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ABSTRACT 

Semiconductor manufacturing equipment poses a demanding 

setting for Remaining Useful Life (RUL) prediction due to 

regime-rich operation, heterogeneous sensors, and practical 

requirements for interpretability and rapid deployment. This 

work examines a similarity-based alternative on the 

PHM2018 ion mill etching (IME) dataset, using Tool 

01_M02 and the F1 fault mode as a case study. The pipeline 

comprises four stages: (i) regime-aware normalization, where 

operating-condition features are standardized and clustered 

on the training partition and sensor channels are expressed as 

cluster-wise z-scores; (ii) supervised health-indicator 

construction via weighted Ridge regression using correlation-

selected channels with time-normalized derivatives; (iii) 

monotonic calibration that blends the indicator with a simple 

time prior and fits an isotonic mapping; and (iv) neighbor-

based estimation in which a quadratic is fitted to each training 

trajectory and test-time RUL is inferred by distance-weighted 

aggregation across nearest trajectories. 

Evaluation follows a leave-one-cycle-out (LOCO) protocol 

under a common IME preprocessing setup (active-state 

filtering and tail restriction at RUL ≤ 5000). On F1, the 

approach attains an average RMSE of 453.53, outperforming 

a state-of-the-art baseline (ATCN-LSTM, 597.35). One-

factor sensitivity analyses show consistent trends: 

performance improves as the number of selected features 

decreases; shallow optima appear for the derivative window 

and smoothing window; smaller blend factors are generally 

favorable; and the late-life weighting exponent has minor 

influence. The computational profile is lightweight: the full 

62-fold LOCO evaluation completes in about one minute on 

a CPU-only workstation (≈1.0 s per fold), facilitating rapid 

iteration and deployment. These results indicate that a 

similarity-based framework which centered on regime-aware 

indicator design, monotonic calibration, and neighbor 

matching can deliver competitive accuracy while preserving 

transparency and practical efficiency for industrial PHM. 

1. INTRODUCTION 

Semiconductor manufacturing equipment plays a pivotal role 

in sustaining progress in integrated circuit and photovoltaic 

industries, yet failure prognostics remains challenging due to 

regime-rich operation, heterogeneous sensors, and complex 

subsystem interactions. Downtime from unexpected failures 

or scheduled maintenance can incur substantial losses in 

high-volume production.  

Prognostics and Health Management (PHM) addresses these 

challenges by estimating Remaining Useful Life (RUL) to 

support condition-based maintenance. Over the past decade, 

data-driven approaches, especially deep models such as 

LSTM and TCN, have achieved strong results on benchmark 

datasets. However, they often require large, labeled datasets 

and significant computational resources, and their limited 

interpretability can hinder industrial adoption.  

As an alternative, similarity-based prediction estimates RUL 

by comparing a target trajectory with previously observed 

ones. This family of methods is appealing for semiconductor 

equipment, where fault data are relatively scarce, operating 

conditions vary across runs, and traceability of predictions is 

important for industrial adoption. By focusing on relative 

similarity rather than learning a global mapping, similarity-

based approaches can remain data-efficient and transparent 

while aligning with standard evaluation practice.  

In this study, a similarity-based methodology is evaluated on 

the PHM2018 ion mill etching (IME) dataset as a case study. 

The pipeline integrates regime-aware normalization, 

supervised health-indicator construction, monotonic 

calibration, and neighbor-based estimation, and is assessed 

under leave-one-cycle-out (LOCO) evaluation to enable 
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direct comparison with deep baselines. Results show that the 

approach outperforms a state-of-the-art deep model, while 

preserving computational efficiency on CPU-only hardware, 

positioning it as a lightweight and interpretable alternative for 

industrial RUL prediction in complex manufacturing systems. 

