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ABSTRACT 

Frequent startup and shutdown of steam turbines in recent 

operations have increased the importance of analyzing 

thermal stress induced by rapid temperature changes. In 

turbine startup, particularly during the synchronization 

phase, the surface temperature rises sharply while the core 

temperature lags behind, creating thermal gradients that lead 

to stress accumulation. However, the limited availability of 

measured data during these transient intervals poses a 

significant challenge for data-driven temperature prediction 

models, which typically require large-scale training datasets. 

To address this issue, we propose a Fourier Neural Operator 

(FNO)-based framework to predict four temperature 

sequences during the synchronization phase using limited 

warm and hot startup data. The input consists of statistical 

features derived from two temperature-related and two 

steam-related variables observed during the preceding 3000 

RPM holding phase. To ensure temporal consistency, all 

samples are padded to a unified sequence length. 

The proposed FNO architecture leverages spectral 

convolution to capture global dependencies while 

maintaining local temporal resolution. Comparative 

evaluations with CNN, DNN, and LSTM models under 

identical training conditions demonstrate that the FNO 

consistently achieves higher predictive accuracy and 

robustness in five-fold cross-validation. These results 

indicate that the FNO-based framework is well-suited for 

modeling thermal dynamics in transient turbine operations 

where high-resolution data is scarce. 

 

1.  INTRODUCTION 

Thermal stress is a critical factor in determining the 

structural integrity and operational reliability of steam 

turbines, especially during transient phases such as grid 

synchronization. Rapid changes in temperature and load 

during this phase can induce stress concentrations that 

significantly impact component fatigue life and maintenance 

schedules. Accurate prediction of thermal stress profiles 

during these dynamic intervals is thus essential for safe and 

efficient turbine operation. 

Steam turbines frequently undergo repeated start-up and 

shut-down cycles due to flexible power grid demands and 

economic load dispatching. These repetitive thermal 

loadings introduce significant thermal fatigue and stress 

accumulation in critical components. However, the limited 

availability of operational data during turbine start-up 

phases restricts the applicability of conventional deep 

learning methods, which typically require large datasets to 

generalize effectively. This challenge underscores the need 

for a data-efficient and physics-consistent modeling 

approach that can perform reliably even with limited data 

available in turbine start-up phases. 

During rapid operational transitions such as turbine startup, 

significant temperature differences often arise due to the 

differing thermal responses of turbine components. While 

the surface temperature of the rotor increases rapidly in 

response to external heat, the temperature of the core region 

increases more slowly. This imbalance induces considerable 

thermal stress across the structure. If both surface 

temperature and the resulting thermal stress can be 

accurately predicted, it becomes possible to optimize startup 
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control strategies, extend the lifespan of the turbine, and 

improve overall power generation efficiency. 

Using the Fourier Neural Operator (FNO), we propose a 

prediction model for forecasting temperature profiles during 

the grid connection interval of steam turbine startup. The 

model takes as input a combination of temperature and 

steam-related variables observed during the prior 3000 RPM 

holding phase, and predicts the temporal evolution of 

multiple temperature targets. By learning from real-world 

operational data, the proposed FNO-based approach 

eliminates the need for computationally expensive 

simulations while maintaining physical consistency, 

offering a practical solution for temperature forecasting in 

data-scarce turbine start-up conditions. 

2. BACKGROUND 

2.1. Neural Operator 

A Neural Operator is a class of models designed to learn 

mappings between infinite-dimensional function spaces. 

Unlike traditional architectures that process finite-

dimensional input vectors, Neural Operators directly learn 

the relationship between input and output functions defined 

over continuous domains. Given an input function , 

the goal is to approximate an operator  such that , 

where  is the corresponding output function. 

To enable learning in function space, Neural Operators 

parameterize the mapping via integral kernel operations and 

function-valued weights, allowing for generalization across 

different input domains and boundary conditions. This 

function-level abstraction allows Neural Operators to 

capture complex physical relationships and dynamic 

behaviors that vary not just across data points, but across 

entire function distributions. 

Neural Operators are particularly well-suited for modeling 

physical systems governed by partial differential equations 

(PDEs), where the underlying processes are naturally 

described in terms of spatial and temporal functions. Their 

ability to learn operators, rather than pointwise mappings, 

enables them to generalize beyond training data and handle 

previously unseen conditions in a mathematically coherent 

way. 

