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ABSTRACT

Ensuring the safe operation of unmanned aerial vehicles
(UAVs) requires timely and accurate detection of anomalies
that may indicate system faults or external disturbances. In
this study, we experimentally investigate a data-driven ap-
proach for unsupervised anomaly detection in UAVs, lever-
aging a newly developed multimodal dataset that includes
synchronized telemetry, sensor measurements, motion cap-
ture data, and pilot inputs. Our method learns representations
of normal UAV behavior from healthy flight records and is ap-
plied to fault-injection scenarios to identify potential anoma-
lies. Preliminary results on experimental data suggest that the
approach can capture subtle deviations from expected behav-
ior across multiple data modalities, including flight dynamics
and environmental feedback. This work lays the foundation
for data-driven UAV health monitoring through unsupervised
learning. It complements our publicly released dataset and
analysis tools and aims to facilitate broader research on au-
tonomous anomaly detection, early fault diagnostics, and the
development of resilient UAV systems in safety-critical ap-
plications.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) have become increasingly
prevalent across a wide range of civilian, industrial, and de-
fense applications, including inspection, surveillance, map-
ping, and delivery (Liew & Yairi, 2020). Recent advance-
ments in small-scale UAVs have also expanded their poten-
tial into companion or social interaction roles, where their
unique ability to fly offers unprecedented possibilities for
human—drone interaction. However, these advantages come
with challenges such as safety concerns, operational noise,
and so on, making them susceptible to a wide variety of faults
and anomalies.

Prognostics and Health Management (PHM) provides a sys-
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tematic framework to address these challenges by integrat-
ing sensing, data analysis, and predictive modeling to enable
early fault detection, diagnosis, and remaining useful life es-
timation (Zonta et al., 2020). In the context of UAVs, PHM
aims to ensure safe, reliable and efficient operation by detect-
ing anomalies that may indicate system faults or environmen-
tal disturbances before they escalate into mission-critical fail-
ures. Unsupervised anomaly detection by isolation forest has
been carried out using the aero-propulsion system simulation
dataset as a benchmark (Khan et al., 2019). For device-level
anomaly detection of UAVs, a reinforcement learning-based
anomaly detection system that monitors motor temperature
has been conducted (Lu et al., 2017). Also, with the rapid de-
velopment of deep learning, deep neural network-based ap-
proach for anomaly detection and recovery has already been
studied (Yang et al., 2023) However, despite the growing in-
terest in UAV health monitoring, publicly available datasets
suitable for PHM research remain scarce, and the limited
availability of such datasets — particularly in the UAV do-
main, regardless of whether the type is rotary-wing or fixed-
wing — has become a major bottleneck for advancing PHM
research. Current existing UAV datasets focus on flight con-
trol, navigation, or mapping tasks, and few provide synchro-
nized, multimodal sensor data collected under controlled fault
or anomaly conditions. This lack of comprehensive and an-
notated datasets limits the development, benchmarking, and
reproducibility of data-driven PHM algorithms for UAVs.

To address this gap, this work uses a newly released mul-
timodal UAV dataset with synchronized telemetry, sensor
measurements, motion capture data, and pilot control inputs,
recorded under nominal and fault-injection conditions. In ad-
dition, we present a standardized pipeline for unsupervised
anomaly detection, enabling researchers to train models on
healthy flight data and evaluate their performance in detect-
ing injected faults. In this work, we release a new multi-
modal UAV dataset with synchronized telemetry, sensor, and
pilot input streams, explicitly designed to support unsuper-
vised anomaly detection research. We employ several stan-
dard data-driven anomaly detection methods based on recon-
struction errors in the workflow as shown in Figure 1. Rather
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Figure 1. A typical data-driven PHM workflow.

than pursuing algorithmic novelty, our goal is to investigate
how these standard models behave under controlled fault in-
jection scenarios and to offer solid, reproducible baselines for
future research. It should be noted that our objective is not to
provide definitive performance evaluations (e.g., in terms of
AUC) of these baseline methods, as a fixed train—test split is
not defined for the dataset. This is primarily because the cur-
rently released initial version of the dataset is not yet fully
mature, making it premature to establish a standard bench-
mark. Instead, the emphasis is on offering transparent ref-
erence implementations that can be adapted and evaluated
under user-defined experimental setups. The remainder of
this paper details the detection methods (Section 2), dataset
description and experimental details (Section 3), results and
discussion (Section 4), and conclusion (Section 5).

