Intelligent Bearing Fault Diagnosis Under Various Load Conditions
Using Bias Mitigation
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ABSTRACT

Intelligent bearing fault diagnosis with domain adaptations
has accomplished remarkable performances under various
operating conditions. However, especially for different load
conditions, the model bias due to the physical characteristics
of bearing signals has not been considered. In the absence of
handling bias, the root cause for generalization errors cannot
be clarified under various load conditions. This paper thus
demonstrates that certain bias exists in diagnostic models for
different loads of bearings, and the main factor of bias is
impulsiveness. The existence of bias is shown with
quantitative analysis by applying fairness criteria to
diagnostic models. Also, qualitative analysis is conducted
with gradient-weighted class activation mapping (Grad-
CAM) for vibration signals of bearings, which proves that the
large amplitude of impulse can be the source of bias. To
correct this impulsiveness bias, a framework of a fairness
approach is newly proposed for bearing fault diagnosis under
various loads. The process of correcting bias contains two
steps: categorizing samples based on impulsiveness and
training models with fairness criteria. Different from the
previous domain adaptation-based approaches, the proposed
method can achieve superior diagnostic performances by
correcting bias that causes generalization errors. The
effectiveness of the proposed method is validated with
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public-bearing datasets with various loads. The results show
that the fairness approach can be the mainstream solution for
fault diagnosis of rotary machines under different load
conditions.

1. INTRODUCTION

Bearing fault diagnosis is crucial for the maintenance of
mechanical systems. Bearings are essential components in
rotating machinery, and their failure can lead to significant
performance degradation and severe damage to the entire
system (Ni, Q., Ji, J. C., Halkon, B., Feng, K., & Nandi, A.
K., 2023). Early detection and diagnosis of bearing faults can
prevent such issues, ensuring the reliability and longevity of
machinery (Kumar, K., Shukla, S., & Singh, S. K., 2022).
Consequently, various signal processing methods and fault
diagnosis algorithms have been developed, with a growing
emphasis on utilizing artificial intelligence techniques for
more accurate fault detection.

In recent years, deep learning-based fault diagnosis methods
have gained significant attention for their potential in real-
world applications (Lee, J., Ko, J. U, Kim, T., Kim, Y. C.,
Jung, J. H.,, & Youn, B. D., 2024). These methods have
demonstrated notable success, particularly with the
implementation of transfer learning to diagnose bearing
faults under various speed conditions. Transfer learning
allows models to leverage knowledge from one domain and
apply it to another, enhancing diagnostic performance even
when training data is limited or differs from the testing
conditions (Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C.,
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& Liu, C., 2018). This approach has proven effective in
adapting to the variable speed conditions commonly
encountered in industrial environments.

While numerous studies have focused on diagnosing bearing
faults under different speed conditions, research on
diagnosing faults under varying load conditions remains
sparse. Bearing signals exhibit distinct characteristics under
different load conditions, unlike speed variations. This
discrepancy poses challenges for applying transfer learning
effectively, as the signal features that indicate faults can
change significantly with varying loads. Therefore, existing
transfer learning methods may not be suitable for all
scenarios, necessitating the exploration of alternative
approaches for load condition diagnosis.

This study aims to demonstrate the suitability of algorithm
fairness in diagnosing bearing faults under different load
conditions. By integrating the physical characteristics of
bearings with deep learning models, we have developed a
novel approach that successfully diagnoses faults across
varying loads. This research highlights the importance of
considering load variations in fault diagnosis and provides a
robust framework for improving the reliability and
applicability of deep learning-based methods in diverse
operational conditions.

2. THEORETICAL BACKGROUND

In this section, we will discuss the fundamental theoretical
background related to the method proposed in this study.
Specifically, we will explain the signals obtained when
bearing fault in relation to fault frequencies. Additionally, we
will delve into the concept of algorithmic fairness and its
solutions.

2.1. Bearing fault signal

When a bearing fails, impacts occur between the bearing
elements and the fault location, resulting in impulsive signals.
In stationary conditions, these impulsive signals appear
periodically and can be described using the shape factors of
the bearing. Key fault frequencies include the Ball Pass
Frequency Outer (BPFO), Ball Pass Frequency Inner (BPFI),
and Ball Spin Frequency (BSF). These frequencies can be
defined as follows (Randall, R. B., & Antoni, J., 2011):
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where 7 is the number of rolling elements, RPS is the
rotational speed, d is the diameter of the rolling elements, D
is the pitch diameter, and a is the contact angle.

