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ABSTRACT 

Reliable operation of digital instrumentation in nuclear 

power plants depends heavily on accurate prediction of 

component degradation. This study proposes a hybrid 

framework for estimating the remaining useful life of photo-

couplers used in reactor protection systems. Accelerated 

aging tests were performed under elevated thermal conditions 

to generate representative degradation data. Both statistical 

models and a neural network were developed to analyze long-

term performance decline. 

The AI model incorporates polynomial features and custom 

loss functions to reflect realistic monotonic and exponential 

degradation behavior. Its predictions closely matched those 

of the statistical models, with projected lifespans ranging 

from 22 to 24 years. A user-oriented software tool was also 

implemented to support real-time remaining useful life 

forecasting using field data, demonstrating the practical value 

of combining traditional and AI-based approaches for 

predictive maintenance in nuclear systems. 

1. INTRODUCTION 

Digital instrumentation and control (I&C) systems are 

essential for the safe and reliable operation of nuclear power 

plants (NPPs). These systems continuously monitor field 

signals, execute control actions, and activate protective 

responses in abnormal situations. Over the past two decades, 

digitalization has introduced advanced features such as self-

diagnosis and automated testing, improving fault detection 

and operational efficiency.  

However, this shift has also raised new challenges. Failures 

in electronic components—particularly in reactor protection 

systems (RPS)—remain a leading cause of plant incidents, 

often coupled with human errors. Traditional diagnostic 

methods, including periodic tests and self-check functions, 

struggle to detect hidden degradation or anticipate failures in 

real time. This highlights the urgent need for predictive 

maintenance solutions based on accurate estimation of 

component aging.  

This study addresses this challenge by developing a hybrid 

remaining useful life (RUL) prediction framework 

combining statistical modeling and artificial intelligence. 

Through accelerated aging experiments on photo-couplers, 

we collected high-fidelity degradation data and trained both 

conventional life models and a neural network. Our goal is to 

bridge the gap between theoretical reliability models and 

field-deployable tools that support real-time predictive 

maintenance in nuclear environments. 

2. ACCELERATED AGING TEST SETUP 

2.1. Selection of Test Target 

Among the digital components used in the RPS, photo-

couplers were selected as the primary test target due to their 

critical role in signal isolation and frequent exposure to 

thermal stress. These devices convert electrical signals to 

optical signals, ensuring galvanic isolation between circuits. 

However, over time, they are prone to degradation 

mechanisms such as LED brightness loss, reduced 

phototransistor sensitivity, and insulation breakdown, all of 

which can compromise signal integrity. Given their 

functional importance and susceptibility to aging, photo-

couplers are ideal candidates for RUL prediction model 

development and validation. 
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2.2. Accelerated Aging Test Environment 

To simulate long-term operational stress within a shortened 

timeframe, accelerated aging tests were conducted under 

elevated temperature and electrical load conditions. 

Following IEC 62506 guidelines, photo-couplers were 

exposed to a constant ambient temperature of 130°C while 

operating under nominal voltage. Prior HALT (Highly 

Accelerated Limit Test) procedures ensured that these 

conditions induced degradation without causing immediate 

failure. This controlled environment enabled the collection of 

realistic degradation data for RUL modeling, reflecting aging 

patterns similar to those experienced over decades of actual 

plant operation. 

2.3. Experimental Design 

To replicate multi-year degradation within a feasible 

laboratory period, the test leveraged the Arrhenius 

acceleration model. Photo-couplers were continuously 

operated at 130°C for 2,597 hours (approximately 108 days), 

aiming for a tenfold acceleration of aging relative to standard 

25°C conditions. The acceleration factor was calculated using 

component-specific activation energy values. Output voltage 

and related electrical properties were monitored over time to 

capture meaningful degradation signals suitable for RUL 

modeling. 

A fully integrated testbed was developed to support real-time 

data acquisition and model validation. The system included a 

temperature-controlled chamber, waveform analyzer, LCR 

meter, and a control server with real-time data processing 

capabilities. Sensor signals were transmitted to a graphical 

user interface (GUI), allowing both engineers and researchers 

to visualize degradation trends and perform live RUL 

estimation. This setup bridged the gap between experimental 

testing and practical application in nuclear maintenance 

workflows. 

 

Figure 1. Experimental Setup for Thermal Stress Aging of 

Photo-Coupler Components. 

3. METHODOLOGY 

3.1. Statistical Model-Based Prediction 

To establish a statistical baseline for RUL prediction, 

degradation data from the accelerated aging tests were 

preprocessed to remove noise, interpolate missing values, 

and stabilize voltage trends. This ensured that the time-series 

signals reflected consistent degradation patterns required for 

reliable lifetime estimation. A moving average filter was 

applied to reduce high-frequency noise while preserving the 

overall aging trend. 

The onset of degradation was detected by analyzing the slope 

of the voltage curve. Specifically, the point at which the first 

derivative fell below a defined threshold was considered the 

beginning of meaningful degradation. This approach helped 

isolate the relevant portion of the data while excluding early 

signal fluctuations and noise. 

Temporary signal recovery events—possibly caused by ion 

desorption or measurement artifacts—were identified and 

removed using second-derivative analysis. After cleaning the 

data, voltage decay curves were fitted to exponential models. 

The parameters were estimated using least squares, and the 

fitted lifetimes were evaluated for statistical validity using the 

Kolmogorov–Smirnov test. 

