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ABSTRACT 

Intelligent bearing fault diagnosis with domain adaptations 

has accomplished remarkable performances under various 

operating conditions. However, especially for different load 

conditions, the model bias due to the physical characteristics 

of bearing signals has not been considered. In the absence of 

handling bias, the root cause for generalization errors cannot 

be clarified under various load conditions. This paper thus 

demonstrates that certain bias exists in diagnostic models for 

different loads of bearings, and the main factor of bias is 

impulsiveness. The existence of bias is shown with 

quantitative analysis by applying fairness criteria to 

diagnostic models. Also, qualitative analysis is conducted 

with gradient-weighted class activation mapping (Grad-

CAM) for vibration signals of bearings, which proves that the 

large amplitude of impulse can be the source of bias. To 

correct this impulsiveness bias, a framework of a fairness 

approach is newly proposed for bearing fault diagnosis under 

various loads. The process of correcting bias contains two 

steps: categorizing samples based on impulsiveness and 

training models with fairness criteria. Different from the 

previous domain adaptation-based approaches, the proposed 

method can achieve superior diagnostic performances by 

correcting bias that causes generalization errors. The 

effectiveness of the proposed method is validated with 

public-bearing datasets with various loads. The results show 

that the fairness approach can be the mainstream solution for 

fault diagnosis of rotary machines under different load 

conditions. 

1. INTRODUCTION 

Bearing fault diagnosis is crucial for the maintenance of 

mechanical systems. Bearings are essential components in 

rotating machinery, and their failure can lead to significant 

performance degradation and severe damage to the entire 

system (Ni, Q., Ji, J. C., Halkon, B., Feng, K., & Nandi, A. 

K., 2023). Early detection and diagnosis of bearing faults can 

prevent such issues, ensuring the reliability and longevity of 

machinery (Kumar, K., Shukla, S., & Singh, S. K., 2022). 

Consequently, various signal processing methods and fault 

diagnosis algorithms have been developed, with a growing 

emphasis on utilizing artificial intelligence techniques for 

more accurate fault detection. 

In recent years, deep learning-based fault diagnosis methods 

have gained significant attention for their potential in real-

world applications (Lee, J., Ko, J. U., Kim, T., Kim, Y. C., 

Jung, J. H., & Youn, B. D., 2024). These methods have 

demonstrated notable success, particularly with the 

implementation of transfer learning to diagnose bearing 

faults under various speed conditions. Transfer learning 

allows models to leverage knowledge from one domain and 

apply it to another, enhancing diagnostic performance even 

when training data is limited or differs from the testing 

conditions (Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., 
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& Liu, C., 2018). This approach has proven effective in 

adapting to the variable speed conditions commonly 

encountered in industrial environments. 

While numerous studies have focused on diagnosing bearing 

faults under different speed conditions, research on 

diagnosing faults under varying load conditions remains 

sparse. Bearing signals exhibit distinct characteristics under 

different load conditions, unlike speed variations. This 

discrepancy poses challenges for applying transfer learning 

effectively, as the signal features that indicate faults can 

change significantly with varying loads. Therefore, existing 

transfer learning methods may not be suitable for all 

scenarios, necessitating the exploration of alternative 

approaches for load condition diagnosis. 

This study aims to demonstrate the suitability of algorithm 

fairness in diagnosing bearing faults under different load 

conditions. By integrating the physical characteristics of 

bearings with deep learning models, we have developed a 

novel approach that successfully diagnoses faults across 

varying loads. This research highlights the importance of 

considering load variations in fault diagnosis and provides a 

robust framework for improving the reliability and 

applicability of deep learning-based methods in diverse 

operational conditions. 

2. THEORETICAL BACKGROUND 

In this section, we will discuss the fundamental theoretical 

background related to the method proposed in this study. 

Specifically, we will explain the signals obtained when 

bearing fault in relation to fault frequencies. Additionally, we 

will delve into the concept of algorithmic fairness and its 

solutions. 

2.1. Bearing fault signal 

When a bearing fails, impacts occur between the bearing 

elements and the fault location, resulting in impulsive signals. 

In stationary conditions, these impulsive signals appear 

periodically and can be described using the shape factors of 

the bearing. Key fault frequencies include the Ball Pass 

Frequency Outer (BPFO), Ball Pass Frequency Inner (BPFI), 

and Ball Spin Frequency (BSF). These frequencies can be 

defined as follows (Randall, R. B., & Antoni, J., 2011): 
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where n is the number of rolling elements, RPS is the 

rotational speed, d is the diameter of the rolling elements, D 

is the pitch diameter, and α is the contact angle. 

As the operating speed of the bearing changes, these fault 

frequencies also change. However, when the load on the 

bearing changes, the fault frequency remains the same, but 

the amplitude of the impulsive signals varies. This variation 

in amplitude under different load conditions presents a 

unique challenge for fault diagnosis algorithms, necessitating 

adaptive methods to accurately detect faults. 

