎(𝑍𝑡 𝑇⁄ )), which 

encourages the Student model to replicate the Teacher’s 

softened output probability distribution. The weighting 

parameter 𝛼  balances these two terms, while the 

temperature scaling factor T adjusts the smoothness of 

the output distribution to convey richer information 

about inter-class relationships. The multiplication by 𝑇2 

compensates for the gradient scaling effect introduced by 

temperature scaling. 

2. Feature-based distillation term: This is formulated as the 

mean squared error (MSE) between the intermediate 

feature maps of the Student and Teacher, 𝑀𝑆𝐸(𝐹𝑠, 𝐹𝑡), 

encouraging the Student to replicate the Teacher’s 

internal representations. The parameter 𝛽  controls the 

trade-off between output-based and feature-based 

distillation losses. 

By adjusting 𝛼 and 𝛽, the framework allows flexible control 

over the influence of hard label supervision, output-level 

distillation, and feature-level distillation. This design ensures 

that the Student model learns not only the final decision 

boundaries of the Teacher but also its intermediate feature 

representations, which is particularly beneficial in scenarios 

with low sampling frequency input data. 

2.2. Proposed Framework 

In this study, knowledge distillation is applied not for model 

compression, but to overcome limitations in data frequency 

resolution. In real industrial environments, it is often difficult 

to reliably collect high sampling frequency data due to 

constraints such as sensor cost, installation space, and data 

transmission bandwidth. To address this, the proposed 

method trains the Teacher model using high sampling 

frequency data only during the training stage, and in the 

inference stage, performs fault diagnosis using only the 

Student model that takes low sampling frequency data as 

input, as illustrated in Figure 1, thereby achieving high 

diagnostic performance without requiring high-frequency 

data during deployment. 

The proposed framework consists of the following steps: 

1. Teacher model training: Train the Teacher model using 

high-sampling-frequency data to effectively extract 

fault-related features in the high frequency domain. In 

this study, 1D Convolutional Neural Network (1D 

CNN)-based architecture is used. 

2. Student model construction: Design the Student model 

with the same architecture as the Teacher model but use 
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low sampling frequency input data obtained through 

downsampling to reflect sensor constraints in industrial 

environments. 

3. Distillation training process: During Student training, 

use both the output-based distillation loss, which mimics 

the Teacher model’s final output probability distribution, 

and the feature-based distillation loss, which mimics the 

intermediate layer features. 

4. Model deployment stage: Once training is complete, the 

Teacher model and high sampling frequency data are no 

longer required, and fault diagnosis is performed solely 

by the Student model using low sampling frequency data. 

 

Figure 1. Framework of Knowledge Distillation-based fault 

diagnosis model 

3. EXPERIMENT SETUP AND DATA PREPARATION 

3.1. High Frequency Data Acquisition 

In this study, a bearing fault diagnosis experiment was 

conducted using a bearing simulator available in our 

laboratory, shown as Figure 2. The simulator consists of a 

driving motor, a shaft, and bearings. The fault type used in 

the experiment was a ball fault, and data were collected for 

both healthy and faulty bearings. The shaft rotational speed 

was set to 2,000 rpm(33.33 Hz), and a high-performance 

accelerometer was used to acquire continuous vibration 

signals at a sampling frequency of 1,000 Hz for 100 seconds. 

The acquired signals were segmented into samples of 0.2 

seconds each, resulting in 500 high-frequency samples for 

both the healthy and faulty conditions. Figure 3 presents 

examples of high-frequency signals from healthy and faulty 

bearings.  

 

Figure 2. Bearing simulator and sensor setup position 

 

(a) Normal bearing vibration data 

 

(b) Fault bearing vibration data 

Figure 3. High frequency sensor data graph 

3.2. Low Frequency Data Preparation Using Decimation 

To emulate the constraints of sensors typically used in 

industrial environments, the collected high frequency data 

(1,000 Hz) were converted into low frequency data using a 

decimation technique. First, a low-pass filter was applied to 

remove high frequency components and prevent aliasing that 

may occur during downsampling. Then, the signals were 

downsampled to a sampling frequency of 100 Hz. Both 

healthy and faulty datasets underwent the same procedure, 

and examples of the resulting low-frequency signals are 

shown in Figure 4. 