To convert test-based results into real-world lifespan 

estimates, the Arrhenius model was used to compute 

acceleration factors. Based on the applied thermal stress and 

the activation energy from component datasheets, the 

predicted mean time to failure (MTTF) under nominal 

conditions was approximately 22 to 23 years. These results 

provide a robust statistical foundation for cross-validating 

AI-based predictions. 

3.2. AI Model-Based Prediction 

To complement the statistical approach, an AI model was 

developed using a feedforward neural network enriched with 

polynomial regression features. This architecture was 

selected for its ability to learn nonlinear voltage degradation 

patterns observed in the accelerated aging data. The model 

was trained on time-series data filtered to exclude temporary 

recoveries and focused exclusively on monotonic 

degradation segments. The predicted RUL was defined as the 

time point at which the model’s projected voltage dropped 

below a critical threshold of 2.2 V. 

To ensure physically meaningful predictions, a composite 

loss function was designed that combined mean squared error 

(MSE), exponential decay regularization, and a monotonicity 

constraint. These components encouraged the model to 

follow realistic aging trends while minimizing error. The 

model showed excellent agreement with statistical estimates, 

predicting a mean RUL of approximately 24 years. 

Evaluation metrics, including MAE of 9.8 and RMSE of 12.1, 

confirmed its competitive accuracy. 

For conservative and explainable RUL inference, a Monte 

Carlo sampling strategy was employed to generate multiple 

predictions and compute a 95% confidence interval. The 

lower bound of this interval was used to define a safe and 

robust RUL estimate. This approach enhances the model’s 
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applicability in safety-critical nuclear environments, aligning 

with digital twin and predictive maintenance strategies 

currently gaining traction in the nuclear industry. 

 

Figure 2. Comparison of RUL Predictions: Statistical vs. 

AI-Based Models. 

4. SOFTWARE DEVELOPMENT 

To bridge the gap between model development and field 

usability, a GUI-based software tool was created to support 

real-time RUL prediction. The software is tailored for use by 

nuclear maintenance engineers, allowing intuitive interaction 

with both statistical and AI-based models without requiring 

AI expertise. It was designed to enable rapid degradation 

analysis, live inference, and integration with existing 

instrumentation systems.  

The system architecture consists of four key layers: data input 

and preprocessing, AI model execution, user interface, and 

result management. Users can upload sensor data, configure 

model parameters, execute RUL predictions, and export 

results in standard formats like CSV and JSON. Real-time 

visualization of voltage trends and predicted RUL enhances 

interpretability and operational relevance. 

Three main functional modules were developed. The 

preprocessing module handles data cleaning, smoothing, and 

visualization. The AI model module allows for configurable 

neural network training and performance monitoring using 

metrics like MAE and RMSE. Finally, the prediction module 

supports real-time application using live or batch data, 

producing confidence-bounded RUL estimates for field 

decision-making. 

Implemented in Python with PyTorch and PyQt5, the 

software was validated on the experimental testbed and 

demonstrated near-real-time performance. This platform 

enables proactive maintenance planning by offering 

interpretable, data-driven RUL forecasting, representing a 

practical step toward digital transformation in nuclear 

predictive maintenance. 

 

Figure 3. Modular Architecture of the AI-Based RUL 

Prediction Software. 

5. RESULTS 

The accelerated aging test revealed clear exponential voltage 

degradation in photo-couplers, with a significant drop 

observed after approximately 840 hours. Using a fixed failure 

threshold of 2.2 V, both statistical and AI models produced 

consistent RUL predictions: 22 years (lognormal), 23 years 

(Weibull), and 24 years (AI model). The AI model further 

achieved a low prediction error, with MAE of 9.8 and RMSE 

of 12.1, and provided a 95% confidence interval of [23.95, 

24.17] years, highlighting its robustness. 

These results demonstrate strong agreement between 

physics-based statistical methods and the AI approach, 

validating the hybrid framework’s reliability. While the 

statistical models offer interpretability and stability, the AI 

model captures nonlinear degradation more effectively, 

particularly during the late-life phase. This mutual cross-

verification supports the use of AI and statistical models in 

tandem for safety-critical applications like nuclear I&C 

systems. 

In line with established standards (e.g., IEC TR 62380), the 

predicted lifetimes are realistic and align with industry 

expectations for photo-copuplers. The developed GUI-based 

software further enhances practical applicability, allowing 

field engineers to conduct real-time RUL estimation. 

Nonetheless, maintaining data quality and avoiding model 

overfitting are essential for deployment. Future 

implementations should incorporate techniques like early 

stopping, real-world validation, and adaptive learning to 

ensure sustained performance in dynamic plant environments. 

6. CONCLUSIONS 

This study proposed a hybrid RUL prediction framework 

combining statistical models and physics-informed neural 

networks to assess the long-term reliability of photo-couplers 

in the RPS. Through accelerated aging experiments and 

model validation, the approach demonstrated high accuracy 

and consistency across methods. A GUI-based software tool 

was also developed to support real-time application in field 

environments, enhancing the practicality of predictive 

maintenance in nuclear I&C systems. 
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Looking ahead, future research will aim to generalize the 

framework by applying it to a broader range of safety-critical 

components and operational conditions. Efforts will also 

focus on incorporating online learning capabilities for real-

time model adaptation and conducting scenario-based 

validation to ensure reliability under dynamic plant 

environments. 
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