2. PROBLEM STATEMENT AND METHODOLOGIES

Let X € RY*D denote the input data matrix, where N is the
number of time steps, and D is the number of observed vari-
ables. We formulate the problem as an unsupervised anomaly
detection task, where a model is trained exclusively on nor-
mal data and evaluated on test samples.

Among various approaches for unsupervised anomaly de-
tection, reconstruction error-based methods are particularly
well-suited to this task. These methods are typically trained
on normal samples to learn a compact latent representation
that captures the underlying structure of healthy behavior.
Test samples that cannot be faithfully reconstructed are re-
garded anomalous and can be further analyzed for fault isola-
tion. We then briefly describe methods used in this work.

Principle Component Analysis  PCA is one of the most
widely used dimensionality reduction technique and is a nat-
ural baseline for anomaly detection because of its simplic-
ity and maturity (Takeishi & Yairi, 2014). In practice, PCA
is commonly implemented using Singular Value Decomposi-
tion (SVD) on the centered data matrix X to improve com-
putational efficiency, especially in high-dimensional cases as
X = UXV', where U € RV*N and V e RP*D gre
orthogonal matrices, and ¥ € RV*P is a diagonal matrix
containing the singular values along its main diagonal. By
selecting latent dimensions K < D, we can project X into a
K-dimensional latent subspace and then reconstruct it back to
the original feature space. The reconstructed matrix by PCA
using the truncated right singular vector matrix V g is given
by X = XV VL.

Kernel Principle Component Analysis  To relax the linear
assumption of PCA, Kernel PCA introduces nonlinearity by

constructing a kernel matrix M € RY*N through kernel
function k(x;,x;) = (¢(x;),¢(x;)), and then applies stan-
dard PCA in a high-dimensional feature space (Scholkopf et
al., 1998). The reconstruction in kPCA is usually defined in
the feature space between the input’s mapped representation
and its projection onto the top-K principal components. This
allows capturing nonlinear anomalies beyond the capacity of
standard PCA.

Autoencoder  AE is an unsupervised neural network trained
to learn reconstructions close to the observation inputs. It is
composed of an encoder £ and a decoder D. The encoder
takes the input X and projects them into a latent space, while
the decoder reproduces the compressed representation & (X)
back to the observation inputs. The nonlinearity of AE is
introduced by nonlinear activation functions such as ReLLU
and this nonlinear reconstruction capability makes AE suit-
able for anomaly detection tasks (Sakurada & Yairi, 2014).
AE is trained to minimize the reconstruction error on normal
data samples and the reconstructed result for AE is D(£(X)).

Variational Autoencoder ~ VAE is a generative model com-
bines the ideas of AE and probabilistic modeling. Instead of
directly encoding input X, it learns a probabilistic encoder,
typically modeled as a Gaussian. During inference, the la-
tent variable is sampled from the distribution and decoded to
reconstruct the input. Different from AE, VAE is trained by
maximizing the evidence lower bound (ELBO), which bal-
ances reconstruction fidelity and latent regularization. This
probabilistic nature and inherent ability to model data distri-
butions make VAE a popular choice for anomaly detection
(An & Cho, 2015).

When reconstructing test data using a reconstruction-based
anomaly detection method, the greater the difference between
the reconstruction result and the input value, the more likely
it is that the data is anomalous, where the Frobenius norm
of the difference between the reconstructed and original data
matrices || X — X|| is used as the reconstruction error.