 

(a) Normal bearing vibration data 

 

(b) Fault bearing vibration data 

Figure 4. Low frequency sensor data graph using decimation 

Compared to the original high frequency data, the 

transformed low frequency data exhibited the following 

characteristic changes. First, the removal of high-frequency 

components simplified and smoothed the signal waveform. 
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Second, the overall amplitude decreased. Third, fine 

vibration details and irregular peaks present in the high 

frequency range disappeared, making it more difficult to 

directly identify fault indications. Fourth, in the frequency 

domain, the energy became concentrated in the low 

frequency range, while the energy in the high frequency 

range dropped significantly. 

In addition, Fast Fourier Transform (FFT) analysis was 

conducted to compare the frequency-domain characteristics 

of high frequency and low frequency data. In Figure 5, The 

results showed that the rotational frequency component at 

approximately 33.33 Hz was clearly observable in both high 

frequency and low frequency data. However, the fault 

frequency component at approximately 100 Hz was distinct 

in the high frequency data but could not be observed in the 

low frequency data due to the sampling frequency limitation. 

This indicates that fault-related features can be lost in low 

frequency data, which serves as one of the key motivations 

for applying the knowledge distillation approach in this study. 

 
Normal                                       Fault 

(a) High Frequency data

 

Normal                                       Fault 

(b) Low Frequency data 

Figure 5. FFT result of high and low frequency data 

3.3. Dataset Composition 

The dataset obtained from both high-frequency and low-

frequency measurements was divided into training and 

validation sets to develop and evaluate the diagnostic models. 

The splitting ratio was set to 4:1. As a result, the training set 

consisted of 400 samples for each condition (normal and 

fault), while the validation set contained 100 samples for each 

condition. This ensured that both datasets maintained class 

balance, preventing bias toward a specific condition during 

the training process and allowing for a reliable evaluation of 

model performance. 

4. RESULTS 

4.1. Model Architecture 

In this study, both the Teacher and Student models for 

bearing fault diagnosis were implemented using an identical 

1D Convolutional Neural Network (1D CNN) architecture. 

The input layer accepts raw time-series sensor data, followed 

by a feature extraction module composed of four 1D 

convolutional layers and one max pooling layer. 

The first convolutional layer employs four filters with a 

kernel size of three and uses the ReLU (Rectified Linear Unit) 

activation function to extract low-level features. The second 

convolutional layer uses eight filters with the same kernel 

size and activation function. This is followed by a max 

pooling layer with a pool size of two and a stride of two, 

which reduces the temporal dimension by half while retaining 

critical patterns and suppressing noise. The third and fourth 

convolutional layers utilize 16 and 32 filters respectively, 

both with a kernel size of three and ReLU activation, to 

capture high-level features effectively. 

Instead of feeding the extracted features directly into a fully 

connected layer, a Global Average Pooling (GAP) layer is 

applied to compute global statistics for each channel, thereby 

reducing the number of parameters and preventing overfitting. 

The subsequent hidden layer consists of eight neurons, also 

using the ReLU activation function for non-linear 

transformation. Finally, the output layer consists of two 

neurons with a Softmax activation function to produce 

probability distributions over the normal and fault classes. 

For training, the Adam optimizer and categorical 

crossentropy loss function were employed, with a batch size 

of 32, learning rate of 0.001, and 1000 epochs. 

4.2. Baseline Model Training Results Using Low 

Frequency Data 

When training the baseline model with only low frequency 

data (100 Hz), as shown in Figure 6, the validation loss failed 

to converge and exhibited divergence in the later stages. This 

instability is attributed to the loss of critical fault frequency 

components (around 100 Hz) during the downsampling 

process, which made it difficult to distinguish between 

normal and faulty conditions. In the training curves of Figure 

6, the loss initially decreases slightly but validation loss 

increases sharply in the later stages, indicating overfitting and 

classification instability. The final validation accuracy was 

60.5%, which is insufficient for reliable fault classification. 

