MLOps Framework for Fault Diagnosis in Air Conditioners Using Field
Noise

Sang Uk Son!, Yoojeong Noh?, Sunhwa Park?®, Jangwoo Lee?

'Pusan National University, Busan, 46241, Republic of Korea
gogandinhand@pusan.ac.kr

2Pusan National University, EPIC, Busan, 46241, Republic of Korea
yoonoh@pusan.ac.kr

3LG Electronics, Changwon, 51554, Republic of Korea

sunhwal 124.park@lge.com
jonathan.lee@lge.com

ABSTRACT

Fault diagnosis of heating, ventilation and air-conditioning
(HVAC) equipment relies increasingly on data-driven
models. However, real-world after-service recordings
captured by technicians are noisy, imbalanced and often
contain meaningless segments. These are labeled by domain
experts but sometimes mislabeled. This paper proposes an
initial noise-aware machine learning operations (MLOps)
framework that enables robust classification, calibration as a
prerequisite to uncertainty estimation and continuous
improvement of air-conditioner sound diagnostics. The
framework performs data preprocessing, uncertainty-based
identification of label noise, systematic relabeling through
gradient-based class activation maps (Grad-CAM++,
hereafter referred to as CAMs), and clustering. A
comprehensive metrics tracking facilitates reproducible
experiments. Experiments on field recordings demonstrate
that removing label noise leads to better generalization, as the
learned representation forms more distinct clusters in the
logits space, reducing the presence of mislabeled samples
within each cluster. The proposed approach yields better
generalization and provides a scalable pathway toward
automated labeling and open-set recognition.

1. INTRODUCTION

Fault diagnosis of consumer air conditioners (ACs) in real-
world field conditions is inherently challenging due to both
data quality issues and the need for reliable classification
performance. Various approaches have been explored for AC
fault detection, including sensor-based monitoring of
temperature, pressure, and current signals, vibration-based
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analysis, and visual inspections such as thermal imaging
(Taheri et al., 2021; Chen et al., 2022; Mateti¢ et al., 2022;
Zhang et al., 2023). Among these, acoustic diagnostics have
gained increasing attention for their non-invasive nature, low
cost, and suitability for real-time application in operational
environments. By capturing characteristic abnormal sounds
from components such as compressors, fans, and valves,
sound-based methods can identify a wide range of
mechanical and structural faults without interfering with
normal operation (Tang et al., 2023).

Recent advances in machine learning have further enhanced
the capabilities of acoustic fault diagnosis. Convolutional
neural networks (CNNs) trained on well-curated acoustic
datasets have achieved high accuracy in controlled laboratory
settings (Zhang et al., 2025; Liu et al., 2025). However, after-
service (A/S) scenarios present a markedly different
challenge. In practical field conditions, service technicians
often record AC operational sounds using smartphones in
noisy and uncontrolled environments, leading to class
imbalance, severe background noise, and inaccurate label
intervals that degrade model performance and hinder
continuous improvement. Furthermore, over the product
lifecycle, entirely new fault types that were absent during
model training may appear, requiring rapid detection and
integration into the diagnostic pipeline.

These conditions present two critical challenges. The first is
label noise, caused by human annotation errors or ambiguous
acoustic patterns, which can lead to persistent mislabeling
and hinder performance improvements even as the dataset
grows (Zhang et al., 2024). The second is the emergence of
novel acoustic events, which requires distinguishing between
closed-set noise—misclassified samples from known
classes—and open-set noise, where the sample belongs to a
previously unseen fault category (Lundgren & Jung, 2022).
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To address both challenges, it is necessary to have a way of
quantifying how confident the model is in each prediction.
Predictive uncertainty allows us to determine whether a
misclassification stems from label noise or from a genuinely
novel fault type absent in the training data. From the
perspective of uncertainty quantification, aleatoric
uncertainty arises from intrinsic variability in the data—such
as background noise or overlapping acoustic events—
whereas epistemic uncertainty originates from the model’s
limited knowledge and can typically be reduced by adding
high-quality labeled data (Abdar etal.,2021; Kendall
& Gal, 2017). However, errors caused by label noise are not
mitigated simply by enlarging the dataset.