2. RELATED WORK 

Recent surveys on PHM identify RUL prediction as a core 

enabler of condition-based maintenance and document an 

ongoing shift from physics-based modeling to data-driven 

and deep learning approaches, while highlighting persistent 

challenges in data scarcity, operating-condition shift, 

interpretability, benchmarking practice, and deployment cost 

(Ferreira & Gonçalves, 2022; Berghout & Benbouzid, 2022; 

Wu et al., 2024; Liu et al., 2025). These reviews commonly 

motivate hybrid or lightweight alternatives that balance 

accuracy with transparency and practical efficiency. 

Within manufacturing, semiconductor equipment has 

emerged as a representative and demanding RUL setting due 

to regime-rich operation and heterogeneous sensor suites. A 

concrete line of work has coalesced around the PHM2018 

IME dataset: recurrent baselines for the flowcool subsystem 

have been explored (Wu et al., 2021); hybrid TCN–LSTM 

with attention has been proposed to capture both local and 

long-range dependencies (Hsu et al., 2022); transfer-learning 

pipelines align tools or conditions prior to fine-tuning (Liu et 

al., 2021); and Transformer-based variants introduce channel 

re-weighting or multi-scale, multi-branch temporal encoders 

(Yuan & Wang, 2023; Yuan & Wang, 2024). Within this 

stream, ATCN-LSTM (Darwish, 2024) is frequently adopted 

as a strong deep baseline and serves as the principal point of 

reference for comparison in the present study. 

In parallel, similarity-based prediction (SBP) has been 

surveyed as an interpretable and lightweight alternative in 

PHM: a degradation indicator is constructed, similarity to 

historical trajectories is evaluated, and RUL is inferred via 

neighbor aggregation (Xue et al., 2022). Foundationally, 

trajectory SBP by Wang et al. (2008) and its extended 

dissertation (Wang, 2010) formalized trajectory-level 

matching and influenced numerous variants. This lineage is 

followed here for IME by combining regime-aware indicator 

design and neighbor-based estimation. 

Taken together, prior work shows that IME RUL has been 

dominated by deep neural pipelines whereas similarity-based 

approaches have been less examined for semiconductor 

equipment despite their interpretability and low compute. 

This gap frames the present study, which assesses a 

similarity-based methodology on PHM2018 IME dataset and 

contrasts it with a strong deep baseline (ATCN-LSTM) under 

a common evaluation setup (Darwish, 2024). 

3. METHODOLOGY 

The proposed approach consists of four main stages: (i) 

regime-based normalization, (ii) supervised health indicator 

(HI) construction, (iii) monotonic calibration, and (iv) 

similarity-based RUL estimation using polynomial trajectory 

fitting and neighbor search. A schematic overview of the 

framework is shown in Figure 1. 

Figure 1. Overview of the proposed similarity-based RUL 

prediction methodology 

3.1. Regime-based Normalization 

To mitigate variability arising from heterogeneous operating 

conditions, operating-condition (OC) features (e.g., beam 

voltage, beam current, flowcool pressure) are standardized 

and clustered on the training partition of each fold.  

Let 𝑥𝑖 ∈ ℝ𝑚  denote the OC feature vector for sample 𝑖. 
Standardization and clustering are performed as 

𝑧𝑖   =  
𝑥𝑖   −  𝜇

𝜎
,   𝑐𝑖 = arg min

𝑘∈{1,…,𝐾}
|| 𝑧𝑖 − 𝜇𝑘||2 (1) 

where 𝜇, 𝜎 are the training mean and standard deviation of 

the OC features and 𝜇𝑘 is the centroid of cluster 𝑘 obtained 

by MiniBatchKMeans. The learned scaler and centroids are 

then applied to both training and test samples within the fold. 
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Each sample is assigned a regime label 𝑐𝑖. 