3. DATASET DESCRIPTION

We conducted three sets of experiments under three different
types of abnormal situation. Each dataset contains one set of
data from completely normal experiments and one set from
abnormal experiments, with each set consisting of three (or
two) flights, as shown in Table 1. The test sets of the first
and second datasets consist of flight data collected under un-
balanced propeller conditions. The propeller in the test data
of the second dataset is more unstable than that in the test
data of the first dataset. In the third dataset, approximately
3 cm part was cut from the end of a propeller to simulate a
crack situation. Each flight in the dataset lasts approximately
one to two minute, during which the UAV undergoes takeoff,
cruising, and landing phases. All training data were collected
under fully healthy conditions, while for the test data, an ab-
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Table 1. Overview of the quadcopter UAV indoor flight
dataset. Training sets contain only normal flights, while test
sets include different states.

Dataset Train Test
Flights State Flights State
1 3 Normal 3 Unbalanced propeller
2 3 Normal 3 Unbalanced propeller
3 3 Normal 2 Propeller crack

normal condition was introduced prior to takeoff. As a result,
the test data are expected to exhibit responses distinct from
the training data over the full duration of pilot operation.

As for the data composition, the dataset is organized on a per-
experiment basis, with each flight stored in separate files. The
primary files include PX4 log files, INAV log files, and mo-
tion capture (MoCap) data files. The PX4 log files contain the
onboard flight controller data, such as sensor readings, con-
trol inputs, and state estimates, recorded by the PX4 autopilot
firmware. The INAV log files provide navigation and con-
trol data from the INAV flight control system, with the most
relevant information are vibration and temperature measure-
ments. The MoCap files record the high-precision position
and orientation of the UAV, obtained from an external mo-
tion capture system, serving as ground truth for trajectory and
state estimation. In the task of anomaly detection, the above-
mentioned primary files are considered to provide sufficient
information for model training.

4. EXPERIMENT
4.1. Data Preprocessing

As mentioned, we have mainly three recorded files per flight.
Since the different files and even different sensor measure-
ments recorded within a file, may have different sampling fre-
quencies and timestamps, the first step we need to take is to
synchronize all the files. The code for synchronization is pro-
vided together in the dataset. After synchronization is com-
plete, all sensor recordings will have the same timestamps.
However, the discrepancy in initial timestamps led to a sig-
nificant number of missing values in both high-frequency and
low-frequency data streams. So we applied a fill operation to
impute all missing values, ensuring temporal alignment and
data completeness across all channels. Finally, the sampling
frequency of all sensors are synchronized to 8 kHz. Figure 2
shows the roll, pitch, yaw and throttle in the synchronized
PX4 and four motor outputs signals in INAV logged file of
the first flight trial in Dataset 1. It can be seen that due to
the fill operation, the signals exhibit a horizontal plateau at
both the beginning and the end. Figure 3 illustrates the three-
dimensional trajectory of the UAV captured by the motion
capture (MoCap) system during a single experimental trial.
The plotted path shows the spatial positions of the UAV from
takeoff to landing, with the start and end points marked for

reference. During the cruising phase, the UAV performed
repeated back-and-forth translations and rotations within the
flight area, as reflected in the oscillatory patterns of the trajec-
tory. Considering both computational efficiency and the types
of anomalies of interest in the dataset, we downsampled the
data to a final sampling rate of 8 Hz.

4.2. Feature Selection

Feature selection is a crucial step in almost all tasks of PHM
research. Effective feature selection aims to retain informa-
tive variables for the task while removing redundant ones,
thereby improving both computational efficiency and prog-
nostic accuracy.

The feature selection process in this study consisted of three
stages. In the first stage, we performed a manual inspection
of the experimental data to verify the validity of each feature
and to determine whether each sub-file contained variables
relevant to anomaly detection. This reduced the total number
of features to 900. In the second stage, we applied a filter
based on the count of valid values for each feature. This step
aimed to remove data streams from each sub-file that did not
contain sufficient valid information. By setting the thresh-
old to at least three valid values, the feature dimensionality
was significantly reduced to 286. In the final stage, we ad-
dressed cases in which certain features required merging due
to being stored across multiple columns. After completing
this merging process, the final dimensionality of the dataset
was reduced to 205. We have provided the results and process
code for standard feature selection. Based on the settings, the
final number of features used for training may be different.

