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ABSTRACT 

Dual‑fuel (DF) marine engines, capable of operating on both 

diesel and LNG, face significant monitoring challenges due 
to frequent mode switching, dual valve timing, and load 
variability, which create nonlinear, time‑varying 

dependencies among sensors. Such dynamics undermine 
conventional time‑series anomaly detection methods that 

overlook structural relationships. To address this, we propose 
a graph‑based anomaly detection framework tailored for DF 
engine monitoring. Sensor readings are modeled as nodes, 
with edges encoding domain‑informed physical or functional 

dependencies. A multi‑head Graph Attention Network 

(GAT)–based overcomplete autoencoder captures both local 
sensor behavior and global structural patterns; the expanded 
latent space preserves fine‑grained features and heightens 

sensitivity to subtle deviations. The encoder aggregates 
context‑aware features, and the decoder ensures 

graph‑consistent reconstruction. Anomalies are scored using 
a λ‑weighted combination of node‑level reconstruction error 

(RMSE) and graph‑level structural inconsistency from Graph 

Laplacian Smoothness (GLS). The λ parameter is optimized 

post hoc on validation data via F1‑score, balancing sensitivity 

and precision. Evaluation on ten months of DF engine data 
demonstrates interpretable, real‑time fault detection and 

sensor‑level localization, supporting practical, 

condition‑based maintenance. 

1. INTRODUCTION 

Recent developments in maritime environmental regulations, 
such as the International Maritime Organization’s 2020 

sulfur oxides (SOx) emission limits, have accelerated the 
adoption of dual‑fuel (DF) marine engines that can operate 

on both diesel and liquefied natural gas (LNG) (IMO, 2020; 
Sigalas, 2022; Karatuğ et al., 2023). These engines not only 

enhance fuel efficiency and reduce exhaust emissions, but 
also expand the potential for implementing condition‑based 

maintenance (CBM) and voyage optimization strategies 
(Mohamad et al., 2021; Sutrisno et al., 2025). However, 

frequent switching between operating modes, dual valve 
timing, and fluctuating loads introduce considerable 
operational complexity, resulting in highly nonlinear and 
time‑varying interdependencies among onboard sensors 
(Youssef et al., 2024; Elahi et al., 2023). Consequently, 

conventional time‑series‑based anomaly detection methods 

often fail to capture the underlying structural correlations 
between sensors, leading to frequent false alarms and missed 
faults under dynamic operating conditions (Iqbal et al., 2024). 

To address these challenges, recent research has explored 
graph‑based deep learning methods that model the sensor 

network as a graph, where nodes represent individual sensors 
and edges denote functional or physical dependencies, 
thereby enabling the representation of the system’s structural 

topology (Veličković et al., 2018; Zhao et al., 2024). In 

particular, graph attention networks (GATs) dynamically 
learn attention coefficients to capture complex and 
heterogeneous sensor interactions, achieving superior 
performance compared to conventional CNN‑ or RNN‑based 

approaches under highly variable operating conditions (Ding 
et al., 2023). 

Nevertheless, existing GAT‑based anomaly detection studies 

exhibit two major limitations. First, most approaches rely 
solely on node‑level reconstruction errors or classification 

losses and do not explicitly account for global graph 
structural consistency. As a result, the ability to detect 
distributed anomalies—subtle perturbations to the 
dependency structure among sensors—is limited. Second, the 
weighting parameter (λ) for combining multiple anomaly 

indicators is seldom optimized to align with practical CBM 
objectives, which prevents achieving an optimal balance 
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between detection sensitivity and false alarm rate. These 
limitations significantly hinder the applicability of such 
methods in real‑world maritime CBM implementations. 

To overcome these limitations, we propose an unsupervised 
anomaly detection framework that integrates a GAT‑based 

encoder with an overcomplete autoencoder architecture, 
enabling the simultaneous capture of both local and global 
anomalies. The GAT‑based encoder learns context‑aware 

node embeddings by incorporating each sensor’s local 

operational behavior together with the global structural 
dependencies of the network. The decoder then reconstructs 
the original graph signals while preserving these structural 
relationships. 

During the reconstruction process, two complementary 
anomaly indicators are computed. The first is the node‑level 

reconstruction error, quantified by the mean squared error 
(MSE), which is sensitive to local anomalies. The second is 
the graph Laplacian smoothness (GLS), which measures the 
global structural consistency of the graph and reflects 
disruptions in physical or functional dependencies across the 
sensor network. 

