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ABSTRACT

Dual-fuel (DF) marine engines, capable of operating on both
diesel and LNG, face significant monitoring challenges due
to frequent mode switching, dual valve timing, and load
variability, =~ which create nonlinear, time-varying
dependencies among sensors. Such dynamics undermine
conventional time-series anomaly detection methods that
overlook structural relationships. To address this, we propose
a graph-based anomaly detection framework tailored for DF
engine monitoring. Sensor readings are modeled as nodes,
with edges encoding domain-informed physical or functional
dependencies. A multi-head Graph Attention Network
(GAT)-based overcomplete autoencoder captures both local
sensor behavior and global structural patterns; the expanded
latent space preserves fine-grained features and heightens
sensitivity to subtle deviations. The encoder aggregates
context-aware features, and the decoder ensures
graph-consistent reconstruction. Anomalies are scored using
a A-weighted combination of node-level reconstruction error
(RMSE) and graph-level structural inconsistency from Graph
Laplacian Smoothness (GLS). The A parameter is optimized
post hoc on validation data via F1-score, balancing sensitivity
and precision. Evaluation on ten months of DF engine data
demonstrates interpretable, real-time fault detection and
sensor-level localization, supporting practical,
condition-based maintenance.

1. INTRODUCTION

Recent developments in maritime environmental regulations,
such as the International Maritime Organization’s 2020
sulfur oxides (SOx) emission limits, have accelerated the
adoption of dual-fuel (DF) marine engines that can operate
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on both diesel and liquefied natural gas (LNG) (IMO, 2020;
Sigalas, 2022; Karatug et al., 2023). These engines not only
enhance fuel efficiency and reduce exhaust emissions, but
also expand the potential for implementing condition-based
maintenance (CBM) and voyage optimization strategies
(Mohamad etal., 2021; Sutrisno etal., 2025). However,
frequent switching between operating modes, dual valve
timing, and fluctuating loads introduce considerable
operational complexity, resulting in highly nonlinear and
time-varying interdependencies among onboard sensors
(Youssef etal., 2024; Elahi etal., 2023). Consequently,
conventional time-series-based anomaly detection methods
often fail to capture the underlying structural correlations
between sensors, leading to frequent false alarms and missed
faults under dynamic operating conditions (Igbal et al., 2024).

To address these challenges, recent research has explored
graph-based deep learning methods that model the sensor
network as a graph, where nodes represent individual sensors
and edges denote functional or physical dependencies,
thereby enabling the representation of the system’s structural
topology (Velickovi¢ etal., 2018; Zhao etal., 2024). In
particular, graph attention networks (GATs) dynamically
learn attention coefficients to capture complex and
heterogeneous sensor interactions, achieving superior
performance compared to conventional CNN- or RNN-based
approaches under highly variable operating conditions (Ding
etal., 2023).

Nevertheless, existing GAT-based anomaly detection studies
exhibit two major limitations. First, most approaches rely
solely on node-level reconstruction errors or classification
losses and do not explicitly account for global graph
structural consistency. As a result, the ability to detect
distributed anomalies—subtle perturbations to the
dependency structure among sensors—is limited. Second, the
weighting parameter (A) for combining multiple anomaly
indicators is seldom optimized to align with practical CBM
objectives, which prevents achieving an optimal balance
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between detection sensitivity and false alarm rate. These
limitations significantly hinder the applicability of such
methods in real-world maritime CBM implementations.

To overcome these limitations, we propose an unsupervised
anomaly detection framework that integrates a GAT-based
encoder with an overcomplete autoencoder architecture,
enabling the simultaneous capture of both local and global
anomalies. The GAT-based encoder learns context-aware
node embeddings by incorporating each sensor’s local
operational behavior together with the global structural
dependencies of the network. The decoder then reconstructs
the original graph signals while preserving these structural
relationships.

During the reconstruction process, two complementary
anomaly indicators are computed. The first is the node-level
reconstruction error, quantified by the mean squared error
(MSE), which is sensitive to local anomalies. The second is
the graph Laplacian smoothness (GLS), which measures the
global structural consistency of the graph and reflects
disruptions in physical or functional dependencies across the
sensor network.