Given the regime label𝑐𝑖, each sensor channel 𝑠 is normalized 

in a cluster-wise manner to capture deviations relative to its 

regime: 

𝑠𝑖,𝑧𝑛 =
𝑠𝑖 − 𝜇𝑠,𝑐𝑖

𝜎𝑠,𝑐𝑖
+ 𝜖

 (2) 

with 𝜇𝑆,𝑐𝑖
 and 𝜎𝑆,𝑐𝑖

 computed on the training partition for 

regime 𝑐𝑖, and small constant ϵ > 0 added to avoid division 

by zero when within-regime variance is negligible. This 

transformation reduces between-regime variance while 

preserving regime-consistent degradation trends, providing a 

common scale on which feature selection and HI construction 

(Section 3.2) operate effectively. 

3.2. Feature Selection and Health Indicator 

Construction 

A supervised target is defined on the tail region as 

𝑦𝑖 =
𝑅𝑈𝐿𝑖

𝑅𝑈𝐿𝑚𝑎𝑥

 ∈  [0, 1] (3) 

where 𝑅𝑈𝐿𝑚𝑎𝑥 is specified in Section 4.2. From cluster-wise 

normalized sensor channels 𝑠𝑖,𝑧𝑛  (Section 3.1), the top-𝑘 

features are selected on the training partition using Pearson 

correlation with 𝑦: 

ρ(𝑠, 𝑦) =
Cov(𝑠, 𝑦)

σ𝑠σ𝑦

, ℱ = {𝑠:top-𝑘 by |ρ(𝑠, 𝑦)|} (4) 

To capture short-horizon change, finite-difference 

derivatives are added for each 𝑠 ∈ ℱ: 

𝑠𝑖
(𝑑)

=
𝑠𝑖 − 𝑠𝑖−𝑑

𝑡𝑖 − 𝑡𝑖−𝑑

 (5) 

where 𝑡𝑖 denotes elapsed time in seconds within a cycle and 

𝑑 denotes a window of length; when 𝑡𝑖 − 𝑡𝑖−𝑑 ≤ 0  the 

derivative is set to 0 and optionally clipped to a bounded 

range for numerical robustness. Time-progress covariates 

𝑝𝑡𝑎𝑖𝑙  and 𝑝𝑡𝑎𝑖𝑙
2  are further included. The resulting feature 

vector is 

𝑧𝑖  =  [ 𝑠𝑖,zn (𝑠! ∈ ! ℱ) ; 𝑠𝑖
(𝑑)

 (𝑠! ∈ ! ℱ) ; 𝑝tail,𝑖 ,  𝑝tail,𝑖
2  ] ∈ 𝑅𝑚 (6) 

A weighted Ridge model is then fitted to construct a health 

indicator (HI). Let 𝑧𝑖̃ denote standardized features (mean–

variance scaling on the training partition). The HI prediction 

is 

ℎ𝑖̂ = 𝑓(𝑧𝑖) = 𝑤⊤𝑧𝑖̃ (7) 

with parameters obtained by 

𝑤 = arg min
𝑤

∑ 𝑤𝑖(𝑦𝑖 − 𝑤⊤𝑧̃𝑖)2

𝑖∈𝒟𝑡𝑟𝑎𝑖𝑛

+ α||𝑤||2
2 (8) 

Here, 𝑤𝑖 = (1 − 𝑦𝑖)𝛾 assigns greater importance to late-life 

samples, 𝛼 is the Ridge regularization parameter, and 𝛾 

controls the degree of weighting. The resulting HI trajectory 

reflects degradation progression in a data-driven yet 

interpretable manner. 

3.3. Monotonic Calibration 

To promote a monotonic degradation profile, the predicted 

HI is blended with a simple time-based prior and then 

calibrated by isotonic regression. The blended indicator is 

defined as 

ℎ𝑖
blend = 𝜆ℎ𝑖̂ + (1 − 𝜆)(1 − 𝑝tail,𝑖) (9) 

where 𝜆 ∈ [0, 1] controls the contribution of the model 

prediction versus the prior. An isotonic mapping 𝑔 (⋅) is then 

fitted on the training partition of each fold and applied to both 

training and test samples within the fold: 

𝑔 = arg min
𝑔∈Isotonic

∑ (𝑦𝑖 − 𝑔(ℎ𝑖
blend))

2

𝑖
 (10) 

ℎ𝑖
cal = 𝑔(ℎ𝑖

blend) (11) 

The learned mapping enforces a monotone relationship 

consistent with the decreasing target in the tail region, 

yielding a calibrated trajectory ℎ𝑐𝑎𝑙 that is smoother and 

aligned with expected degradation. 