As the operating speed of the bearing changes, these fault
frequencies also change. However, when the load on the
bearing changes, the fault frequency remains the same, but
the amplitude of the impulsive signals varies. This variation
in amplitude under different load conditions presents a
unique challenge for fault diagnosis algorithms, necessitating
adaptive methods to accurately detect faults.

2.2. Algorithmic Fairness

Algorithmic fairness refers to the concept of ensuring that
automated decisions made by algorithms are unbiased and
equitable across different groups. This is crucial in
applications where decisions can significantly impact
individuals or groups, such as in healthcare, finance, and
employment.

Fairness can be measured using several criteria:
Demographic Parity: This criterion requires that the
decision-making process result in equal positive outcome
rates for all demographic groups. Equalized Odds: This
criterion ensures that the algorithm has equal true positive
and false positive rates across different groups. Equalized
Opportunity: This criterion requires that the true positive
rates are equal across different groups, focusing on providing
equal opportunities for positive outcomes.

Solutions to achieve fairness in algorithms can be broadly
categorized into three approaches: Pre-processing:
Modifying the input data to remove bias before it is fed into
the algorithm. This includes techniques such as re-weighting
samples or transforming features to ensure neutrality. In-
processing: Altering the algorithm itself to ensure fairness.
This can involve incorporating fairness constraints into the
optimization process during model training. Post-processing:
Adjusting the output of the algorithm to achieve fairness.
This can include re-ranking or modifying the decision
thresholds for different groups. By integrating these fairness
solutions, we aim to ensure that our fault diagnosis model
performs equitably across various load conditions, providing
reliable and unbiased results.

3. PROPOSED METHOD

This section illustrates the bias analysis procedure in bearing
fault signals under different load conditions and the proposed
algorithmic fairness approach for fault diagnosis. For the bias
analysis, impulsiveness is calculated by the kurtosis values of
the bearing fault signals. To mitigate this bias, fairness
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Figure. 1. Various scenarios for impulsiveness of the bearing signals under different load conditions.

training is applied by reweighting each instance of the fault
signal considering the impulsiveness bias.

3.1. Bias Quantification

As described in Section 1, bearing fault signals under
different load conditions can show specific characteristics in
terms of impulsiveness. The impulsive signals show a large
amplitude due to the strong impact between bearing
components and defective areas. This degree of
impulsiveness can affect data-driven models, which can be
biased by different impulsiveness. Therefore, impulsiveness
characteristics are quantified to evaluate the degree of
possible bias in each instance.

A kurtosis feature is utilized to measure the impulsiveness in
bearing signals. Kurtosis is a time-domain feature that can
represent the impulsive component of the acceleration signal.
This value can vary due to a lot of situations, as described in
Figure. 1. Generally, an instance under a heavy load shows
higher impulsiveness than under a light load. Under the same
load conditions, there can be different impulsiveness due to
the variance of the instance. In addition, there are a few cases
that show a reverse trend: weaker impulsiveness under heavy
load conditions than under light load conditions. Lastly,
impulsiveness can be different due to the different health
conditions: inner fault, outer fault, and ball fault.

To consider these characteristics of impulsiveness, the
normalized kurtosis criterion technique is proposed. The
proposed method can measure the degree of impulsiveness as
a normalized value (i.e., zero to one). First, the bearing fault
signal is divided into instances using the sliding window
technique. For these instances, the kurtosis value for each
fault type is calculated regardless of load condition. The
calculated value can show multiple Gaussian distributions
due to the different load conditions. To concatenate these
distributions as normalized values, the cumulative
distribution function (CDF) is calculated for all kurtosis
values. Finally, each instance can have a normalized
impulsiveness using the matched CDF values. For example,
the high-impulsive instance shows the high value of kurtosis.

Therefore, in the CDF, this instance is closer to one than the
other instances. The CDF value can quantify the degree of
impulsiveness for each instance.

3.2. Instance Reweighting

As described in Section 1, impacts occur between the bearing
elements and the fault location, resulting in impulsive signals.
The diagnosis model can be biased toward high-impulsive
instances because they contain a lot of faulty information. To
design a robust diagnosis model under different load
conditions, the impulsiveness bias is mitigated using a
reweighting method. By reweighting instances utilizing the
quantified impulsiveness, the high impulsiveness is
suppressed, and the low impulsiveness is highlighted in the
model. The model is trained as follows:
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where N is the number of samples in batch, w, is the weight
of each sample defined in Section 3.1, y,"™ is the true label
(i.e., fault type of samples), and y,”¢is the predicted label by
the diagnosis model.