A composite anomaly score is derived by calculating a
weighted sum of these two indicators, with A denoting the
weighting factor. This parameter is post hoc optimized on the
validation set to maximize the F1-score, thereby achieving a
balanced trade-off between early fault detection sensitivity
and the reduction of false alarm rates (Gharib & Kovacs,
2024; Sun etal., 2024). Furthermore, per-node GLS scores
provide interpretable localization of anomalies at the sensor
level, while a mimic board-based visualization facilitates
operational decision-making and CBM prioritization in the
complex engine room environment (Young etal., 2023;
Jovanovi¢ et al., 2025).
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The proposed framework was validated using a 10-month
dataset collected from an operational DF marine engine.
Experimental results demonstrate that the method achieves
both high detection accuracy and interpretability, effectively
overcoming the inherent weaknesses of prior approaches.
This establishes a robust and scalable foundation for CBM
implementation in marine propulsion systems operating
under variable and challenging maritime conditions.

2. OVERVIEW OF THE PROPOSED METHOD

The proposed method is a graph-based anomaly detection and
fault diagnosis framework designed to address the complex
operating conditions of dual-fuel (DF) marine engines. As
illustrated in Fig. 1, the process begins with the preprocessing
of high-resolution operational data collected from 35 key
onboard sensors, recorded during normal operating
conditions. Each measurement at a given timestamp is
modeled as a static directed graph, where each node
represents a sensor and edges encode physical or functional
dependencies derived from domain expertise and system
schematics. The resulting engine-system graph is fed into a
multi-head Graph Attention Network (GAT)-based
overcomplete autoencoder, which employs attention
mechanisms to capture both localized sensor behavior and
global structural interactions. The encoder maps node
features into a higher-dimensional latent space to preserve
fine-grained patterns, while the decoder reconstructs the
input feature matrix in a manner consistent with the original
graph topology. Anomalies are quantified via a A-weighted
composite anomaly score, integrating node-level
reconstruction error (root mean square error, RMSE) and
graph-level structural inconsistency measured by Graph
Laplacian Smoothness (GLS). The A parameter is not fixed a
priori; instead, it is post hoc optimized on validation data to
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Figure 1. Overview of the proposed method
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maximize the Fl-score, enabling an adaptive trade-off
between sensitivity and precision according to operational
priorities. Finally, node-wise GLS reconstruction errors are
analyzed to localize the sensors contributing most to
structural anomalies, and the results are visualized on a
sensor-level mimic board. This end-to-end process supports
both early fault detection and interpretable diagnosis, making
it well-suited for practical condition-based maintenance
(CBM) in real-world DF marine engine operations.

3. DATA DESCRIPTION

The target system in this study is a dual - fuel (DF) marine
engine that can operate on both diesel and liquefied natural
gas (LNG). The engine is equipped with low - emission
combustion technology, dual valve timing (DVT), and a
turbocharger control mechanism, which result in nonlinear
and time - varying interactions between onboard sensors
under diverse operating conditions such as fuel - mode
switching, load variation, and valve timing adjustments.

The dataset was collected over an extended period during
actual operation of a vessel equipped with a DF engine. It
contains hundreds of thousands of time - series entries
recorded at one - minute intervals, with measurements from
more than thirty key sensors. These sensors are grouped into
six subsystems: engine control, combustion/air system, gas
system, diesel system, cylinder system, and mechanical
system. Representative variables include engine load, fuel
mode, charge air pressure, peak cylinder pressure (P-max),
exhaust gas temperature, fuel oil pressure, gas pressure,
turbocharger speed, and main bearing temperature. This
sensor configuration was designed to comprehensively
represent the DF engine’s fuel usage patterns, combustion
characteristics, operating conditions, and mechanical health.