3.4. Similarity-based RUL Estimation 

For each fold, the calibrated HI trajectory of every training 

cycle is approximated on the normalized tail time 𝑡 ∈ [0,1] 
by a quadratic 

ℎ𝑐
𝑝𝑜𝑙𝑦(𝑡) = 𝑎𝑐𝑡2 + 𝑏𝑐𝑡 + 𝑐𝑐 (12) 

fitted on that training cycle’s ℎ𝑐𝑎𝑙(𝑡). Given a test trajectory 

observed up to 𝑡∗, let 𝑇∗ ⊂ [0, 𝑡∗] be the sampled grid. The 

dissimilarity between the test and a training cycle 𝑐 is 

measured by the mean absolute residual 

𝑑(𝑐) =
1

|𝑇∗|
∑ |ℎtest

cal (𝑡) − ℎ𝑐
poly(𝑡)|

𝑡∈𝑇∗
 (13) 

The 𝑘  training cycles with the smallest 𝑑(𝑐)  form the 

neighbor set 𝒩 (if fewer than 𝑘 candidates are available, all 

available neighbors are used). 

To map the test end-point to the neighbor’s time scale, 𝑡′𝑐 ⊂
[0, 1] is obtained by solving 

𝑎𝑐𝑡′2 + 𝑏𝑐𝑡′ + 𝑐𝑐 = ℎtest
cal (𝑡∗) (14) 

If two admissible real roots exist in [0, 1], the one closest to  

𝑡∗ is selected. If no admissible root exists, that neighbor is 

skipped. The neighbor-specific RUL is then 

𝑅𝑈𝐿𝑐̂ = (1 − 𝑡𝑐
′) ⋅ 𝑅𝑈𝐿𝑚𝑎𝑥 (15) 

Finally, the prediction is aggregated with distance-based 

weights 
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𝑅𝑈𝐿̂ =
∑ (𝑑(𝑐) + 𝜖)−𝑝

𝑐∈𝒩  𝑅𝑈𝐿𝑐̂

∑ (𝑑(𝑐) + 𝜖)−𝑝
𝑐∈𝒩

 (16) 

where 𝑁 is the set of neighbors, 𝜖 > 0 safeguards numerical 

stability and 𝑝 > 0 controls the decay with distance. All 

quantities used for fitting (quadratic coefficients and 

distances) are computed on training cycles within the fold, 

and the resulting prediction is evaluated on the held-out test 

cycle. 

4. EXPERIMENTAL SETUP 

This section outlines the dataset, preprocessing pipeline, 

evaluation protocol, hyperparameter configuration, and 

computational environment used in the study. 

4.1. Dataset 

Experiments were conducted on the PHM2018 IME dataset, 

which contains multivariate condition-monitoring records 

from twenty tools. The dataset provides 24 feature variables 

sampled at 4-second intervals, comprising five categorical 

attributes (e.g., wafer ID, tool ID, recipe) and nineteen 

numerical sensor channels (e.g., voltage, current, pressure, 

flow). Three failure types are annotated: F1 (Flowcool 

Pressure Dropped Below Limit), F2 (Flowcool Pressure Too 

High Check Flowcool Pump), and F3 (Flowcool Leak). 

In this work, the scope is restricted to Tool 01_M02 and the 

F1 fault mode as a case study, consistent with prior work. 

Run-to-failure traces were consolidated into cycles and RUL 

labels were assigned accordingly. 