2.2. Fourier Neural Operator 

The architecture of the Fourier Neural Operator (FNO) 

consists of three principal components: the Lifting Layer, a 

series of Fourier Layers, and the Projection Layer. These 

components enable the transformation of low-dimensional 

input functions into a high-dimensional spectral space, the 

learning of global interactions in frequency space, and the 

reconstruction of target outputs. 

Lifting Layer: 

The input function  defined over a spatial or 

temporal domain  , is first embedded into a higher-

dimensional space using a learned pointwise linear 

transformation: 

, 

where . This expansion allows the model to represent 

richer latent structures suitable for Fourier-based operations.  

Fourier Layer: 

The lifted representation is then passed through multiple 

spectral convolution layers. Each Fourier layer updates the 

hidden representation by applying a nonlocal 

transformation: 

, 

where  and are the Fourier and inverse Fourier 

transforms, is a learnable filter in Fourier space, and 

is a nonlinear activation function such as GELU. These 

layers enable the model to learn global patterns and long-

range dependencies in a resolution-invariant manner. 

Projection Layer: 

Finally, the output of the last Fourier layer is 

mapped back to the original output dimension through a 

linear projection: 

, 

where is the dimensionality of the target output. This step 

compresses the high-dimensional latent representation into 

the desired prediction space. 

3. DATA DESCRIPTION 

3.1. Operating Regimes and Startup Phase Composition 

Steam turbine startup operations are typically categorized 

into three regimes based on the initial rotor temperature: 

cold, warm, and hot/restart. Each startup sequence consists 

Figure 1.  Acceleration and Synchronization Phases During 

Warm and Hot/Restart Startup Operations 
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of multiple phases, including preheating, acceleration, and 

generator synchronization. 

The preheating phase is only present in cold startups, 

during which the turbine remains inactive for an extended 

period and must be gradually warmed before rotation begins. 

In contrast, the acceleration phase, where rotor speed 

increases from 0 to the rated 3600 RPM, and the 

synchronization phase, during which generator load is 

applied after reaching rated speed, are common to all startup 

types. 

 

In this study, we focus exclusively on warm and 

hot/restart startups, which do not include the preheating 

phase. Among the segments in these startups, two intervals 

are of particular interest: the 3000 RPM holding phase and 

the generator synchronization phase. The 3000 RPM 

holding phase refers to a short period within the acceleration 

phase where turbine speed stabilizes around 3000 RPM after 

a rapid increase. The synchronization phase follows, marked 

by a rapid rise in generator load, causing steep changes in 

temperature and thermal stress that significantly influence 

structural integrity. 

These two phases—3000 RPM holding and 

synchronization—are shown in Figure 1. The orange-shaded 

region illustrates the acceleration phase, including the 3000 

RPM holding period, while the blue-shaded region 

represents the synchronization phase where load application 

begins. Reflecting the physical significance of these 

intervals, we use the 3000 RPM holding phase as the input 

segment and the synchronization phase as the prediction 

target in our modeling framework. 

3.2. Variable Selection 

 A total of six variables were selected for model 

development, considering both their thermal relevance and 

their availability from sensor measurements during turbine 

startup. These variables encompass the surface and bore 

(core) temperatures of the high-pressure (HP) and 

intermediate-pressure (IP) turbines, as well as the main 

steam and reheat steam temperatures. 

Among these, the HP and IP surface temperatures, along 

with the main and reheat steam temperatures, are used as 

model inputs. The outputs of the model are defined as the 

surface and bore temperatures of both the HP and IP 

turbines, reflecting the internal thermal state of the system. 

This configuration is particularly useful for stress-related 

prediction tasks, as bore temperature estimation is often 

critical yet difficult to measure directly in practice. 

A detailed description of the selected variables and their 

physical meaning is summarized in Table 1. For example, 

the HP Turbine Surface Temperature refers to the 

temperature measured at the outer casing of the high-

pressure turbine, while the HP Bore Temperature represents 

internal measurements at the rotor core. These physically 

interpretable variables ensure that the modeling approach is 

aligned with the underlying thermal and mechanical 

processes during turbine startup. 

