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ABSTRACT

Frequent startup and shutdown of steam turbines in recent
operations have increased the importance of analyzing
thermal stress induced by rapid temperature changes. In
turbine startup, particularly during the synchronization
phase, the surface temperature rises sharply while the core
temperature lags behind, creating thermal gradients that lead
to stress accumulation. However, the limited availability of
measured data during these transient intervals poses a
significant challenge for data-driven temperature prediction
models, which typically require large-scale training datasets.

To address this issue, we propose a Fourier Neural Operator
(FNO)-based framework to predict four temperature
sequences during the synchronization phase using limited
warm and hot startup data. The input consists of statistical
features derived from two temperature-related and two
steam-related variables observed during the preceding 3000
RPM holding phase. To ensure temporal consistency, all
samples are padded to a unified sequence length.

The proposed FNO architecture leverages spectral
convolution to capture global dependencies while
maintaining local temporal resolution. Comparative
evaluations with CNN, DNN, and LSTM models under
identical training conditions demonstrate that the FNO
consistently achieves higher predictive accuracy and
robustness in five-fold cross-validation. These results
indicate that the FNO-based framework is well-suited for
modeling thermal dynamics in transient turbine operations
where high-resolution data is scarce.
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1. INTRODUCTION

Thermal stress is a critical factor in determining the
structural integrity and operational reliability of steam
turbines, especially during transient phases such as grid
synchronization. Rapid changes in temperature and load
during this phase can induce stress concentrations that
significantly impact component fatigue life and maintenance
schedules. Accurate prediction of thermal stress profiles
during these dynamic intervals is thus essential for safe and
efficient turbine operation.

Steam turbines frequently undergo repeated start-up and
shut-down cycles due to flexible power grid demands and
economic load dispatching. These repetitive thermal
loadings introduce significant thermal fatigue and stress
accumulation in critical components. However, the limited
availability of operational data during turbine start-up
phases restricts the applicability of conventional deep
learning methods, which typically require large datasets to
generalize effectively. This challenge underscores the need
for a data-efficient and physics-consistent modeling
approach that can perform reliably even with limited data
available in turbine start-up phases.

During rapid operational transitions such as turbine startup,
significant temperature differences often arise due to the
differing thermal responses of turbine components. While
the surface temperature of the rotor increases rapidly in
response to external heat, the temperature of the core region
increases more slowly. This imbalance induces considerable
thermal stress across the structure. If both surface
temperature and the resulting thermal stress can be
accurately predicted, it becomes possible to optimize startup
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control strategies, extend the lifespan of the turbine, and
improve overall power generation efficiency.

Using the Fourier Neural Operator (FNO), we propose a
prediction model for forecasting temperature profiles during
the grid connection interval of steam turbine startup. The
model takes as input a combination of temperature and
steam-related variables observed during the prior 3000 RPM
holding phase, and predicts the temporal evolution of
multiple temperature targets. By learning from real-world

operational data, the proposed FNO-based approach
eliminates the need for computationally expensive
simulations while maintaining physical consistency,

offering a practical solution for temperature forecasting in
data-scarce turbine start-up conditions.

2. BACKGROUND

2.1. Neural Operator

A Neural Operator is a class of models designed to learn
mappings between infinite-dimensional function spaces.
Unlike traditional architectures that process finite-
dimensional input vectors, Neural Operators directly learn
the relationship between input and output functions defined
over continuous domains. Given an input function a(x) € 4,
the goal is to approximate an operator G such that G(a) ~ u,
where u(x) € U is the corresponding output function.

To enable learning in function space, Neural Operators
parameterize the mapping via integral kernel operations and
function-valued weights, allowing for generalization across
different input domains and boundary conditions. This
function-level abstraction allows Neural Operators to
capture complex physical relationships and dynamic
behaviors that vary not just across data points, but across
entire function distributions.

Neural Operators are particularly well-suited for modeling
physical systems governed by partial differential equations
(PDEs), where the underlying processes are naturally
described in terms of spatial and temporal functions. Their
ability to learn operators, rather than pointwise mappings,
enables them to generalize beyond training data and handle
previously unseen conditions in a mathematically coherent
way.