4.2. Preprocessing 

Raw records were prepared through a sequence of standard 

steps prior to model training. First, only samples 

corresponding to the active operating state were retained 

(FixtureShutterPosition = 1). Each run-to-failure trace was 

then consolidated into cycles, and an elapsed time axis was 

computed per cycle relative to its start to provide a consistent 

temporal reference. 

Next, the dataset was restricted to the tail region, retaining 

only samples with RUL ≤ 5000; observations with RUL > 

5000 were regarded as normal operating conditions and 

excluded, following prior practice on this dataset. This 

restriction emphasizes degradation progression and provides 

a common prediction target across experiments. 

Finally, regime-based normalization was applied to mitigate 

variability across operating conditions. Operational-

condition features (e.g. beam voltage, beam current, and 

flowcool pressure) were standardized and clustered on the 

training partition of each fold (MiniBatchKMeans). The 

learned scaler and cluster centroids were then applied to both 

training and test samples within the fold, after which cluster-

wise z-normalization was computed for all sensor channels to 

express deviations relative to the assigned regime. These 

steps yield a harmonized representation that supports the 

subsequent feature selection and HI construction. 

4.3. Evaluation Protocol 

All experiments followed a leave-one-cycle-out (LOCO) 

protocol at the cycle level. In each fold, a single cycle was 

held out for testing, and the remaining cycles were used for 

training. The preprocessing pipeline described in Section 4.2 
was applied with all parameters estimated on the training 

partition of the fold. The learned scaler, cluster centroids, and 

regime statistics were then applied to the held-out test cycle. 

Within each fold, feature selection (correlation ranking and 

derivative construction), health-indicator fitting (weighted 

Ridge), and monotonic calibration (isotonic mapping) were 

performed on the training partition only. The calibrated 

health indicator of each training cycle was used to construct 

the neighbor models for similarity-based estimation; 

predictions were subsequently generated along the tail of the 

held-out test cycle.  

Performance was quantified using RMSE and MAE. Unless 

otherwise noted, the primary figure of merit is the average 

RMSE across LOCO folds, reported in the main comparison 

table; MAE is provided as a secondary indicator. All method 

comparisons (including the deep baseline) were conducted 

under the same preprocessing and evaluation protocol, 

enabling a direct assessment on a common footing. 

Hyperparameter settings referenced by the evaluation (e.g., 

number of neighbors, penalty/weighting, window lengths) 

are summarized in Section 4.4. 

RMSE = √
1

𝑁
∑ (𝑅𝑈𝐿𝑖̂ − 𝑅𝑈𝐿𝑖)

2𝑁

𝑖=1
 (17) 

MAE  =  
1

N
∑ | 𝑅𝑈𝐿𝑖̂  −  𝑅𝑈𝐿𝑖  |

N

i=1
 (18) 

4.4. Hyperparameters 

The principal hyperparameters are grouped by pipeline stage 

and kept fixed across folds unless a one-factor sensitivity 

sweep is reported in the Results section. 

Table 1. Default values used in experiments 

Ridge regression regularization: 𝛼 10.0 

Late-life weighting exponent: 𝛾 3.0 

Blend factor: 𝜆 0.6 

Smoothing window 9 

Derivative window 5 

Number of selected features 8 

Number of neighbors 8 

Distance exponent: 𝑝 2.0 
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4.5. Computational Environment 

Experiments were conducted on a local workstation running 

macOS 15.6.1 (arm64) with an 8-core ARM processor and 18 

GB of memory. All experiments were executed on CPU only, 

using Python and standard scientific libraries (NumPy, 

pandas, scikit-learn). The runtime of the leave-one-cycle-out 

evaluation was measured and the run time per fold was 1.0 

second. 

This efficiency highlights a key advantage of the similarity-

based approach: competitive accuracy can be achieved 

without specialized hardware such as GPUs, enabling fast 

evaluation and deployment even in resource-constrained 

environments. 

