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ABSTRACT 
Fault diagnosis of heating, ventilation and air‑conditioning 

(HVAC) equipment relies increasingly on data‑driven 

models. However, real‑world after‑service recordings 

captured by technicians are noisy, imbalanced and often 
contain meaningless segments. These are labeled by domain 
experts but sometimes mislabeled. This paper proposes an 
initial noise‑aware machine learning operations (MLOps) 

framework that enables robust classification, calibration as a 
prerequisite to uncertainty estimation and continuous 
improvement of air‑conditioner sound diagnostics. The 

framework performs data preprocessing, uncertainty-based 
identification of label noise, systematic relabeling through 
gradient-based class activation maps (Grad-CAM++, 
hereafter referred to as CAMs), and clustering. A 
comprehensive metrics tracking facilitates reproducible 
experiments. Experiments on field recordings demonstrate 
that removing label noise leads to better generalization, as the 
learned representation forms more distinct clusters in the 
logits space, reducing the presence of mislabeled samples 
within each cluster. The proposed approach yields better 
generalization and provides a scalable pathway toward 
automated labeling and open‑set recognition. 

1. INTRODUCTION 

Fault diagnosis of consumer air conditioners (ACs) in real-
world field conditions is inherently challenging due to both 
data quality issues and the need for reliable classification 
performance. Various approaches have been explored for AC 
fault detection, including sensor-based monitoring of 
temperature, pressure, and current signals, vibration-based 

analysis, and visual inspections such as thermal imaging 
(Taheri et al., 2021; Chen et al., 2022; Matetić et al., 2022; 
Zhang et al., 2023). Among these, acoustic diagnostics have 
gained increasing attention for their non-invasive nature, low 
cost, and suitability for real-time application in operational 
environments. By capturing characteristic abnormal sounds 
from components such as compressors, fans, and valves, 
sound-based methods can identify a wide range of 
mechanical and structural faults without interfering with 
normal operation (Tang et al., 2023). 

Recent advances in machine learning have further enhanced 
the capabilities of acoustic fault diagnosis. Convolutional 
neural networks (CNNs) trained on well-curated acoustic 
datasets have achieved high accuracy in controlled laboratory 
settings (Zhang et al., 2025; Liu et al., 2025). However, after-
service (A/S) scenarios present a markedly different 
challenge. In practical field conditions, service technicians 
often record AC operational sounds using smartphones in 
noisy and uncontrolled environments, leading to class 
imbalance, severe background noise, and inaccurate label 
intervals that degrade model performance and hinder 
continuous improvement. Furthermore, over the product 
lifecycle, entirely new fault types that were absent during 
model training may appear, requiring rapid detection and 
integration into the diagnostic pipeline. 

These conditions present two critical challenges. The first is 
label noise, caused by human annotation errors or ambiguous 
acoustic patterns, which can lead to persistent mislabeling 
and hinder performance improvements even as the dataset 
grows (Zhang et al., 2024). The second is the emergence of 

novel acoustic events, which requires distinguishing between 
closed‑set noise—misclassified samples from known 
classes—and open‑set noise, where the sample belongs to a 

previously unseen fault category (Lundgren & Jung, 2022). 
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To address both challenges, it is necessary to have a way of 
quantifying how confident the model is in each prediction. 
Predictive uncertainty allows us to determine whether a 
misclassification stems from label noise or from a genuinely 
novel fault type absent in the training data. From the 
perspective of uncertainty quantification, aleatoric 
uncertainty arises from intrinsic variability in the data—such 
as background noise or overlapping acoustic events—

whereas epistemic uncertainty originates from the model’s 

limited knowledge and can typically be reduced by adding 
high‑quality labeled data (Abdar et al., 2021; Kendall 

& Gal, 2017). However, errors caused by label noise are not 

mitigated simply by enlarging the dataset. 

For this reason, the present study employs the Shannon 
entropy of the predicted class probability distribution as a 
compact measure of predictive uncertainty (Shannon, 1948). 

Low‑entropy misclassifications usually correspond to 

overconfident predictions for the wrong class—a hallmark of 
closed‑set noise—and are reviewed by experts with the aid of 
Class Activation Maps (CAMs) for visual interpretability 
(Zhou et al., 2016). Conversely, high‑entropy predictions are 

treated as cases of elevated epistemic uncertainty, flagged as 
out‑of‑distribution (OOD) candidates, and subsequently 

analyzed via clustering to identify potential novel fault 
categories. This process enables a unified treatment of both 
data‑quality issues and the closed‑set/open‑set noise problem, 

while addressing key weaknesses in existing field‑deployed 

HVAC diagnostic systems. 