2.2. Fourier Neural Operator

The architecture of the Fourier Neural Operator (FNO)
consists of three principal components: the Lifting Layer, a
series of Fourier Layers, and the Projection Layer. These
components enable the transformation of low-dimensional
input functions into a high-dimensional spectral space, the
learning of global interactions in frequency space, and the
reconstruction of target outputs.

Lifting Layer:

The input function : u(x) € R%, defined over a spatial or

temporal domain Q0 , is first embedded into a higher-
dimensional space using a learned pointwise linear
transformation:

vO(x) = Py (u(x)) € RE,

where € >> d. This expansion allows the model to represent
richer latent structures suitable for Fourier-based operations.

Fourier Layer:

The lifted representation is then passed through multiple
spectral convolution layers. Each Fourier layer updates the

hidden representation v® by applying a nonlocal
transformation:

V@) = s(Wr@ ) + FHRO - F(v@))(x),

where F and F~'are the Fourier and inverse Fourier
transforms, R} is a learnable filter in Fourier space, and
o is a nonlinear activation function such as GELU. These
layers enable the model to learn global patterns and long-
range dependencies in a resolution-invariant manner.

Projection Layer:

Finally, the output of the last Fourier layer v®)(x) is
mapped back to the original output dimension through a
linear projection:

1 (x) = Pyroy (v P (x)) € R™,
where m is the dimensionality of the target output. This step
compresses the high-dimensional latent representation into
the desired prediction space.
3. DATA DESCRIPTION
3.1. Operating Regimes and Startup Phase Composition
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Figure 1. Acceleration and Synchronization Phases During
Warm and Hot/Restart Startup Operations

Steam turbine startup operations are typically categorized
into three regimes based on the initial rotor temperature:
cold, warm, and hot/restart. Each startup sequence consists
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of multiple phases, including preheating, acceleration, and
generator synchronization.

The preheating phase is only present in cold startups,
during which the turbine remains inactive for an extended

period and must be gradually warmed before rotation begins.

In contrast, the acceleration phase, where rotor speed
increases from 0 to the rated 3600 RPM, and the
synchronization phase, during which generator load is
applied after reaching rated speed, are common to all startup

types.

In this study, we focus exclusively on warm and
hot/restart startups, which do not include the preheating
phase. Among the segments in these startups, two intervals
are of particular interest: the 3000 RPM holding phase and
the generator synchronization phase. The 3000 RPM
holding phase refers to a short period within the acceleration
phase where turbine speed stabilizes around 3000 RPM after
a rapid increase. The synchronization phase follows, marked
by a rapid rise in generator load, causing steep changes in
temperature and thermal stress that significantly influence
structural integrity.

These two phases—3000 RPM holding and
synchronization—are shown in Figure 1. The orange-shaded
region illustrates the acceleration phase, including the 3000
RPM holding period, while the blue-shaded region

Table 1. Data Description.

Description

Temperature
measured at the outer
surface of the high-
pressure turbine
casing.

Temperature
measured at the bore
of the high-pressure
turbine rotor.
Temperature
measured at the outer
surface of the
intermediate-pressure
turbine.

Variable name

HP Turbine Surface Temperature

HP Turbine Bore Temperature

IP Turbine Surface Temperature

Temperature measured
at the bore

of the intermediate-
pressure

turbine.

Pressure of the main
steam supplied to the
turbine inlet.
Temperature of the
steam after being
reheated between
turbine stages.

IP Turbine Bore Temperature

Main Steam Pressure

Reheat Steam Temperature

represents the synchronization phase where load application

begins. Reflecting the physical significance of these
intervals, we use the 3000 RPM holding phase as the input
segment and the synchronization phase as the prediction
target in our modeling framework.

3.2. Variable Selection

A total of six variables were selected for model
development, considering both their thermal relevance and
their availability from sensor measurements during turbine
startup. These variables encompass the surface and bore
(core) temperatures of the high-pressure (HP) and
intermediate-pressure (IP) turbines, as well as the main
steam and reheat steam temperatures.