5. RESULTS 

5.1. Main Comparison with Prior Work 

Table 2 summarizes the average RMSE across LOCO folds 

for the F1 fault mode on the PHM2018 IME dataset under a 

common preprocessing and evaluation setup. The proposed 

similarity-based method achieved 453.53, which is 

substantially lower than the ATCN-LSTM baseline (597.35 

s). Baseline values for RFR, MLP, LSTM, TCLSTM, DW-

GRU, DW-GRU-FCs, HF-MS-MBTransformer, and ATCN-

LSTM are taken from Darwish et al., 2024. The proposed 

result is obtained in this study. Among the methods listed in 

Table 2, the proposed approach attains the lowest error, 

providing a strong reference point for the subsequent 

analyses. 

Table 2. Average RMSE for F1 fault mode 

Model RMSE (F1) 

RFR 5476 

MLP 5196 

LSTM 1469 

TCLSTM 601.47 

DW-GRU 1014 

DW-GRU-FCs 998 

HF-MS-MBTransformer 646.42 

ATCN-LSTM (baseline) 597.35 

Proposed (Similarity-based) 453.53 

 

5.2. Representative Predictions 

Figure 2 shows representative prediction results for selected 

cycles. The trajectories show that the calibrated health 

indicator and neighbor-based estimation produce monotonic 

and smooth predictions that track degradation over the tail 

region. The predicted RUL trajectory closely follows the 

ground truth over the entire region, with only minor 

deviations observed. 

Figure 2. Examples of predicted RUL vs. ground truth for 

representative cycles 

5.3. Sensitivity to Hyperparameters 

One-factor-at-a-time sweeps were conducted around the 

default configuration in Table 1, varying a single parameter 

while holding the others fixed at the best setting identified in 

preliminary trials. Evaluation followed the LOCO protocol 

under the common preprocessing setup. Figure 3 reports 

RMSE as a function of each parameter: (a) number of 

selected features 𝑘, (b) derivative window, (c) smoothing 

window, (d) blend factor 𝜆, and (e) late-life weighting 

exponent 𝛾. 

For the number of selected features 𝑘 (Fig. 3a), performance 

improved as 𝑘 decreased, with the best result achieved at 𝑘=1. 

This indicates that a single highly informative feature 

dominated the degradation representation for fault mode F1. 

The derivative window length (Fig. 3b) and the smoothing 

window length (Fig. 3c) produced moderate variations, with 

settings of 3–5 for the derivative window and 9 for the 

smoothing window providing the most favorable results. The 

blend factor 𝜆 (Fig. 3d) showed a tendency toward smaller 

values being more effective, while the late-life weighting 

exponent 𝛾 (Fig. 3e) had only minor influence within the 

tested range. 
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Figure 3. RMSE vs. hyperparameter settings. (a) number of 

selected features k, (b) derivative window length, (c) 

smoothing window length, (d) blend factor λ, and (e) 

weighting exponent γ 

5.4. Summary of Findings 

Across the PHM2018 IME evaluation under a common 

preprocessing and LOCO setup, the proposed similarity-

based approach achieved lower average RMSE than the deep 

baseline used for reference (Table 2). Representative 

examples indicate that the calibrated, neighbor-based 

predictions are monotonic and smoothly track the 

degradation trajectory over the tail region (Figure 2). One-

factor sensitivity analyses further show consistent trends: 

performance improves as the number of selected features 𝑘 
is reduced, with the best result obtained at k=2; shallow 

optima are observed for the derivative window in the 3–5 

range and for the smoothing window around 9; smaller values 

of the blend factor 𝜆 are generally favorable within the tested 

range; and the late-life weighting exponent 𝛾 has only minor 

influence (Figure 3). Taken together, these results indicate 

that the method delivers competitive accuracy on F1 while 

maintaining simple, interpretable behavior of the predicted 

RUL trajectories. 
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6. DISCUSSION 

The experimental results indicate that a similarity-based 

methodology can achieve competitive Remaining Useful Life 

prediction for semiconductor manufacturing equipment. On 

the PHM2018 IME task, the approach attained lower average 

RMSE than a strong deep baseline (ATCN-LSTM) under a 

common preprocessing and LOCO evaluation setup (Section 

5.1). Representative trajectories further suggest that the 

calibrated, neighbor-based predictions evolve monotonically 

and smoothly over the tail region (Section 5.2), which is 

desirable for maintenance decision-making. 