2.2. Algorithmic Fairness 

Algorithmic fairness refers to the concept of ensuring that 

automated decisions made by algorithms are unbiased and 

equitable across different groups. This is crucial in 

applications where decisions can significantly impact 

individuals or groups, such as in healthcare, finance, and 

employment. 

Fairness can be measured using several criteria: 

Demographic Parity: This criterion requires that the 

decision-making process result in equal positive outcome 

rates for all demographic groups. Equalized Odds: This 

criterion ensures that the algorithm has equal true positive 

and false positive rates across different groups. Equalized 

Opportunity: This criterion requires that the true positive 

rates are equal across different groups, focusing on providing 

equal opportunities for positive outcomes. 

Solutions to achieve fairness in algorithms can be broadly 

categorized into three approaches: Pre-processing: 

Modifying the input data to remove bias before it is fed into 

the algorithm. This includes techniques such as re-weighting 

samples or transforming features to ensure neutrality. In-

processing: Altering the algorithm itself to ensure fairness. 

This can involve incorporating fairness constraints into the 

optimization process during model training. Post-processing: 

Adjusting the output of the algorithm to achieve fairness. 

This can include re-ranking or modifying the decision 

thresholds for different groups. By integrating these fairness 

solutions, we aim to ensure that our fault diagnosis model 

performs equitably across various load conditions, providing 

reliable and unbiased results. 

3. PROPOSED METHOD 

This section illustrates the bias analysis procedure in bearing 

fault signals under different load conditions and the proposed 

algorithmic fairness approach for fault diagnosis. For the bias 

analysis, impulsiveness is calculated by the kurtosis values of 

the bearing fault signals. To mitigate this bias, fairness 
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training is applied by reweighting each instance of the fault 

signal considering the impulsiveness bias.  

3.1. Bias Quantification 

As described in Section 1, bearing fault signals under 

different load conditions can show specific characteristics in 

terms of impulsiveness. The impulsive signals show a large 

amplitude due to the strong impact between bearing 

components and defective areas. This degree of 

impulsiveness can affect data-driven models, which can be 

biased by different impulsiveness. Therefore, impulsiveness 

characteristics are quantified to evaluate the degree of 

possible bias in each instance. 

A kurtosis feature is utilized to measure the impulsiveness in 

bearing signals. Kurtosis is a time-domain feature that can 

represent the impulsive component of the acceleration signal. 

This value can vary due to a lot of situations, as described in 

Figure. 1. Generally, an instance under a heavy load shows 

higher impulsiveness than under a light load. Under the same 

load conditions, there can be different impulsiveness due to 

the variance of the instance. In addition, there are a few cases 

that show a reverse trend: weaker impulsiveness under heavy 

load conditions than under light load conditions. Lastly, 

impulsiveness can be different due to the different health 

conditions: inner fault, outer fault, and ball fault.  

To consider these characteristics of impulsiveness, the 

normalized kurtosis criterion technique is proposed. The 

proposed method can measure the degree of impulsiveness as 

a normalized value (i.e., zero to one). First, the bearing fault 

signal is divided into instances using the sliding window 

technique. For these instances, the kurtosis value for each 

fault type is calculated regardless of load condition. The 

calculated value can show multiple Gaussian distributions 

due to the different load conditions. To concatenate these 

distributions as normalized values, the cumulative 

distribution function (CDF) is calculated for all kurtosis 

values. Finally, each instance can have a normalized 

impulsiveness using the matched CDF values. For example, 

the high-impulsive instance shows the high value of kurtosis. 

Therefore, in the CDF, this instance is closer to one than the 

other instances. The CDF value can quantify the degree of 

impulsiveness for each instance.  

3.2. Instance Reweighting 

As described in Section 1, impacts occur between the bearing 

elements and the fault location, resulting in impulsive signals. 

The diagnosis model can be biased toward high-impulsive 

instances because they contain a lot of faulty information. To 

design a robust diagnosis model under different load 

conditions, the impulsiveness bias is mitigated using a 

reweighting method. By reweighting instances utilizing the 

quantified impulsiveness, the high impulsiveness is 

suppressed, and the low impulsiveness is highlighted in the 

model. The model is trained as follows: 
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where N is the number of samples in batch, wn is the weight 

of each sample defined in Section 3.1, yn
true is the true label 

(i.e., fault type of samples), and yn
pred is the predicted label by 

the diagnosis model. 

3.3. Model Training  

A one-dimensional convolutional neural network (1D-CNN) 

is used as a model for bearing fault diagnosis. The 1D-CNN 

model has shown superior performance for extracting 

features from time-series data. For the model training, Eq. (1) 

is used for the loss function of the feature extractor and fault 

type classifier. To achieve accurate performance, the model 

is trained in 10 iterations using 10 random seeds, and the 

average performance is shown in Section 4. The overall 

flowchart is shown in Figure 2. 