4. PROPOSED METHOD 

4.1. Input Feature Construction and Preprocessing 

To construct structured inputs for the Fourier Neural 

Operator (FNO), raw sensor measurements from the 3000 

RPM holding phase are transformed into compact temporal 

descriptors. Four physical variables are selected: HP turbine 

surface temperature, IP turbine surface temperature, main 

steam temperature, and reheat steam temperature. 

For each variable, three descriptive features—initial value, 

final value, and linear slope—are computed over the holding 

interval, resulting in a 12-dimensional input vector for each 

startup instance. These features are chosen to effectively 

represent thermal behavior without depending on high-

resolution time-series data. The initial and final values 

capture the thermal boundary states, while the slope 

accounts for the rate of change, which is particularly 

important when sequence durations vary and thermal 

gradients intensify over longer intervals. 

A normalized time variable  is appended to form a 13-

dimensional input. This composite input is passed through a 

Table 1. Data Description. 

 

Variable name Description 

HP Turbine Surface Temperature 

Temperature 

measured at the outer 

surface of the high-

pressure turbine 

casing. 

HP Turbine Bore Temperature 

Temperature 

measured at the bore 

of the high-pressure 

turbine rotor. 

IP Turbine Surface Temperature 

Temperature 

measured at the outer 

surface of the 

intermediate-pressure  

turbine. 

IP Turbine Bore Temperature 

Temperature measured  

at the bore  

of the intermediate- 

pressure  

turbine. 
 

Main Steam Pressure 

Pressure of the main 

steam supplied to the 

turbine inlet. 

Reheat Steam Temperature 

Temperature of the 

steam after being 

reheated between 

turbine stages. 
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learnable embedding layer that projects it onto a 4-

dimensional latent space suitable for spectral learning. 

Since the length of the holding phase varies across startup 

samples, all sequences are padded to match the maximum 

observed length. This padding is essential because the FNO 

requires inputs of consistent temporal dimension to perform 

global spectral transformations. By enforcing uniform 

sequence lengths, stable model training and effective 

generalization across samples are ensured. 

4.2. Fourier Neural Operator Architecture 

The Fourier Neural Operator (FNO) employed in this study 

is designed to model physical systems by leveraging both 

global and local information from the input data. The 

overall architecture comprises three key components: a 

lifting layer, Fourier layers, and a projection layer. The 

structure is illustrated in Figure 2. 

First, the lifting layer transforms the structured input vector 

into a high-dimensional latent representation through a 

pointwise neural operation. This process enables the model 

to embed low-dimensional statistical features—such as 

initial value, final value, and slope—into a richer 

representation space suitable for spectral learning. 

Next, the Fourier layers perform two types of operations in 

parallel: global and local processing. In the global branch, 

the high-dimensional input undergoes a Fast Fourier 

Transform (FFT), is multiplied by learnable complex-valued 

weights in the frequency domain, and is then transformed 

back to the spatial domain via inverse FFT. This operation 

allows the model to capture long-range dependencies and 

global patterns across time and variables. 

In parallel, the local branch applies a pointwise linear 

transformation in the spatial domain using a separate set of 

learnable weights. This branch ensures that fine-grained 

local variations in the data are preserved, which might 

otherwise be smoothed out during global spectral operations. 

The outputs from both global and local branches are 

combined element-wise and passed through a nonlinear 

activation function. This fusion allows the network to learn 

both broad trends and local fluctuations, which is essential 

for accurate modeling of dynamic physical processes such 

as turbine temperature evolution. 

Finally, the projection layer maps the high-dimensional 

output into the final prediction space, producing the four 

target temperature sequences during the synchronization 

phase. 

5. RESULTS 

To evaluate the effectiveness of the proposed FNO-based 

prediction framework, we compared its performance against 

three representative deep learning architectures: 

Convolutional Neural Network (CNN), Deep Neural 

Network (DNN), and Long Short-Term Memory (LSTM). 

All models were trained using the same input features, 

target variables, loss function, and 5-fold cross-validation 

setup to ensure a fair comparison. 

Figure 3 illustrates the prediction performance of each 

model using a representative fold, visualized through line 

plots for all four target temperature variables: HP turbine 

surface temperature, HP turbine bore temperature, RH 

turbine surface temperature, and RH turbine bore 

temperature. These line plots directly compare the actual 

temperature profiles and the predicted values from each 

model. The FNO model achieved the closest match to the 

Figure 2. Architecture of the Fourier Neural Operator (FNO) Model 
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actual data across all variables, especially during periods of 

rapid change. CNN and DNN, in contrast, exhibited 

substantial prediction errors, particularly in regions of high 

thermal variation. LSTM provided moderately accurate 

predictions but still failed to match the precision of FNO. 