A composite anomaly score is derived by calculating a 
weighted sum of these two indicators, with λ denoting the 

weighting factor. This parameter is post hoc optimized on the 
validation set to maximize the F1‑score, thereby achieving a 

balanced trade‑off between early fault detection sensitivity 
and the reduction of false alarm rates (Gharib & Kovacs, 
2024; Sun et al., 2024). Furthermore, per‑node GLS scores 

provide interpretable localization of anomalies at the sensor 
level, while a mimic board‑based visualization facilitates 
operational decision‑making and CBM prioritization in the 

complex engine room environment (Young et al., 2023; 

Jovanović et al., 2025). 

The proposed framework was validated using a 10‑month 

dataset collected from an operational DF marine engine. 
Experimental results demonstrate that the method achieves 
both high detection accuracy and interpretability, effectively 
overcoming the inherent weaknesses of prior approaches. 
This establishes a robust and scalable foundation for CBM 
implementation in marine propulsion systems operating 
under variable and challenging maritime conditions. 

2. OVERVIEW OF THE PROPOSED METHOD 

The proposed method is a graph-based anomaly detection and 
fault diagnosis framework designed to address the complex 
operating conditions of dual-fuel (DF) marine engines. As 
illustrated in Fig. 1, the process begins with the preprocessing 
of high-resolution operational data collected from 35 key 
onboard sensors, recorded during normal operating 
conditions. Each measurement at a given timestamp is 
modeled as a static directed graph, where each node 
represents a sensor and edges encode physical or functional 
dependencies derived from domain expertise and system 
schematics. The resulting engine-system graph is fed into a 
multi-head Graph Attention Network (GAT)-based 
overcomplete autoencoder, which employs attention 
mechanisms to capture both localized sensor behavior and 
global structural interactions. The encoder maps node 
features into a higher-dimensional latent space to preserve 
fine-grained patterns, while the decoder reconstructs the 
input feature matrix in a manner consistent with the original 
graph topology. Anomalies are quantified via a λ-weighted 
composite anomaly score, integrating node-level 
reconstruction error (root mean square error, RMSE) and 
graph-level structural inconsistency measured by Graph 
Laplacian Smoothness (GLS). The λ parameter is not fixed a 
priori; instead, it is post hoc optimized on validation data to 

Figure 1. Overview of the proposed method 
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maximize the F1‑score, enabling an adaptive trade-off 
between sensitivity and precision according to operational 
priorities. Finally, node‑wise GLS reconstruction errors are 

analyzed to localize the sensors contributing most to 
structural anomalies, and the results are visualized on a 
sensor-level mimic board. This end-to-end process supports 
both early fault detection and interpretable diagnosis, making 
it well‑suited for practical condition-based maintenance 
(CBM) in real‑world DF marine engine operations. 

3. DATA DESCRIPTION 

The target system in this study is a dual‐fuel (DF) marine 
engine that can operate on both diesel and liquefied natural 
gas (LNG). The engine is equipped with low‐emission 
combustion technology, dual valve timing (DVT), and a 
turbocharger control mechanism, which result in nonlinear 
and time‐varying interactions between onboard sensors 
under diverse operating conditions such as fuel‐mode 
switching, load variation, and valve timing adjustments. 

The dataset was collected over an extended period during 
actual operation of a vessel equipped with a DF engine. It 
contains hundreds of thousands of time‐ series entries 
recorded at one‐minute intervals, with measurements from 
more than thirty key sensors. These sensors are grouped into 
six subsystems: engine control, combustion/air system, gas 
system, diesel system, cylinder system, and mechanical 
system. Representative variables include engine load, fuel 
mode, charge air pressure, peak cylinder pressure (P‑max), 

exhaust gas temperature, fuel oil pressure, gas pressure, 
turbocharger speed, and main bearing temperature. This 
sensor configuration was designed to comprehensively 
represent the DF engine’s fuel usage patterns, combustion 

characteristics, operating conditions, and mechanical health. 

Data preprocessing was conducted to improve overall data 
quality, address imbalance among sensor types and 
conditions, and prepare inputs for subsequent graph‐based 
modeling. First, non‐representative intervals, including idle 
runs and abnormal operating ranges, were removed so that 
only records corresponding to normal load operation were 
retained. Extreme outliers caused by sensor faults, 
communication errors, or power instabilities—values 
physically implausible or outside the normal operating 
bounds—were also excluded. No interpolation or imputation 
was applied; only trustworthy data were used for analysis. To 
mitigate scale bias between variables, a two ‐ stage 
normalization was applied: a Robust Scaler to reduce the 
impact of outliers using median and interquartile range, 
followed by Min–Max scaling to normalize values to the 
range (Choi et al. 2025). 