 
Figure 6. Loss and accuracy of baseline model during 

training 
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4.3. Teacher Model Training Results Using High 

Frequency Data 

When the same architecture was trained using high frequency 

data (1000 Hz), as shown in Figure 7, both training and 

validation losses decreased steadily, achieving a final 

validation accuracy of 100%. This demonstrates that high 

frequency data retains sufficient fault frequency components, 

enabling clear discrimination between normal and faulty 

conditions. Therefore, this high frequency trained model was 

designated as the Teacher model, which was subsequently 

used to enhance the performance of the low frequency 

Student model through knowledge distillation. 

 

Figure 7. Loss and accuracy of Teacher model during 

training 

4.4. Knowledge Distillation and Optimization 

Knowledge distillation was applied to transfer the knowledge 

from the Teacher model to the Student model, aiming to 

achieve high classification accuracy using only low 

frequency data. In this study, both output-based distillation 

loss and feature-based distillation loss were employed. The 

weighting coefficient for standard knowledge distillation loss 

(𝛼), the weighting coefficient for balancing standard and 

feature distillation losses (β), and the temperature parameter 

(T) for generating soft targets were all optimized. 

The search ranges were set as follows: 𝛼 from 0.0 to 1.0 with 

an interval of 0.1, β from 0.0 to 1.0 with an interval of 0.1, T 

from 1 to 8, and learning rate in {0.01, 0.001, 0.0001, 

0.00001}. The optimal parameters were found to be 𝛼 = 0.1, 

β = 0.1, temperature = 2, and learning rate = 0.0001. With 

these settings, as shown in Figure 8, both training and 

validation accuracies reached 100 percent, indicating that the 

Student model successfully overcame the information loss 

caused by downsampling by effectively leveraging high-

frequency knowledge from the Teacher model. 

 

Figure 8. Loss and accuracy of knowledge distillation-based 

Student model during training 

4.5. Performance Comparison 

The comparison of confusion matrices in Figure 9 highlights 

the performance difference before and after applying 

knowledge distillation. Without distillation as shown in 

Figure 9 (a), a considerable portion of faulty samples were 

misclassified as normal, significantly lowering fault 

detection sensitivity. In fact, over half of the faulty samples 

were incorrectly labeled, undermining the reliability of the 

classification. 

In contrast, after applying knowledge distillation as shown in 

Figure 9 (b), all normal and faulty samples were correctly 

classified, achieving 100% classification accuracy. This 

indicates that the high frequency features transferred from the 

Teacher model allowed the Student model to establish a more 

precise decision boundary. Consequently, the proposed 

knowledge distillation-based training strategy effectively 

compensates for the limitations of low-resolution data and 

demonstrates strong potential for real-world industrial 

applications. 

 

(a) Before KD                            (b) After KD      

Figure 9. Confusion matrix of before and after application 

of knowledge distillation 

5. CONCLUSION 

This study proposed a knowledge distillation-based fault 

diagnosis framework capable of achieving high diagnostic 

accuracy using low sampling frequency sensor data. Through 

bearing simulator experiments, the Teacher model trained on 
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high-frequency data successfully transferred its knowledge to 

the Student model trained on low sampling frequency data, 

allowing comparable diagnostic performance. While the 

proposed approach demonstrated the feasibility of accurate 

diagnosis with low-cost sensing systems, it still requires high 

sampling frequency data during training and may be sensitive 

to sensor installation differences. Future research will focus 

on applying the proposed method in real industrial 

environments and extending it to various fault types, such as 

inner race and outer race faults, to further verify its 

generalizability. 
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NOMENCLATURE 

Ltotal total loss 

LCE cross-entropy loss 
σ softmax function 

Zs logits from student model 

Zt logits from teacher model 

𝑦̂ ground-truth label 

T temperature parameter 

Fs intermediate feature map from student model 

Ft intermediate feature map from teacher model 

𝛼 ratio between CE loss and distillation loss 

β ratio between output-based distillation loss and 

feature-based distillation loss 
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