Figure 4 presents the quantitative comparison of model 

performance through R² scores across all five folds. The 

error bars indicate the standard deviation of performance 

across folds. The FNO model consistently outperformed the 

other models, maintaining an average R² above 0.9 and 

demonstrating both high accuracy and stability. CNN 

showed the poorest performance, with R² scores close to 

zero and large variability. DNN and LSTM achieved 

intermediate results but lacked consistency across different 

folds. 

The fold-wise prediction performance for each model on 

each target temperature variable is detailed in Tables 2 

through 5, corresponding respectively to the HP turbine 

surface temperature, HP turbine bore temperature, RH 

turbine surface temperature, and RH turbine bore 

temperature. These tables confirm the superior and stable 

generalization ability of the FNO model across all cases. 

 

6. CONCLUSIONS 

In this study, we proposed a Fourier Neural Operator 

(FNO)-based framework to predict temperature evolution in 

the synchronization phase of steam turbine startup, focusing 

on data-limited warm and hot start conditions. Unlike 

conventional equation-based thermal analysis methods, 

which often suffer from accuracy limitations due to 

discrepancies between modeling assumptions and actual 

measurements, the proposed data-driven approach leverages 

temporal and spectral learning to improve prediction fidelity. 

We constructed the model using four input variables—

two temperature-related and two steam-related—derived 

Figure 4. Error Bar Graphs Showing R² Score Variability 

Across Five-Fold Cross-Validation for All Models 

Table 3. HP Turbine Bore Temperature 

 

 Accuracy 

Fold FNO DNN CNN LSTM 

1 0.9528 0.8143 0.0069 0.9168 

2 0.9159 0.8974 0.0015 0.9628 

3 0.8700 0.6963 0.0314 0.8449 

4 0.9379 0.5115 0.0187 0.8791 

5 0.4559 0.4423 0.0080 0.4475 

 

Table 2. HP Turbine Surface Temperature 

 

 Accuracy 

Fold FNO DNN CNN LSTM 

1 0.8732 0.6562 0.1043 0.8712 

2 0.9380 0.8642 0.0119 0.8017 

3 0.9674 0.8987 0.0518 0.8915 

4 0.9627 0.9113 0.0511 0.8479 

5 0.8733 0.7027 0.0525 0.8706 

 

Figure 3. Model Comparison on Fold 4: Predicted vs. 

Actual Temperature Profiles 
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from the 3000 RPM holding region. These were 

transformed into temporal features such as initial value, 

final value, and slope. The model then predicted four target 

temperature profiles during the subsequent synchronization 

phase. To ensure temporal uniformity, all samples were 

padded to match the maximum length across start-up 

instances. 

Comprehensive comparisons with baseline models (CNN, 

DNN, LSTM) under identical training settings revealed that 

the FNO model significantly outperformed others, achieving 

the highest R² scores and demonstrating robustness across 

multiple folds. The results underscore the FNO’s capability 

to capture both global and local thermal patterns effectively, 

even under sparse and non-periodic industrial time-series 

data. 

The proposed FNO framework is expected to provide a 

robust foundation for real-time thermal monitoring and 

control of power generation systems, particularly in 

transient regimes where physical modeling is difficult or 

incomplete. 
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Table 4. IP Turbine Surface Temperature 

 

 Accuracy 

Fold FNO DNN CNN LSTM 

1 0.9620 0.7635 0.0627 0.9508 

2 0.9575 0.8308 0.0211 0.7788 

3 0.9673 0.8358 0.0542 0.9350 

4 0.9680 0.9380 0.0416 0.9388 

5 0.9108 0.8185 0.0052 0.8344 

 

Table 5. IP Turbine Bore Temperature 

 

 Accuracy 

Fold FNO DNN CNN LSTM 

1 0.9651 0.6155 0.0250 0.9579 

2 0.9563 0.9541 0.0145 0.9261 

3 0.8787 0.4900 0.0030 0.8152 

4 0.9134 0.1331 0.0237 0.6874 

5 0.1369 0.1279 0.0364 0.0038 

 