Among these, the HP and IP surface temperatures, along
with the main and reheat steam temperatures, are used as
model inputs. The outputs of the model are defined as the
surface and bore temperatures of both the HP and IP
turbines, reflecting the internal thermal state of the system.
This configuration is particularly useful for stress-related
prediction tasks, as bore temperature estimation is often
critical yet difficult to measure directly in practice.

A detailed description of the selected variables and their
physical meaning is summarized in Table 1. For example,
the HP Turbine Surface Temperature refers to the
temperature measured at the outer casing of the high-
pressure turbine, while the HP Bore Temperature represents
internal measurements at the rotor core. These physically
interpretable variables ensure that the modeling approach is
aligned with the underlying thermal and mechanical
processes during turbine startup.

4. PROPOSED METHOD

4.1. Input Feature Construction and Preprocessing

To construct structured inputs for the Fourier Neural
Operator (FNO), raw sensor measurements from the 3000
RPM holding phase are transformed into compact temporal
descriptors. Four physical variables are selected: HP turbine
surface temperature, IP turbine surface temperature, main
steam temperature, and reheat steam temperature.

For each variable, three descriptive features—initial value,
final value, and linear slope—are computed over the holding
interval, resulting in a 12-dimensional input vector for each
startup instance. These features are chosen to effectively
represent thermal behavior without depending on high-
resolution time-series data. The initial and final values
capture the thermal boundary states, while the slope
accounts for the rate of change, which is particularly
important when sequence durations vary and thermal
gradients intensify over longer intervals.

A normalized time variable t is appended to form a 13-
dimensional input. This composite input is passed through a
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learnable embedding layer that projects it onto a 4-
dimensional latent space suitable for spectral learning.

Since the length of the holding phase varies across startup
samples, all sequences are padded to match the maximum
observed length. This padding is essential because the FNO
requires inputs of consistent temporal dimension to perform
global spectral transformations. By enforcing uniform
sequence lengths, stable model training and effective
generalization across samples are ensured.
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In parallel, the local branch applies a pointwise linear
transformation in the spatial domain using a separate set of
learnable weights. This branch ensures that fine-grained
local variations in the data are preserved, which might
otherwise be smoothed out during global spectral operations.

The outputs from both global and local branches are
combined element-wise and passed through a nonlinear
activation function. This fusion allows the network to learn
both broad trends and local fluctuations, which is essential
for accurate modeling of dynamic physical processes such
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Figure 2. Architecture of the Fourier Neural Operator (FNO) Model

4.2. Fourier Neural Operator Architecture

The Fourier Neural Operator (FNO) employed in this study

is designed to model physical systems by leveraging both
global and local information from the input data. The
overall architecture comprises three key components: a
lifting layer, Fourier layers, and a projection layer. The
structure is illustrated in Figure 2.

First, the lifting layer transforms the structured input vector

into a high-dimensional latent representation through a
pointwise neural operation. This process enables the model
to embed low-dimensional statistical features—such as
initial value, final value, and slope—into a richer
representation space suitable for spectral learning.

Next, the Fourier layers perform two types of operations in
parallel: global and local processing. In the global branch,
the high-dimensional input undergoes a Fast Fourier
Transform (FFT), is multiplied by learnable complex-valued
weights in the frequency domain, and is then transformed
back to the spatial domain via inverse FFT. This operation
allows the model to capture long-range dependencies and
global patterns across time and variables.

as turbine temperature evolution.

Finally, the projection layer maps the high-dimensional
output into the final prediction space, producing the four
target temperature sequences during the synchronization
phase.

5. RESULTS

To evaluate the effectiveness of the proposed FNO-based
prediction framework, we compared its performance against
three  representative  deep  learning  architectures:
Convolutional Neural Network (CNN), Deep Neural
Network (DNN), and Long Short-Term Memory (LSTM).
All models were trained using the same input features,
target variables, loss function, and 5-fold cross-validation
setup to ensure a fair comparison.