3.3. Model Training

A one-dimensional convolutional neural network (1D-CNN)
is used as a model for bearing fault diagnosis. The 1D-CNN
model has shown superior performance for extracting
features from time-series data. For the model training, Eq. (1)
is used for the loss function of the feature extractor and fault
type classifier. To achieve accurate performance, the model
is trained in 10 iterations using 10 random seeds, and the
average performance is shown in Section 4. The overall
flowchart is shown in Figure 2.

4. EXPERIMENTAL VALIDATION

This section validates the proposed method by comparative
studies and public datasets. The proposed method is
compared with existing methods, such as domain adaptation
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Figure 2. A flowchart of the proposed method

and fairness approaches. The performance is validated by
quantitative analysis using accuracy and fairness criteria, and
qualitative analysis using gradient-weighted class activation
mapping (Grad-CAM).

4.1. Data Description

A public bearing dataset from the Society for Machinery
Failure Prevention Technology (MFPT) is wused for
experimental validation (Bechhoefer, E., 2023). The detailed
meta-information is described in Table 1. To evaluate the
diagnosis performance under different load conditions,
datasets A, B, and C are all used for training and test data.
The number of training samples is 100, and the number of
test samples is 100, considering insufficient training sample
conditions in the general industrial field.

Table 1. A meta-information of the validation dataset. N is
the normal state, IF is the inner race fault state, and OF is
the outer race fault state.

Dataset Speed Load Fault type
A 25 Hz 45.36 kgf N/IF/OF
B 25 Hz 90.72 kgf N/IF/OF
C 25 Hz 136.08 kgf N/IF/OF
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4.2. Evaluation of Diagnosis and Fairness Performance

The diagnosis and fairness performance are evaluated
simultaneously in Figure. 3. The proposed method can
achieve superior diagnosis performance and fairness results.
In Figure. 3, the x-axis is the average error, which is related
to diagnosis performance, and the y-axis is the error gap and
demographic parity, which means fairness-related criteria.
The lower criteria mean superior performance in all cases.
The proposed method shows similar fairness in error gap, and
superior demographic parity compared with the Learning
Adversarially Fair and Transferable Representation (LAFTR)
technique (Madras, D., Creager, E., Pitassi, T., & Zemel, R.,
2018). Moreover, the proposed method maintains a superior
diagnosis performance compared to domain adversarial
neural networks (DANN) and baseline 1D-CNN (Ganin, Y.,
Ustinova, E., Ajakan, H., Germain, P., Larochelle, H.,
Laviolette, F., & Lempitsky, V., 2016). This implies that the
proposed method is robust to bias under different load
conditions due to the instance reweighting.

4.3. Bias Mitigation Performance

To validate the bias mitigation of the proposed method, Grad-
CAM is performed for comparative models in Figure. 4. The
existing fairness method, LAFTR, shows weak detection for
low impulsive peaks in the signals. This is due to the
impulsiveness bias from the high-impulsive instance. On the
other hand, in Figure. 4(b), the proposed method highlights
both weak and strong peaks in the signals. This means that
the proposed method can mitigate the impulsiveness bias
under different load conditions.
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Figure. 4. Grad-CAM results for (a) existing fairness

method, and (b) proposed method.



5. CONCLUSION

This research aims to mitigate the bias in the bearing
diagnosis model under different load conditions due to
impulsiveness. The proposed bias analysis can quantify the
impulsive bias utilizing the normalized kurtosis values. These
values are incorporated into a data-driven model using
instance reweighting methods. The experimental results
demonstrate that the proposed fairness-aware reweighting
framework significantly improves both the accuracy and
fairness of bearing fault diagnosis. The key to this success
lies in reframing the problem. By treating the performance
drop not as a domain shift, but as an internal model bias, the
proposed method addresses the root cause of the error under
different load conditions. The reweighting scheme compels
the model to abandon its biased learning strategy of focusing
only on salient, high-amplitude features and instead learn the
fundamental physical patterns of a fault.

For future work, the proposed method can be more advanced
by combining in-processing fairness algorithms or applying
different fairness criteria suitable for specific diagnostic
scenarios. For instance, in safety-critical applications, one
might prioritize minimizing false negatives for severe faults,
a goal that could be achieved by using a fairness criterion like
Equalized Odds.
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