For this reason, the present study employs the Shannon
entropy of the predicted class probability distribution as a
compact measure of predictive uncertainty (Shannon, 1948).
Low-entropy misclassifications usually correspond to
overconfident predictions for the wrong class—a hallmark of
closed-set noise—and are reviewed by experts with the aid of
Class Activation Maps (CAMs) for visual interpretability
(Zhou et al., 2016). Conversely, high-entropy predictions are
treated as cases of elevated epistemic uncertainty, flagged as
out-of-distribution (OOD) candidates, and subsequently
analyzed via clustering to identify potential novel fault
categories. This process enables a unified treatment of both
data-quality issues and the closed-set/open-set noise problem,
while addressing key weaknesses in existing field-deployed
HVAC diagnostic systems.

The primary contribution of this work is the development of
an MLOps-integrated diagnostic pipeline tailored for field-
deployed HVAC systems, which combines entropy-based
uncertainty analysis with CAM-assisted expert verification to
detect and eliminate closed-set noise. While open-set
detection and automated class discovery are recognized as
critical for long-term adaptability, they are left as future
research directions. By embedding this framework into
operational workflows, this study aims to establish a
foundation for sustainable, data-driven improvement and
enhanced model reliability in the acoustic diagnosis of
HVAC systems.

2. RELATED WORKS

Recent studies have focused on developing robust,
computationally efficient, and practically deployable
techniques for handling label noise. The One-step Anti-Noise
(OSA) approach, for example, is a model-agnostic strategy
that efficiently separates clean and noisy samples within a
single inference step, thereby significantly reducing
computational overhead in large-scale pre-training and
fine-tuning tasks (Lietal.,2024). Likewise, the Tripartite
method addresses realistic, large-scale noisy-label scenarios
by precisely partitioning samples into clean, noisy, and
uncertain subsets, achieving state-of-the-art performance
across multiple benchmark datasets (Tang et al., 2024).

In the domain of audio and acoustic analysis, open-set
recognition (OSR) remains a critical and unsolved challenge.
Recent audio-based OSR research for sound event detection
(SED) has explored methods capable of identifying known
classes while simultaneously detecting unseen acoustic
events by leveraging both spectral and temporal
representations of audio signals (Zhang et al., 2022). Another
line of work on unseen class discovery in the audio domain
proposes a framework that applies novelty detection to
learned embeddings in order to cluster and characterize
unknown sounds, demonstrating high adaptability in
real-world, dynamically evolving soundscapes
(Xuetal., 2025).

Beyond classification accuracy, practical deployment
requirements have driven the emergence of MLOps
frameworks explicitly designed for resilience against noise,
operational drift, and adversarial conditions. For instance, a
resilience-aware MLOps methodology for medical
diagnostic systems incorporates predictive-uncertainty
calibration and post-hoc resilience optimization as dedicated
stages in the MLOps lifecycle, thereby enhancing robustness
to operational disturbances (Kisel et al., 2024). Furthermore,
a recent survey on Secure MLOps highlights the
vulnerabilities of ML pipelines to adversarial threats such as
data poisoning, emphasizing the need for integrated security
measures and continuous monitoring as essential components
of a reliable MLOps ecosystem (Vasisht et al., 2025).

Unlike prior approaches that address label noise, OSR, and
MLOps independently, our framework uniquely integrates
these components into a single, cohesive MLOps pipeline for
HVAC fault diagnosis. To the best of our knowledge, this is
the first framework to combine classifier calibration with
entropy-based noise detection in this domain. Our primary
contribution is a workflow that first performs classifier
calibration before entropy-based noise detection to ensure the
reliability of our uncertainty estimations. This allows for the
systematic identification of both closed-set and open-set
noise, which is then integrated with expert review via CAMs
and t-SNE clustering to enable a sustainable, continuously
improving diagnostic loop in real-world industrial settings.