Figure 3 illustrates the prediction performance of each
model using a representative fold, visualized through line
plots for all four target temperature variables: HP turbine
surface temperature, HP turbine bore temperature, RH
turbine surface temperature, and RH turbine bore
temperature. These line plots directly compare the actual
temperature profiles and the predicted values from each
model. The FNO model achieved the closest match to the
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actual data across all variables, especially during periods of
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Figure 3. Model Comparison on Fold 4: Predicted vs.
Actual Temperature Profiles

rapid change. CNN and DNN, in contrast, exhibited
substantial prediction errors, particularly in regions of high
thermal variation. LSTM provided moderately accurate
predictions but still failed to match the precision of FNO.

Figure 4 presents the quantitative comparison of model
performance through R=2scores across all five folds. The
error bars indicate the standard deviation of performance
across folds. The FNO model consistently outperformed the
other models, maintaining an average R=above 0.9 and
demonstrating both high accuracy and stability. CNN
showed the poorest performance, with R=2scores close to
zero and large variability. DNN and LSTM achieved
intermediate results but lacked consistency across different
folds.

The fold-wise prediction performance for each model on
each target temperature variable is detailed in Tables 2
through 5, corresponding respectively to the HP turbine
surface temperature, HP turbine bore temperature, RH
turbine surface temperature, and RH turbine bore
temperature. These tables confirm the superior and stable
generalization ability of the FNO model across all cases.

6. CONCLUSIONS

In this study, we proposed a Fourier Neural Operator
(FNO)-based framework to predict temperature evolution in
the synchronization phase of steam turbine startup, focusing
on data-limited warm and hot start conditions. Unlike
conventional equation-based thermal analysis methods,
which often suffer from accuracy limitations due to
discrepancies between modeling assumptions and actual

measurements, the proposed data-driven approach leverages
temporal and spectral learning to improve prediction fidelity.

We constructed the model using four input variables—
two temperature-related and two steam-related—derived
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Figure 4. Error Bar Graphs Showing R=Score Variability
Across Five-Fold Cross-Validation for All Models

Table 2. R%Score for HP Turbine Surface Temperature

Accuracy
Fold FNO DNN CNN LSTM
1 0.8732 0.6562 0.1043 0.8712
2 0.9380 0.8642 0.0119 0.8017
3 0.9674 0.8987 0.0518 0.8915
4 0.9627 0.9113 0.0511 0.8479
5 0.8733 0.7027 0.0525 0.8706

Table 3. R?Score for HP Turbine Bore Temperature

Accuracy
Fold FNO DNN CNN LSTM
1 0.9528 0.8143 0.0069 0.9168
2 0.9159 0.8974 0.0015 0.9628
3 0.8700 0.6963 0.0314 0.8449
4 0.9379 0.5115 0.0187 0.8791
5 0.4559 0.4423 0.0080 0.4475
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from the 3000 RPM holding region. These were
transformed into temporal features such as initial value,
final value, and slope. The model then predicted four target
temperature profiles during the subsequent synchronization
phase. To ensure temporal uniformity, all samples were
padded to match the maximum length across start-up
instances.

Comprehensive comparisons with baseline models (CNN,
DNN, LSTM) under identical training settings revealed that
the FNO model significantly outperformed others, achieving
the highest R=scores and demonstrating robustness across
multiple folds. The results underscore the FNO’s capability
to capture both global and local thermal patterns effectively,
even under sparse and non-periodic industrial time-series
data.

The proposed FNO framework is expected to provide a
robust foundation for real-time thermal monitoring and
control of power generation systems, particularly in
transient regimes where physical modeling is difficult or
incomplete.

Table 4. R%Score for IP Turbine Surface Temperature

Accuracy
Fold FNO DNN CNN LSTM
1 0.9620 0.7635 0.0627 0.9508
2 0.9575 0.8308 0.0211 0.7788
3 0.9673 0.8358 0.0542 0.9350
4 0.9680 0.9380 0.0416 0.9388
5 0.9108 0.8185 0.0052 0.8344

Table 5. R?*Score for IP Turbine Bore Temperature

Accuracy
Fold FNO DNN CNN LSTM
1 0.9651 0.6155 0.0250 0.9579
2 0.9563 0.9541 0.0145 0.9261
3 0.8787 0.4900 0.0030 0.8152
4 0.9134 0.1331 0.0237 0.6874
5 0.1369 0.1279 0.0364 0.0038
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