The primary contribution of this work is the development of 
an MLOps-integrated diagnostic pipeline tailored for field-
deployed HVAC systems, which combines entropy-based 
uncertainty analysis with CAM-assisted expert verification to 
detect and eliminate closed-set noise. While open-set 
detection and automated class discovery are recognized as 
critical for long-term adaptability, they are left as future 
research directions. By embedding this framework into 
operational workflows, this study aims to establish a 
foundation for sustainable, data-driven improvement and 
enhanced model reliability in the acoustic diagnosis of 
HVAC systems. 

2. RELATED WORKS 

Recent studies have focused on developing robust, 
computationally efficient, and practically deployable 
techniques for handling label noise. The One-step Anti-Noise 
(OSA) approach, for example, is a model-agnostic strategy 
that efficiently separates clean and noisy samples within a 
single inference step, thereby significantly reducing 
computational overhead in large-scale pre‑training and 

fine‑tuning tasks (Li et al., 2024). Likewise, the Tripartite 

method addresses realistic, large‑scale noisy‑label scenarios 
by precisely partitioning samples into clean, noisy, and 
uncertain subsets, achieving state‑of‑the‑art performance 

across multiple benchmark datasets (Tang et al., 2024). 

In the domain of audio and acoustic analysis, open‑set 

recognition (OSR) remains a critical and unsolved challenge. 
Recent audio‑based OSR research for sound event detection 

(SED) has explored methods capable of identifying known 
classes while simultaneously detecting unseen acoustic 
events by leveraging both spectral and temporal 
representations of audio signals (Zhang et al., 2022). Another 

line of work on unseen class discovery in the audio domain 
proposes a framework that applies novelty detection to 
learned embeddings in order to cluster and characterize 
unknown sounds, demonstrating high adaptability in 
real‑world, dynamically evolving soundscapes 

(Xu et al., 2025). 

Beyond classification accuracy, practical deployment 
requirements have driven the emergence of MLOps 
frameworks explicitly designed for resilience against noise, 
operational drift, and adversarial conditions. For instance, a 
resilience‑aware MLOps methodology for medical 
diagnostic systems incorporates predictive‑uncertainty 

calibration and post‑hoc resilience optimization as dedicated 

stages in the MLOps lifecycle, thereby enhancing robustness 
to operational disturbances (Kisel et al., 2024). Furthermore, 

a recent survey on Secure MLOps highlights the 
vulnerabilities of ML pipelines to adversarial threats such as 
data poisoning, emphasizing the need for integrated security 
measures and continuous monitoring as essential components 
of a reliable MLOps ecosystem (Vasisht et al., 2025). 

Unlike prior approaches that address label noise, OSR, and 
MLOps independently, our framework uniquely integrates 
these components into a single, cohesive MLOps pipeline for 
HVAC fault diagnosis. To the best of our knowledge, this is 
the first framework to combine classifier calibration with 
entropy-based noise detection in this domain. Our primary 
contribution is a workflow that first performs classifier 
calibration before entropy-based noise detection to ensure the 
reliability of our uncertainty estimations. This allows for the 
systematic identification of both closed-set and open-set 
noise, which is then integrated with expert review via CAMs 
and t-SNE clustering to enable a sustainable, continuously 
improving diagnostic loop in real-world industrial settings. 

3. METHODOLOGY 

3.1 MLOps Pipeline for Continuous Improvement 

Figure 1 presents the core contribution of this study—a noise-
aware MLOps pipeline specifically designed for sound-based 
fault diagnosis in HVAC systems. The pipeline operates in a 
continuous learning loop, starting with data preprocessing to 
ensure consistent input formats and extract features suitable 
for downstream modeling. Once the raw recordings are 
standardized, the data undergo label noise cleaning, a crucial 
step for reducing aleatoric uncertainty and preventing error 
propagation in subsequent training cycles. 
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Following noise cleaning, the refined dataset is used for 
model training. A calibration step is then applied to adjust 
predictive probabilities, providing a well-calibrated output 
distribution that serves as a prerequisite for reliable 
uncertainty estimation. After calibration, epistemic 
uncertainty is quantified separately and reported alongside 
conventional performance metrics. This process not only 
produces a trained and calibrated model but also generates a 
comprehensive set of artefacts—including loss curves, 
confusion matrices, t-SNE visualizations of the logit space, 
and CAMs reports—all of which are systematically archived 
in the MLOps environment. The model registry stores each 
trained version, enabling a rollback mechanism that restores 
a previous model if the performance of a newly trained model 
fails to meet predefined thresholds. 