3. METHODOLOGY

3.1 MLOps Pipeline for Continuous Improvement

Figure 1 presents the core contribution of this study—a noise-
aware MLOps pipeline specifically designed for sound-based
fault diagnosis in HVAC systems. The pipeline operates in a
continuous learning loop, starting with data preprocessing to
ensure consistent input formats and extract features suitable
for downstream modeling. Once the raw recordings are
standardized, the data undergo label noise cleaning, a crucial
step for reducing aleatoric uncertainty and preventing error
propagation in subsequent training cycles.
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Figure 1. Proposed noise-aware MLOps pipeline for HVAC fault diagnosis

Following noise cleaning, the refined dataset is used for
model training. A calibration step is then applied to adjust
predictive probabilities, providing a well-calibrated output
distribution that serves as a prerequisite for reliable
uncertainty  estimation. After calibration, epistemic
uncertainty is quantified separately and reported alongside
conventional performance metrics. This process not only
produces a trained and calibrated model but also generates a
comprehensive set of artefacts—including loss curves,
confusion matrices, t-SNE visualizations of the logit space,
and CAMs reports—all of which are systematically archived
in the MLOps environment. The model registry stores each
trained version, enabling a rollback mechanism that restores
a previous model if the performance of a newly trained model
fails to meet predefined thresholds.

An additional uncertainty-based filtering process is
integrated after each training cycle. Here, softmax entropy is
employed to identify potential out-of-distribution samples
and closed-set label noise in newly ingested recordings.
These anomalous samples are subsequently clustered in the
logit space, allowing for clear visualization of their
separability from in-distribution data. The clustered results,
along with corresponding CAM visualizations, are then
presented to domain experts for joint review. By combining
cluster-based anomaly grouping with visual evidence from
CAMs, experts can more accurately determine whether each
sample is an out-of-distribution case or mislabeled instance.
This expert-in-the-loop stage not only reduces the review
workload by prioritizing the most informative and visually
verifiable samples but also accelerates the model evolution
cycle by feeding high-quality, expert-verified data back into
the pipeline for the next iteration.

Through these integrated components—noise cleaning,
calibration, uncertainty estimation, expert-guided refinement,
and automated version control—the proposed pipeline in
Figure 1 provides a robust, repeatable, and scalable approach
to maintaining high generalization while adapting to evolving
acoustic fault patterns in real-world environments.

3.2 Data Description

The dataset used in this study was collected from in-field
recordings of residential HVAC systems, including various
indoor unit types such as 1-Way Cassette, 4-Way Cassette,
Ducted, and Floor Standing models. Recordings were
captured using smartphones with a 44.1 kHz sampling rate
and stereo channels during maintenance or inspection
performed by technicians. The dataset was labeled into nine
classes, including normal operation sounds and fault types
such as fan motor noise by LG Electronics.

Table 1. Result of classification on LG HVAC dataset

Scratched Fine tunin,
Accuracy TOP-2 Fl-score Accuracy TOP-2 Fl-score
Accuracy (Macro) Accuracy (Macro)
0.70 0.81 0.59 0.78 0.86 0.66

3.3 Data Preprocessing and Feature Extraction

Raw sound recordings were segmented to adjust the shape of
the model input. Each segment was converted to a Mel-
spectrogram with 224 frequency bins and 224 timeframes to
leverage ImageNet finetuning. This approach is supported by
prior research (Palanisamy et al., 2020), which demonstrates
that CNN models pre-trained on ImageNet significantly
improve performance in audio classification. For instance, on
the ESC-50 dataset, a ResNet50 model's accuracy increased
from 85.0% to 87.5%. On our proprietary dataset, applying
the same pre-training also improved performance, as detailed
in Table 1, with the model's F1 score increasing from 68% to
76% and accuracy from 70% to 78%. A global normalization
consistent with ImageNet statistics was applied to stabilize
training. Figure 2 illustrates representative Mel-spectrograms
extracted from field recordings and their corresponding Class
Activation Map (CAM) images. The figure includes
spectrogram waveforms from multiple categories of input
signals, such as drain pump AC motor noise, fan motor noise,



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

and voice recordings. As shown, the drain pump and fan
motor noise appear highly similar, while the voice class often
overlaps with fault-related noise. In such cases, relying solely
on Top-1 accuracy may not fully reflect practical decision-
making. Therefore, the performance evaluation of our model
incorporates not only Top-1 but also Top-2 accuracy, which
captures situations where multiple fault types coexist in a
single recording. From an application perspective,
technicians are advised to review the Top-3 classification
results before repairing the air conditioner, ensuring more
flexible and reliable after-sales service.