Additionally, undersampling was applied to certain 
overrepresented load–fuel mode combinations in order to 
balance the dataset and ensure wider coverage of operational 
conditions. The resulting refined and balanced dataset served 

as a reliable basis for training the proposed graph‐based 
anomaly detection model, supporting both model stability 
during training and improved generalization performance. 

4. GRAPH-BASED FAULT DETECTION AND DIAGNOSIS 

4.1. Model Development and Training 

The GAT employed in this study processes each timestamp 
by modeling the preprocessed sensor measurements as a 
static directed graph 𝐺 = (𝑉, 𝐸, 𝑋) . Here, nodes V 
correspond to sensors, edges E encode physical and 
functional dependencies based on domain expertise, and 𝑋 ∈
ℝ𝑁×𝐹 is the node feature matrix with N sensors and F features 
per node. This representation facilitates the capture of both 
local sensor behavior and global structural patterns.  

The GAT encoder computes attention coefficients between a 
target node i and each neighbor 𝑗 ∈ 𝑁(𝑖) using 

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎ᵀ[𝑊ℎᵢ ∥ 𝑊ℎⱼ])  (1) 

where 𝑊  is a learnable weight matrix, ℎ𝑖  and ℎ𝑗  are 
transformed node feature vectors, 𝑎 is the attention weight 
vector, and || denotes concatenation. 

These coefficients are normalized by the softmax function to 
give 

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝{𝑘∈𝒩ᵢ} (𝑒𝑖𝑘)
 (2) 

where 𝛼𝑖𝑗 expresses the relative importance of neighbor 𝑗 to 
node 𝑖 . By adopting an overcomplete latent space 
(dim(Z)>dim(X)), the encoder preserves fine‑grained sensor 

patterns, while the decoder reconstructs the node feature 
matrix 𝑿̂ with graph topology consistency. 

Training is conducted in an unsupervised manner using only 
normal‑operation data. The reconstruction objective 

minimizes the mean squared error (MSE) between input and 
output: 

𝑀𝑆𝐸 =
1

𝑁
∑‖𝑥𝑖 − 𝑥̂𝑖‖

2

𝑁

𝑖=1

 (3) 

where 𝑥𝑖 ∈ ℝ𝐹 is the original feature vector of node 𝑖 and 𝑥̂𝑖 
is its reconstruction.  

Training is performed with mini‑batch graph inputs using the 

PyTorch Geometric framework, and the key hyperparameters 
such as hidden dimension size, number of attention heads, 
learning rate, and dropout rate are tuned by Tree‑structured 

Parzen Estimator(TPE)–based Bayesian optimization. This 
ensures robust generalization and prevents overfitting. 
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4.2. λ Post-hoc Optimization 

Anomalies are quantified by a composite anomaly score that 
integrates two complementary loss components: (i) 
node‑level reconstruction error (RMSE) and (ii) graph‑level 

structural inconsistency measured as the difference in Graph 
Laplacian Smoothness (GLS) between input and 
reconstructed graphs. GLF  

𝑆(𝑋) = 𝑇𝑟(𝑋𝑇𝐿𝑋)  (4) 

where 𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2 is the normalized Laplacian (A: 
adjacency matrix, D: degree matrix, I: Identity), and 𝑇𝑟(∙) 
denotes the matrix trace. The structural loss is the difference   
in smoothness before and after reconstruction: 

𝐿𝑔𝑟𝑎𝑝ℎ = |𝑆(𝑋) − 𝑆(𝑋̂)|      (5) 

The normalized node-level and graph-level losses are 
combined as  

𝐴𝑠𝑐𝑜𝑟𝑒 = 𝜆 · 𝑀𝑆𝐸𝑛𝑜𝑟𝑚 + (1 − 𝜆) · 𝐿𝑔𝑟𝑎𝑝ℎ,𝑛𝑜𝑟𝑚 (6) 

where the weighting coefficient 𝜆  adjusts the relative 
contribution of the two terms. Lower λ values emphasize 

early detection of structural anomalies, while higher values 
prioritize precision in identifying localized sensor faults. 
Because anomaly detection in real-world DF engine data 
often involves a strong class imbalance, where accuracy 
alone can be misleading, the F1-score was adopted to jointly 
account for both precision and recall. Instead of fixing λ 

heuristically, a post-hoc optimization procedure was applied: 
a grid search over candidate λ values was conducted on 

labeled test data to compute precision, recall, and F1-score, 
with the λ maximizing the F1-score selected as optimal. This 
optimization enables flexible tuning of the sensitivity–

precision trade-off to match operational requirements for 
either early warning or false alarm suppression. 