Data preprocessing was conducted to improve overall data
quality, address imbalance among sensor types and
conditions, and prepare inputs for subsequent graph - based
modeling. First, non - representative intervals, including idle
runs and abnormal operating ranges, were removed so that
only records corresponding to normal load operation were
retained. Extreme outliers caused by sensor faults,
communication errors, or power instabilities—values
physically implausible or outside the normal operating
bounds—were also excluded. No interpolation or imputation
was applied; only trustworthy data were used for analysis. To
mitigate scale bias between variables, a two - stage
normalization was applied: a Robust Scaler to reduce the
impact of outliers using median and interquartile range,
followed by Min—Max scaling to normalize values to the
range (Choi et al. 2025).

Additionally, undersampling was applied to certain
overrepresented load—fuel mode combinations in order to
balance the dataset and ensure wider coverage of operational
conditions. The resulting refined and balanced dataset served

as a reliable basis for training the proposed graph - based
anomaly detection model, supporting both model stability
during training and improved generalization performance.

4. GRAPH-BASED FAULT DETECTION AND DIAGNOSIS

4.1. Model Development and Training

The GAT employed in this study processes each timestamp
by modeling the preprocessed sensor measurements as a
static directed graph G = (V,E,X) . Here, nodes V
correspond to sensors, edges E encode physical and
functional dependencies based on domain expertise, and X €
RV*F is the node feature matrix with N sensors and F features
per node. This representation facilitates the capture of both
local sensor behavior and global structural patterns.

The GAT encoder computes attention coefficients between a
target node i and each neighbor j € N (i) using

e;; = LeakyReLU(a"[Wh; || Why]) (1)

where W is a learnable weight matrix, h; and h; are
transformed node feature vectors, a is the attention weight
vector, and || denotes concatenation.

These coefficients are normalized by the softmax function to
give

O
Y Z{ke]\/‘i} exp(ejx)

where a;; expresses the relative importance of neighbor j to
node i . By adopting an overcomplete latent space
(dim(Z)>dim(X)), the encoder preserves fine-grained sensor
patterns, while the decoder reconstructs the node feature
matrix X with graph topology consistency.

2

Training is conducted in an unsupervised manner using only
normal-operation data. The reconstruction objective
minimizes the mean squared error (MSE) between input and
output:

1 .
MSE =5 ) b~ & )
i=1

where x; € RF is the original feature vector of node i and &;
is its reconstruction.

Training is performed with mini-batch graph inputs using the
PyTorch Geometric framework, and the key hyperparameters
such as hidden dimension size, number of attention heads,
learning rate, and dropout rate are tuned by Tree-structured
Parzen Estimator(TPE)-based Bayesian optimization. This
ensures robust generalization and prevents overfitting.
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4.2. & Post-hoc Optimization

Anomalies are quantified by a composite anomaly score that
integrates two complementary loss components: (i)
node-level reconstruction error (RMSE) and (ii) graph-level
structural inconsistency measured as the difference in Graph

Laplacian Smoothness (GLS) between input and
reconstructed graphs. GLF
S(X) =Tr(X"LX) “4)

where L = I — D™Y/2AD~%/2 is the normalized Laplacian (A:

adjacency matrix, D: degree matrix, I: Identity), and Tr(-)
denotes the matrix trace. The structural loss is the difference
in smoothness before and after reconstruction:

Lgraph = |S(X) - S(X)| (5)

The normalized node-level and graph-level losses are
combined as

=1 MSEyorm + (1 - A) : Lgraph,norm (6)

Ascore

where the weighting coefficient A adjusts the relative
contribution of the two terms. Lower A values emphasize
early detection of structural anomalies, while higher values
prioritize precision in identifying localized sensor faults.
Because anomaly detection in real-world DF engine data
often involves a strong class imbalance, where accuracy
alone can be misleading, the F1-score was adopted to jointly
account for both precision and recall. Instead of fixing A
heuristically, a post-hoc optimization procedure was applied:
a grid search over candidate A values was conducted on
labeled test data to compute precision, recall, and F1-score,
with the A maximizing the F1-score selected as optimal. This
optimization enables flexible tuning of the sensitivity—
precision trade-off to match operational requirements for
either early warning or false alarm suppression.
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4.3. Results and Discussion

For interpretability and fault localization, node-wise Graph
Laplacian Smoothness (GLS) reconstruction errors were
analyzed for each detected anomaly. These values quantify
the degree to which the structural relationships of a given
node with its neighbors degrade during reconstruction,
directly indicating the node’s contribution to the anomaly.
Nodes were classified as suspicious (above the 95th
percentile) or anomalous (above the 99th percentile) based on
dual thresholds derived from the training data distribution.