Fan motor noise

Contact Nois

Drain pump AC motor noise

Figure 2. representative Mel-spectrograms & corresponding
CAM images.

3.3.1 Calibration Prior to Noise Data Selection

Accurate uncertainty estimation requires that the model’s
predicted probabilities are well-calibrated. Without proper
calibration, the softmax entropy values used for noise data
detection may be misleading, resulting in incorrect
identification of mislabeled or out-of-distribution samples.
Therefore, calibration is performed before applying entropy-
based filtering. Label smoothing is also applied during
training to mitigate over-confidence and support better
probability alignment. The calibrated probabilities obtained
here form the basis for reliable entropy-based selection of
noisy data.

3.3.2 Label Noise Detection and Removal

The quantity of information can be expressed following
Hartley’s definition as

I = nlog,s @)

Where s denotes the number of possible symbols in the
source alphabet and n represents the length of the transmitted
sequence. For instance, when transmitting the symbol
sequence “Hi” with an alphabet size of 52 (including both
uppercase and lowercase letters), we have n = 2. To classify
an individual symbol such as “H”, the alphabet set may be
conceptually partitioned in a binary fashion. Starting from the

full 52 symbols ordered from uppercase to lowercase,
repeated halving identifies “H” within the earlier subset,
requiring approximately five iterations for unique
determination. For the specific example of “H”, the
information quantity evaluates to I = 5.7 bits.

Entropy can be expressed following Shannon’s definition as

H(p) = —¥;p(x;)log, p(x;) 2)

In contrast to the Hartley measure, which assumes that all
symbols are equally likely, real-world sources often exhibit
non-uniform probability distributions. In such cases, the
information content of an individual symbol x; is defined as

1(x) = log; o 3)

and the overall entropy corresponds to the expected value of
this information measure across the distribution of X. This
formulation accounts for the variability in symbol likelihoods
and provides a more general quantification of uncertainty.
Moreover, in the context of model training, the cross-entropy
loss between the true label distribution p and the predicted
distribution g can be expressed as

H(p,q) = H(p) + Dy, (pllq) 4)

where H(p) denotes the entropy of the label distribution and
Dk (pllg) is the Kullback—Leibler divergence between p
and q. Since H(p) is fixed by the labels, minimizing cross-
entropy is effectively equivalent to reducing the KL
divergence, thereby decreasing the epistemic error of the
model although aleatoric uncertainty inherent in the data
remains. From this perspective, softmax entropy itself can
also be employed as an indicator of predictive uncertainty
depending on the training data distribution. Mislabeled
segments are known to degrade classifier performance, and
we categorize such label noise into closed-set and open-set
cases. For a discrete model-predicted class distribution g =
(491, 92, ---» qx), where q; denotes the predicted probability for
class i and k is the total number of classes, the softmax
entropy is defined as

H(q) = — X q(x;) log, q(x;) (%)

An initial classifier is trained, and the entropy of the softmax
outputs is computed for each segment. Low-entropy
misclassifications occur when the model is highly confident
in an incorrect label, which typically corresponds to closed-
set noise—cases where the true class exists in the training set
but is mislabeled. In contrast, high-entropy misclassifications
reflect low confidence and high output uncertainty, often
indicating open-set noise, where the input does not belong to
any known class. The latter are further examined using t-SNE
visualization to detect such out-of-distribution instances.
Segments flagged as potentially noisy are reviewed by
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domain experts using both CAMs visualizations and t-SNE
clustering of outliers. This expert-in-the-loop validation is
justified since softmax entropy serves as a training data-
dependent indicator of predictive uncertainty, thereby
requiring human review to ensure reliable noise detection.
This process improves label quality and enhances the model’s
generalization capability. To quantitatively validate the
effectiveness of label noise removal on uncertainty
estimation, the Expected Calibration Error (ECE) was
measured before and after noise filtering. The ECE decreased
from 0.055 to 0.048, indicating that the model became better
calibrated and that entropy more accurately reflected
predictive uncertainty after removing noisy labels.

3.4 Fault Classification Models

In this study, ResNet-34 was adopted as the classification
backbone for the 224 x 224 Mel-spectrogram inputs prepared
in Section 3.3. ResNet-34 leverages residual connections to
mitigate the vanishing gradient problem in deep networks,
while offering a balance between model size and
computational efficiency, making it well-suited for periodic
retraining and real-world deployment (He et al., 2016).