4. EXPERIMENTAL VALIDATION 

This section validates the proposed method by comparative 

studies and public datasets. The proposed method is 

compared with existing methods, such as domain adaptation  

1. Different load 

Heavy load > Light load 

Heavy load & Weak peak  

Light load & Strong peak  

Heavy load 

Weak peak 

Light load 

Strong peak 
<  

2. Same load 3. Different load  4. Different fault types 

Inner fault ≠ Outer fault 

Heavy load  

Light load  

Strong peak > Weak peak 

Weak peak 

Strong peak Heavy load sample

  

Light load sample  

Figure. 1. Various scenarios for impulsiveness of the bearing signals under different load conditions. 
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and fairness approaches. The performance is validated by 

quantitative analysis using accuracy and fairness criteria, and 

qualitative analysis using gradient-weighted class activation 

mapping (Grad-CAM). 

4.1. Data Description 

A public bearing dataset from the Society for Machinery 

Failure Prevention Technology (MFPT) is used for 

experimental validation (Bechhoefer, E., 2023). The detailed 

meta-information is described in Table 1. To evaluate the 

diagnosis performance under different load conditions, 

datasets A, B, and C are all used for training and test data. 

The number of training samples is 100, and the number of 

test samples is 100, considering insufficient training sample 

conditions in the general industrial field.  

Table 1. A meta-information of the validation dataset. N is 

the normal state, IF is the inner race fault state, and OF is 

the outer race fault state. 

Dataset Speed Load Fault type 

A 25 Hz 45.36 kgf N/IF/OF 

B 25 Hz 90.72 kgf N/IF/OF 

C 25 Hz 136.08 kgf N/IF/OF 

 

4.2. Evaluation of Diagnosis and Fairness Performance 

The diagnosis and fairness performance are evaluated 

simultaneously in Figure. 3. The proposed method can 

achieve superior diagnosis performance and fairness results. 

In Figure. 3, the x-axis is the average error, which is related 

to diagnosis performance, and the y-axis is the error gap and 

demographic parity, which means fairness-related criteria. 

The lower criteria mean superior performance in all cases. 

The proposed method shows similar fairness in error gap, and 

superior demographic parity compared with the Learning 

Adversarially Fair and Transferable Representation (LAFTR) 

technique (Madras, D., Creager, E., Pitassi, T., & Zemel, R., 

2018). Moreover, the proposed method maintains a superior 

diagnosis performance compared to domain adversarial 

neural networks (DANN) and baseline 1D-CNN (Ganin, Y., 

Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., 

Laviolette, F., & Lempitsky, V., 2016). This implies that the 

proposed method is robust to bias under different load 

conditions due to the instance reweighting.  

4.3. Bias Mitigation Performance 

To validate the bias mitigation of the proposed method, Grad-

CAM is performed for comparative models in Figure. 4. The 

existing fairness method, LAFTR, shows weak detection for 

low impulsive peaks in the signals. This is due to the 

impulsiveness bias from the high-impulsive instance. On the 

other hand, in Figure. 4(b), the proposed method highlights 

both weak and strong peaks in the signals. This means that 

the proposed method can mitigate the impulsiveness bias 

under different load conditions. 

Figure 3. Comparative study for accuracy and diagnosis 

performances 

Grad-CAM (real signal) 

Grad-CAM (weight value) 

3000 0 
(a) 

Grad-CAM (real signal) 

Grad-CAM (weight value) 

3000 0 
(b) 

Figure. 4. Grad-CAM results for (a) existing fairness 

method, and (b) proposed method. 

Source sample Instance weight 

Fault diagnosis model 

Bias quantification 

Diagnosis loss 

Total loss calculation 

Gradient calculation 

Training data Load condition 

Fairness loss 

Yes 
No 

Finish training 

Iteration finished? 

Figure 2. A flowchart of the proposed method 
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5. CONCLUSION 

This research aims to mitigate the bias in the bearing 

diagnosis model under different load conditions due to 

impulsiveness. The proposed bias analysis can quantify the 

impulsive bias utilizing the normalized kurtosis values. These 

values are incorporated into a data-driven model using 

instance reweighting methods. The experimental results 

demonstrate that the proposed fairness-aware reweighting 

framework significantly improves both the accuracy and 

fairness of bearing fault diagnosis. The key to this success 

lies in reframing the problem. By treating the performance 

drop not as a domain shift, but as an internal model bias, the 

proposed method addresses the root cause of the error under 

different load conditions. The reweighting scheme compels 

the model to abandon its biased learning strategy of focusing 

only on salient, high-amplitude features and instead learn the 

fundamental physical patterns of a fault.  

For future work, the proposed method can be more advanced 

by combining in-processing fairness algorithms or applying 

different fairness criteria suitable for specific diagnostic 

scenarios. For instance, in safety-critical applications, one 

might prioritize minimizing false negatives for severe faults, 

a goal that could be achieved by using a fairness criterion like 

Equalized Odds. 
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