4.3. Implement Details

Since the drone was already in standby mode at the start of
the experiment and during the technical portion, this data was
deleted based on the landed parameter in the takeoff_status
of the PX4 subfile as shown in Figure 4. Figure 5 shows the
kernel density estimations (KDE) of four randomly selected
example features from the training and test datasets. KDE is
employed here to visualize and compare the probability dis-
tributions of features across the two datasets, providing an
intuitive way to detect potential distribution shifts. In the con-
text of anomaly detection, such shifts are of particular impor-
tance, as they often indicate that the test data originate from a
different operating condition or system state than the training
data. When models are trained solely on normal data, a distri-
bution mismatch in the test phase typically leads to increased
prediction errors. In our provided datasets, the plots reveal a
clear difference between the training and test feature distribu-
tions, suggesting that most anomaly detection methods would
be able to readily identify anomalies in the test flights. After
feature selection, all data are standardized using the mean and
standard deviation of the training set by Z-score.
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Figure 2. Example plots of PX4 and INAV signals from the first flight trial in Dataset 1.
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Figure 3. 3D Trajectory of MoCap Data from the first flight
trial in Dataset 1.

Before model training, it is required to ensure that the latent
space dimensionality is consistent across different methods.
So we first apply PCA to the dataset. Figure 6 illustrates the
results of the PCA analysis performed on the training data.
As can be seen from the figure, the first 48 principal compo-
nents explain 0.8 of the variance in the training data, while
the cumulative variance explained by the first 100 principal
components is close to 0.95. In the subsequent experimental
section of this paper, the dimension of the latent space will
be uniformly set to 60 for comparison purposes. Figure 6b
shows the projection of the first training flight and the first test
flight onto the first two principal components. Apart from the
beginning and end of the experiment, the anomalous flight
exhibits a large discrepancy from the training flight during
most of the flight. Also note that a part of non-flying periods
have already been removed, so the data shown here mainly
represent valid flight segments.

4.4. Results and Discussion

In the final experiments, we employ PCA, kPCA, AE, and
VAE for reconstruction. As described in the previous sub-
section, the dimension of the latent space was set to 60 to
facilitate a fair comparison. For kPCA, we select the Gaus-
sian kernel to capture nonlinear structures in the data. For AE
and VAE, we adopt multi-layer perceptron (MLP) for both
the encoder (500, 200) and decoder (200, 500). In the case of
the AE, the encoder ultimately compresses the input data into
a 60-dimensional latent vector. In contrast, the VAE employs
the encoder to map the input into two 60-dimensional vectors
representing the mean and standard deviation of a Gaussian
distribution.

Figure 7 illustrates the temporal evolution of the 60-
dimensional principal components or latent representations
obtained by the four methods after being trained on the
training dataset. The latent space of the VAE does not cor-
respond to fixed numerical values and it learns a probability
distribution for each sample. To facilitate a fair comparison
with the other methods, the results for the VAE are plotted
using the mean of the learned distribution, denoted by the
mathematical symbol . It can be observed that the principal
components extracted by PCA exhibit a clear and pronounced
trend over flight/time. The components extracted by kPCA
also shows certain trends, but are weaker and appear more
irregular compared to PCA. The trend-related principal com-
ponents extracted in PCA and kPCA are considered to be
caused by variables such as battery usage and temperature
rises measured by temperature sensors. Since the training
dataset is constructed by concatenating the recordings of
three separate flights, distinct boundaries between flights can
be clearly identified in certain principle components. This in-
dicates that PCA retains global variation patterns that reflect
differences between flight sessions. In contrast, the latent
spaces learned by AE and VAE still allow the flight segments
to be distinguished from the values, but the overall trends are
comparatively weaker.
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Figure 5. Kernel density estimations of four randomly se-
lected example features from three training flights (Train 1-3)
and three anomalous flights (Test 1-3) in Dataset 2.

In our dataset, since the anomalous flights exhibit abnormal
conditions from the very beginning of the experiments, the
reconstruction errors are generally pronounced. Therefore,
in the comparison, instead of evaluating the overall recon-
struction error, we focus on the reconstruction performance
of several key parameters in the original observation space
for a more targeted comparison. In our experiments, both
hover thrust and motor output are expected to be affected un-
der the simulated anomalies, making them relevant features
for anomaly detection and analysis. Therefore, we specifi-
cally compare the reconstruction performance on these pa-
rameters.