An additional uncertainty-based filtering process is 
integrated after each training cycle. Here, softmax entropy is 
employed to identify potential out-of-distribution samples 
and closed-set label noise in newly ingested recordings. 
These anomalous samples are subsequently clustered in the 
logit space, allowing for clear visualization of their 
separability from in-distribution data. The clustered results, 
along with corresponding CAM visualizations, are then 
presented to domain experts for joint review. By combining 
cluster-based anomaly grouping with visual evidence from 
CAMs, experts can more accurately determine whether each 
sample is an out-of-distribution case or mislabeled instance. 
This expert-in-the-loop stage not only reduces the review 
workload by prioritizing the most informative and visually 
verifiable samples but also accelerates the model evolution 
cycle by feeding high-quality, expert-verified data back into 
the pipeline for the next iteration. 

Through these integrated components—noise cleaning, 
calibration, uncertainty estimation, expert-guided refinement, 
and automated version control—the proposed pipeline in 
Figure 1 provides a robust, repeatable, and scalable approach 
to maintaining high generalization while adapting to evolving 
acoustic fault patterns in real-world environments. 

3.2 Data Description 

The dataset used in this study was collected from in-field 
recordings of residential HVAC systems, including various 
indoor unit types such as 1-Way Cassette, 4-Way Cassette, 
Ducted, and Floor Standing models. Recordings were 
captured using smartphones with a 44.1 kHz sampling rate 
and stereo channels during maintenance or inspection 
performed by technicians. The dataset was labeled into nine 
classes, including normal operation sounds and fault types 
such as fan motor noise by LG Electronics. 
 

Table 1. Result of classification on LG HVAC dataset 
Scratched Fine tuning 

Accuracy TOP-2 
Accuracy 

F1-score 
(Macro) Accuracy TOP-2 

Accuracy 
F1-score 
(Macro) 

0.70 0.81 0.59 0.78 0.86 0.66 

 

3.3 Data Preprocessing and Feature Extraction 

Raw sound recordings were segmented to adjust the shape of 
the model input. Each segment was converted to a Mel-
spectrogram with 224 frequency bins and 224 timeframes to 
leverage ImageNet finetuning. This approach is supported by 
prior research (Palanisamy et al., 2020), which demonstrates 
that CNN models pre-trained on ImageNet significantly 
improve performance in audio classification. For instance, on 
the ESC-50 dataset, a ResNet50 model's accuracy increased 
from 85.0% to 87.5%. On our proprietary dataset, applying 
the same pre-training also improved performance, as detailed 
in Table 1, with the model's F1 score increasing from 68% to 
76% and accuracy from 70% to 78%. A global normalization 
consistent with ImageNet statistics was applied to stabilize 
training. Figure 2 illustrates representative Mel-spectrograms 
extracted from field recordings and their corresponding Class 
Activation Map (CAM) images. The figure includes 
spectrogram waveforms from multiple categories of input 
signals, such as drain pump AC motor noise, fan motor noise, 

Figure 1. Proposed noise-aware MLOps pipeline for HVAC fault diagnosis 
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and voice recordings. As shown, the drain pump and fan 
motor noise appear highly similar, while the voice class often 
overlaps with fault-related noise. In such cases, relying solely 
on Top-1 accuracy may not fully reflect practical decision-
making. Therefore, the performance evaluation of our model 
incorporates not only Top-1 but also Top-2 accuracy, which 
captures situations where multiple fault types coexist in a 
single recording. From an application perspective, 
technicians are advised to review the Top-3 classification 
results before repairing the air conditioner, ensuring more 
flexible and reliable after-sales service. 

 
Figure 2. representative Mel-spectrograms & corresponding 

CAM images. 

3.3.1 Calibration Prior to Noise Data Selection 

Accurate uncertainty estimation requires that the model’s 

predicted probabilities are well-calibrated. Without proper 
calibration, the softmax entropy values used for noise data 
detection may be misleading, resulting in incorrect 
identification of mislabeled or out-of-distribution samples. 
Therefore, calibration is performed before applying entropy-
based filtering. Label smoothing is also applied during 
training to mitigate over-confidence and support better 
probability alignment. The calibrated probabilities obtained 
here form the basis for reliable entropy-based selection of 
noisy data.  