The proposed GAT-based overcomplete autoencoder model
was applied to real operational data from a dual-fuel (DF)
marine engine to evaluate the impact of the weighting
parameter A in the integrated anomaly score. For a
representative abnormal event, the node-level reconstruction
error (MSE), graph-level structural loss (GLS), and their A-
weighted combination were analyzed, and the detection
results are summarized in Table 1.

Figure 2 compares the detection results for main bearing
temperature anomalies against engine load for A values of 0.1,
0.567, and 0.8. Detected anomalies are color-coded—red for
true positives (T.P), blue for false negatives (F.N), and orange
for false positives (F.P)—while normal operating points are
displayed in blue. When A = 0.1, the GLS component
dominates, making the model highly sensitive to subtle
structural changes but increasing false positives. When A =
0.8, the MSE component dominates, focusing on sharp
sensor-specific deviations but missing anomalies that mainly
manifest as structural disruptions. At the optimal A = 0.567,
the model maintains balanced performance, reducing false
positives while ensuring timely detection.
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Figure 2. Anomaly detection results for different A values
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Overall, A serves as a flexible tuning parameter that shifts the
detection focus between localized and structural anomalies.
When combined with GLS-based node-level diagnostics and
intuitive visualizations such as the mimic board, the
framework delivers both early and accurate anomaly
detection with explanatory context, making it suitable for
practical condition-based maintenance of DF marine engines.

Table 1. Effect of values on anomaly score composition

=01 | A=0567 | 1=08
MSE Loss 0.5425
GLS Loss 0.7670
MSE Term | hs43 | 03125 0.4340
in Score
GLS Term | 6003 | 03321 0.1534
in Score
Anomaly | 206 | 06446 | 0.5874
Score
Threshold 0.6132
Detection Abnormal | Abnormal Normal
Result
Final Result T.P T.P F.N

5. CONCLUSION

In this study, we proposed a Graph Attention Network
(GAT)-based autoencoder framework to enable effective
anomaly detection and fault diagnosis in dual-fuel (DF)
marine engines operating under complex structural and
dynamic conditions. Addressing the limitations of
conventional time-series-based methods, which often fail to
account for inter-sensor structural dependencies, the
proposed approach models physical and functional
interactions among sensors as a fixed graph derived from
domain knowledge.

The framework integrates node-level reconstruction error and
graph-level structural loss into a unified anomaly score,
enabling the detection of both localized sensor faults and
global structural anomalies. The weighting factor A between
the two loss terms is not manually set; instead, it is post hoc
optimized to maximize the F1-score on a validation set. This
data-driven optimization balances early fault detection with
false alarm reduction, allowing the detection sensitivity to be
dynamically tailored to operational requirements.

Experimental validation on ten months of real DF engine
operational data confirmed that the model delivers high
accuracy across diverse fault scenarios. Notably, it
successfully detected subtle topological changes in the sensor
network preceding main bearing overheating events, thereby
providing earlier warnings than single-metric baselines.
Furthermore, the use of mimic-board visualizations enabled

intuitive differentiation between localized and structural
anomalies, improving interpretability and supporting
informed maintenance decisions.

In conclusion, the proposed GAT-based overcomplete
autoencoder offers a robust, interpretable, and scalable
framework for CBM in DF marine engines. With its
demonstrated ability to adaptively balance sensitivity and
precision, it provides a strong foundation for future
applications in autonomous ship engine room operations.
Future work will extend the framework to multi-engine graph
modeling, leverage Shop test and Sea trial pretraining, and
integrate reinforcement learning for fully autonomous fault
diagnosis and End-to-End anomaly response.
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