Figure 8 shows the reconstruction error of hover thrust and
four motor outputs. For PCA, the reconstruction errors re-
main relatively small across all five parameters. Noticeable
increases in error occur mainly in the hover thrust during the
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(b) PCA projection of Train Flight 1 and Test Flight 1.

Figure 6. PCA results of the Dataset 2.

first two test flights, indicating that PCA is sensitive to large
deviations in global thrust demand but otherwise maintains
stable reconstruction performance. For AE, a pronounced
reconstruction error appears in the hover thrust during the
third anomalous test flight. However, across the four mo-
tor outputs, AE consistently produces larger reconstruction
errors, suggesting that it is more sensitive to localized devi-
ations in individual actuators and thus potentially more ef-
fective at detecting distributed anomalies in the propulsion
system. VAE shows overall reconstruction patterns similar to
PCA, with relatively low error magnitudes and limited varia-
tion across flights, indicating comparable robustness to PCA
but potentially less sensitivity to small actuator-level anoma-
lies than AE. It can also be observed that during the first two
test flights, all three methods respond clearly to anomalies,
whereas in the third flight AE still shows a discernible re-
sponse, suggesting a sustained ability to detect anomalies in
that segment.

These differences may be explained by the physical impact
of the simulated anomalies and the used methods. Unbal-
anced propeller (and propeller crack) primarily alter the aero-
dynamic efficiency of the rotor system, increasing the thrust
required to maintain altitude. This manifests as a noticeable
change in hover thrust, which is a global parameter aggre-
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Figure 7. Temporal variations of principal components (PCA, kPCA) and latent space representations (AE, VAE) for Dataset 2.
The results are obtained by concatenating the three flight sequences in chronological order along the timestep axis. Black
dashed vertical lines indicate the boundaries between consecutive flight data.

gated over all motors. Since PCA emphasizes global vari-
ance, it is particularly sensitive to such coordinated changes
across the propulsion system. In contrast, these anomalies
also introduce asymmetric load distribution among the mo-
tors, causing certain motors to work harder while others op-
erate at reduced loads to maintain overall stability. Such lo-
calized deviations may not strongly influence global parame-
ters like hover thrust but are directly visible in the individual
motor outputs. AE, with its nonlinear mapping and ability to
capture fine-scale relationships, is more responsive to these
channel-specific deviations, producing larger reconstruction
errors for motor outputs. VAE, while also a nonlinear model,
imposes a probabilistic constraint on the latent space, which
can smooth out local variations. This regularization helps pre-
serve general reconstruction stability but may reduce sensitiv-
ity to subtle anomalies in motor-level compared to AE.

5. CONCLUSION

In this study, we introduced a multimodal UAV dataset
specifically designed for unsupervised anomaly detection un-
der controlled fault-injection scenarios, including unbalanced
propeller and propeller crack conditions. We tried sev-
eral reconstruction-based methods on synchronized teleme-
try, motion capture, and control data, with a unified latent
dimensionality for fair comparison. Instead of evaluating the
overall reconstruction error across all features, we focused

on reconstructing key parameters that are directly affected by
the simulated anomalies. Our analysis demonstrated that dif-
ferent methods exhibit distinct sensitivities in our datasets.
These findings highlight the importance of selecting models
based on the nature of the anomalies of interest. The released
dataset, preprocessing pipeline, and baseline results provide
a reproducible foundation for further research in UAV prog-
nostics, fault isolation, and the development of more robust
anomaly detection algorithms.

One limitation of the current study is that the training and
test flights were conducted sequentially, which introduces
distribution shifts in parameters affected by cumulative or
time-varying effects such as battery voltage and temperature.
These shifts can lead to inflated reconstruction errors unre-
lated to the targeted anomalies. In future dataset releases, we
plan to provide updated versions with more balanced and in-
terpretable data distributions, enabling fairer evaluation and
more reliable diagnostic performance. Nevertheless, the cur-
rently released version of the dataset can still support user-
defined train—test splits and facilitate various model develop-
ment experiments.
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