3.3.2 Label Noise Detection and Removal 

The quantity of information can be expressed following 
Hartley’s definition as  
 

𝐼 =  𝑛 log2 𝑠                                  (1) 
 
Where 𝑠  denotes the number of possible symbols in the 
source alphabet and n represents the length of the transmitted 
sequence. For instance, when transmitting the symbol 
sequence “Hi” with an alphabet size of 52 (including both 

uppercase and lowercase letters), we have 𝑛 = 2. To classify 
an individual symbol such as “H”, the alphabet set may be 

conceptually partitioned in a binary fashion. Starting from the 

full 52 symbols ordered from uppercase to lowercase, 
repeated halving identifies “H” within the earlier subset, 
requiring approximately five iterations for unique 
determination. For the specific example of “H”, the 

information quantity evaluates to 𝐼 ≈ 5.7 𝑏𝑖𝑡𝑠. 
Entropy can be expressed following Shannon’s definition as  
 

𝐻(𝑝) =  − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)𝑖                 (2) 
 
In contrast to the Hartley measure, which assumes that all 
symbols are equally likely, real-world sources often exhibit 
non-uniform probability distributions. In such cases, the 
information content of an individual symbol 𝑥𝑖 is defined as 
 

𝐼(𝑥𝑖) =  log2
1

𝑝(𝑥𝑖)
                (3) 

 
and the overall entropy corresponds to the expected value of 
this information measure across the distribution of 𝑋. This 
formulation accounts for the variability in symbol likelihoods 
and provides a more general quantification of uncertainty. 
Moreover, in the context of model training, the cross-entropy 
loss between the true label distribution 𝑝 and the predicted 
distribution 𝑞 can be expressed as 
 

 𝐻(𝑝, 𝑞) = 𝐻(𝑝) + 𝐷𝐾𝐿(𝑝||𝑞)           (4) 
 
where 𝐻(𝑝) denotes the entropy of the label distribution and 
𝐷𝐾𝐿(𝑝||𝑞) is the Kullback–Leibler divergence between 𝑝  
and 𝑞. Since 𝐻(𝑝) is fixed by the labels, minimizing cross-
entropy is effectively equivalent to reducing the KL 
divergence, thereby decreasing the epistemic error of the 
model although aleatoric uncertainty inherent in the data 
remains. From this perspective, softmax entropy itself can 
also be employed as an indicator of predictive uncertainty 
depending on the training data distribution. Mislabeled 
segments are known to degrade classifier performance, and 
we categorize such label noise into closed-set and open-set 
cases. For a discrete model-predicted class distribution 𝑞 =
(𝑞1, 𝑞2, … , 𝑞𝑘), where 𝑞𝑖 denotes the predicted probability for 
class 𝑖  and 𝑘  is the total number of classes, the softmax 
entropy is defined as 
 

𝐻(𝑞) = − ∑ 𝑞(𝑥𝑖) log2 𝑞(𝑥𝑖)𝑖   (5) 
 
An initial classifier is trained, and the entropy of the softmax 
outputs is computed for each segment. Low-entropy 
misclassifications occur when the model is highly confident 
in an incorrect label, which typically corresponds to closed-
set noise—cases where the true class exists in the training set 
but is mislabeled. In contrast, high-entropy misclassifications 
reflect low confidence and high output uncertainty, often 
indicating open-set noise, where the input does not belong to 
any known class. The latter are further examined using t-SNE 
visualization to detect such out-of-distribution instances. 
Segments flagged as potentially noisy are reviewed by 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025 
 

5 

domain experts using both CAMs visualizations and t-SNE 
clustering of outliers. This expert-in-the-loop validation is 
justified since softmax entropy serves as a training data-
dependent indicator of predictive uncertainty, thereby 
requiring human review to ensure reliable noise detection. 
This process improves label quality and enhances the model’s 

generalization capability. To quantitatively validate the 
effectiveness of label noise removal on uncertainty 
estimation, the Expected Calibration Error (ECE) was 
measured before and after noise filtering. The ECE decreased 
from 0.055 to 0.048, indicating that the model became better 
calibrated and that entropy more accurately reflected 
predictive uncertainty after removing noisy labels. 

3.4 Fault Classification Models 

In this study, ResNet-34 was adopted as the classification 
backbone for the 224 × 224 Mel-spectrogram inputs prepared 
in Section 3.3. ResNet-34 leverages residual connections to 
mitigate the vanishing gradient problem in deep networks, 
while offering a balance between model size and 
computational efficiency, making it well-suited for periodic 
retraining and real-world deployment (He et al., 2016). 