The model was initialized with ImageNet pretrained weights
and fine-tuned on the target dataset. To improve training
stability and accelerate convergence, the standard input
resolution and global normalization were applied. During
training, label smoothing was employed to reduce over-
confidence, and a probability calibration procedure was

performed to enhance the reliability of predicted probabilities.

The calibrated outputs were then used for softmax-entropy-
based label noise detection, enabling robust identification of
mislabeled data and out-of-distribution samples.

By combining preprocessing, probability calibration, and
noise-aware learning strategies, ResNet-34 operates reliably
within the MLOps pipeline and maintains consistent
generalization performance, even on noisy in-field HVAC
recordings.

Table 2. Result of classification on LG HVAC dataset after
label noise removal for Class 5

AF1
ID Noise type F1-Score (After-
Before)
Refrigerant noise 0.74 -0.02
1 Contact noise 0.89 +0.01
Drain pump
2 AC motor noise 085 +0.01
3 _ Drainpump 0.71 -0.01
high-frequency noise
4 Drain pump 0.32 +0.03
mechanical noise
5 Voice 0.81 +0.02
6 Vane operation noise 0.96 +0.14
7 Normal operation 0.46 +0.23
8 Fan motor noise 0.61 0.00
F1-score (Macro) 0.70 +0.04
Accuracy 0.79 +0.01
TOP-2 Accuracy 0.88 +0.02

4. EXPERIMENTS AND RESULTS

We evaluated the proposed framework on a proprietary
dataset of field recordings containing nine known classes plus
normal operation, with a pronounced class imbalance. All
experiments were conducted using five-fold cross-validation.
Label noise removal was applied only to Class 5 (voice),
which exhibited the highest proportion of mislabeled samples
and whose acoustic characteristics enabled more reliable
noise identification.

Removing noisy labels and retraining led to more compact
and well-separated clusters in the logits space, thereby
reducing mislabeled instances embedded within each class
cluster. This effect, illustrated in the t-SNE plots of Fig. 3,
reflects improved generalization rather than a mere boost in
classification scores. In particular, Class 5 (highlighted in red)
shows a distinct decision boundary after noise removal,
forming a compact, isolated cluster with minimal intrusion
from other classes. In contrast, the noisy-label setting
produces a scattered distribution with greater class overlap.

As reported in Table 2, Class 5 achieved an F1 score of 0.81
(A = +0.02) after cleaning, but the largest gains occurred in
vane operation noise (Class 6: F1 = 0.96, A = +0.14) and
normal operation (Class 7: F1 = 0.46, A = +0.23), indicating
reduced confusion with voice samples. Minor decreases were
observed for refrigerant noise (Class 0: A =—0.02) and drain-
pump high-frequency noise (Class 3: A = —0.01), while fan
motor noise (Class 8) remained unaffected. Overall, the
system achieved Macro-F1 = 0.70 (A = +0.04), Accuracy =
0.79 (A = +0.01), and Top-2 Accuracy = 0.88 (A = +0.02),
aligning with the tighter Class 5 cluster in Fig. 3 and
demonstrating system-wide benefits from targeted label
cleaning.
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Figure 4. t-SNE visualization of logits space comparing
training with and without label noise, highlighting improved
separation for Class 5 after noise removal.

5. CONCLUSION

The experiments demonstrate that removing label noise yield
significant gains in generalization. Entropy-based filtering
distinguishes between closed-set and open-set noise,
enabling targeted relabeling. The proposed MLOps pipeline
automates data ingestion, training, evaluation and model
management, providing a practical framework for industrial
deployment. Future work will integrate active learning
strategies to prioritize segments for expert review and extend
the pipeline to other appliance categories.

This paper introduced a noise-aware MLOps framework for
fault diagnosis in air-conditioning units. By leveraging
entropy-based label noise detection and comprehensive
pipeline automation, the framework achieves robust
performance on noisy after-service recordings and lays the
foundation for open-set recognition. The framework reduces
expert labeling effort and accelerates model updates,
facilitating sustainable deployment of PHM systems in
consumer products.
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