𝜆∗ = argmax
𝜆

𝐹1 − 𝑠𝑐𝑜𝑟𝑒(𝜆)           (7) 

4.3. Results and Discussion 

For interpretability and fault localization, node-wise Graph 
Laplacian Smoothness (GLS) reconstruction errors were 
analyzed for each detected anomaly. These values quantify 
the degree to which the structural relationships of a given 
node with its neighbors degrade during reconstruction, 
directly indicating the node’s contribution to the anomaly. 

Nodes were classified as suspicious (above the 95th 
percentile) or anomalous (above the 99th percentile) based on 
dual thresholds derived from the training data distribution. 

The proposed GAT-based overcomplete autoencoder model 
was applied to real operational data from a dual-fuel (DF) 
marine engine to evaluate the impact of the weighting 
parameter λ in the integrated anomaly score. For a 

representative abnormal event, the node-level reconstruction 
error (MSE), graph-level structural loss (GLS), and their λ-
weighted combination were analyzed, and the detection 
results are summarized in Table 1. 

Figure 2 compares the detection results for main bearing 
temperature anomalies against engine load for λ values of 0.1, 

0.567, and 0.8. Detected anomalies are color-coded—red for 
true positives (T.P), blue for false negatives (F.N), and orange 
for false positives (F.P)—while normal operating points are 
displayed in blue. When λ = 0.1, the GLS component 

dominates, making the model highly sensitive to subtle 
structural changes but increasing false positives. When λ = 

0.8, the MSE component dominates, focusing on sharp 
sensor-specific deviations but missing anomalies that mainly 
manifest as structural disruptions. At the optimal λ = 0.567, 

the model maintains balanced performance, reducing false 
positives while ensuring timely detection. 

Figure 2. Anomaly detection results for different λ values 
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Overall, λ serves as a flexible tuning parameter that shifts the 

detection focus between localized and structural anomalies. 
When combined with GLS-based node-level diagnostics and 
intuitive visualizations such as the mimic board, the 
framework delivers both early and accurate anomaly 
detection with explanatory context, making it suitable for 
practical condition-based maintenance of DF marine engines. 

 

5. CONCLUSION 

In this study, we proposed a Graph Attention Network 
(GAT)-based autoencoder framework to enable effective 
anomaly detection and fault diagnosis in dual-fuel (DF) 
marine engines operating under complex structural and 
dynamic conditions. Addressing the limitations of 
conventional time-series-based methods, which often fail to 
account for inter-sensor structural dependencies, the 
proposed approach models physical and functional 
interactions among sensors as a fixed graph derived from 
domain knowledge. 

The framework integrates node-level reconstruction error and 
graph-level structural loss into a unified anomaly score, 
enabling the detection of both localized sensor faults and 
global structural anomalies. The weighting factor λ between 

the two loss terms is not manually set; instead, it is post hoc 
optimized to maximize the F1-score on a validation set. This 
data-driven optimization balances early fault detection with 
false alarm reduction, allowing the detection sensitivity to be 
dynamically tailored to operational requirements. 

Experimental validation on ten months of real DF engine 
operational data confirmed that the model delivers high 
accuracy across diverse fault scenarios. Notably, it 
successfully detected subtle topological changes in the sensor 
network preceding main bearing overheating events, thereby 
providing earlier warnings than single-metric baselines. 
Furthermore, the use of mimic-board visualizations enabled 

intuitive differentiation between localized and structural 
anomalies, improving interpretability and supporting 
informed maintenance decisions. 

In conclusion, the proposed GAT-based overcomplete 
autoencoder offers a robust, interpretable, and scalable 
framework for CBM in DF marine engines. With its 
demonstrated ability to adaptively balance sensitivity and 
precision, it provides a strong foundation for future 
applications in autonomous ship engine room operations. 
Future work will extend the framework to multi-engine graph 
modeling, leverage Shop test and Sea trial pretraining, and 
integrate reinforcement learning for fully autonomous fault 
diagnosis and End-to-End anomaly response. 
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