The model was initialized with ImageNet pretrained weights 
and fine-tuned on the target dataset. To improve training 
stability and accelerate convergence, the standard input 
resolution and global normalization were applied. During 
training, label smoothing was employed to reduce over-
confidence, and a probability calibration procedure was 
performed to enhance the reliability of predicted probabilities. 
The calibrated outputs were then used for softmax-entropy-
based label noise detection, enabling robust identification of 
mislabeled data and out-of-distribution samples. 

By combining preprocessing, probability calibration, and 
noise-aware learning strategies, ResNet-34 operates reliably 
within the MLOps pipeline and maintains consistent 
generalization performance, even on noisy in-field HVAC 
recordings. 

Table 2. Result of classification on LG HVAC dataset after 
label noise removal for Class 5 

 

4. EXPERIMENTS AND RESULTS 

We evaluated the proposed framework on a proprietary 
dataset of field recordings containing nine known classes plus 
normal operation, with a pronounced class imbalance. All 
experiments were conducted using five-fold cross-validation. 
Label noise removal was applied only to Class 5 (voice), 
which exhibited the highest proportion of mislabeled samples 
and whose acoustic characteristics enabled more reliable 
noise identification. 

Removing noisy labels and retraining led to more compact 
and well-separated clusters in the logits space, thereby 
reducing mislabeled instances embedded within each class 
cluster. This effect, illustrated in the t-SNE plots of Fig. 3, 
reflects improved generalization rather than a mere boost in 
classification scores. In particular, Class 5 (highlighted in red) 
shows a distinct decision boundary after noise removal, 
forming a compact, isolated cluster with minimal intrusion 
from other classes. In contrast, the noisy-label setting 
produces a scattered distribution with greater class overlap. 

As reported in Table 2, Class 5 achieved an F1 score of 0.81 
(∆ = +0.02) after cleaning, but the largest gains occurred in 

vane operation noise (Class 6: F1 = 0.96, ∆ = +0.14) and 

normal operation (Class 7: F1 = 0.46, ∆ = +0.23), indicating 

reduced confusion with voice samples. Minor decreases were 
observed for refrigerant noise (Class 0: ∆ = −0.02) and drain-
pump high-frequency noise (Class 3: ∆ = −0.01), while fan 

motor noise (Class 8) remained unaffected. Overall, the 
system achieved Macro-F1 = 0.70 (∆ = +0.04), Accuracy = 
0.79 (∆ = +0.01), and Top-2 Accuracy = 0.88 (∆ = +0.02), 

aligning with the tighter Class 5 cluster in Fig. 3 and 
demonstrating system-wide benefits from targeted label 
cleaning. 

ID Noise type F1-Score 
∆F1 

(After-
Before) 

0 Refrigerant noise 0.74 -0.02 
1 Contact noise 0.89 +0.01 

2 Drain pump 
AC motor noise 0.85 +0.01 

3 Drain pump 
high-frequency noise 0.71 -0.01 

4 Drain pump 
mechanical noise 0.32 +0.03 

5 Voice 0.81 +0.02 
6 Vane operation noise 0.96 +0.14 
7 Normal operation 0.46 +0.23 
8 Fan motor noise 0.61 0.00 

F1-score (Macro) 0.70 +0.04 
Accuracy 0.79 +0.01 

TOP-2 Accuracy 0.88 +0.02 
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Figure 4. t-SNE visualization of logits space comparing 
training with and without label noise, highlighting improved 
separation for Class 5 after noise removal. 

5. CONCLUSION 

The experiments demonstrate that removing label noise yield 
significant gains in generalization. Entropy‑based filtering 

distinguishes between closed‑set and open‑set noise, 

enabling targeted relabeling. The proposed MLOps pipeline 
automates data ingestion, training, evaluation and model 
management, providing a practical framework for industrial 
deployment. Future work will integrate active learning 
strategies to prioritize segments for expert review and extend 
the pipeline to other appliance categories. 

This paper introduced a noise-aware MLOps framework for 
fault diagnosis in air-conditioning units. By leveraging 
entropy-based label noise detection and comprehensive 
pipeline automation, the framework achieves robust 
performance on noisy after-service recordings and lays the 
foundation for open-set recognition. The framework reduces 
expert labeling effort and accelerates model updates, 
facilitating sustainable deployment of PHM systems in 
consumer products. 
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