The reasons for the comparatively strong performance on F1 

are not yet fully understood and merit further study. Potential 

contributing factors include differences in the degradation 

mechanisms specific to F1, the number and coverage of 

available cycles, and the signal-to-noise ratio of the most 

informative sensor channels. Future analyses could 

incorporate systematic feature-importance profiling, regime-

specific trajectory comparisons, and statistical assessments of 

cycle-level variability to clarify whether the observed gains 

arise from intrinsic properties of the F1 failure mode or from 

characteristics of the data distribution (cf. Section 5.3). 

The PHM2018 IME dataset comprises three failure modes 

(F1–F3). The present study concentrates on F1 to provide a 

clean and reproducible benchmark against a widely reported 

deep baseline (ATCN-LSTM) and to isolate the contributions 

of the similarity-based pipeline. This focus is consistent with 

prior practice in the IME literature when establishing method 

behavior under a single, well-defined condition. 

Generalization across modes remains to be investigated. 

Extension is expected to be straightforward in principle 

because the pipeline is mode-agnostic but will require mode-

specific validation given differences in degradation 

mechanisms, class balance, and sensor salience. 

The scope of the present study was limited to Tool 01_M02 

and the F1 fault mode, following prior practice in the IME 

literature. While this setting provides a clear and reproducible 

benchmark for comparison with deep baselines, extending 

the applicability to other fault modes and tools remains an 

important direction. Promising avenues include data 

augmentation, few-shot learning strategies, and the use of 

pre-trained time-series representations to improve robustness 

when fewer cycles or more irregular signals are encountered. 

An additional advantage lies in computational efficiency. The 

full LOCO evaluation (62 folds) completed in approximately 

one minute on a CPU-only workstation (≈1.0 s per fold), 

without specialized hardware (Section 4.5). This lightweight 

profile suggests that similarity-based prediction can be 

deployed rapidly and iterated frequently in production 

settings, providing a practical alternative to resource-

intensive deep architectures while preserving interpretability 

of the prediction basis. 

7. CONCLUSION 

A similarity-based methodology for Remaining Useful Life 

prediction in semiconductor manufacturing equipment has 

been presented. The pipeline which consisting of regime-

aware normalization, supervised health-indicator 

construction, monotonic calibration, and neighbor-based 

estimation was evaluated on the PHM2018 IME dataset (Tool 

01_M02, F1) under LOCO evaluation. The approach 

achieved an average RMSE of 453.53, outperforming a 

strong deep baseline (ATCN-LSTM, 597.35) while 

preserving interpretability of the prediction basis and a 

simple implementation pathway. 

Beyond accuracy, the method exhibits a favorable 

computational profile: the full 62-fold evaluation completed 

in approximately one minute on a CPU-only workstation 

(≈1.0 s per fold), suggesting that rapid iteration and 

deployment are feasible on commodity hardware. These 

characteristics position similarity-based prediction as a 

lightweight and industrially practical alternative to resource-

intensive deep architectures for complex manufacturing 

systems. 

The present study focused on F1 to provide a clear and 

reproducible point of reference. Extending the methodology 

and evaluation to F2 and F3, as well as to additional tools and 

operating conditions, represents a natural next step to assess 

cross-mode generalization. Promising directions include data 

augmentation, few-shot learning strategies, and the use of 

pre-trained time-series representations, as well as hybrid 

frameworks that combine the transparency of similarity-

based estimation with the representational capacity of 

modern deep models. 
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