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ABSTRACT

Semiconductor manufacturing equipment poses a demanding
setting for Remaining Useful Life (RUL) prediction due to
regime-rich operation, heterogeneous sensors, and practical
requirements for interpretability and rapid deployment. This
work examines a similarity-based alternative on the
PHM2018 ion mill etching (IME) dataset, using Tool
01_MO02 and the F1 fault mode as a case study. The pipeline
comprises four stages: (i) regime-aware normalization, where
operating-condition features are standardized and clustered
on the training partition and sensor channels are expressed as
cluster-wise z-scores; (ii) supervised health-indicator
construction via weighted Ridge regression using correlation-
selected channels with time-normalized derivatives; (iii)
monotonic calibration that blends the indicator with a simple
time prior and fits an isotonic mapping; and (iv) neighbor-
based estimation in which a quadratic is fitted to each training
trajectory and test-time RUL is inferred by distance-weighted
aggregation across nearest trajectories.

Evaluation follows a leave-one-cycle-out (LOCO) protocol
under a common IME preprocessing setup (active-state
filtering and tail restriction at RUL < 5000). On FI, the
approach attains an average RMSE of 453.53, outperforming
a state-of-the-art baseline (ATCN-LSTM, 597.35). One-
factor sensitivity analyses show consistent trends:
performance improves as the number of selected features
decreases; shallow optima appear for the derivative window
and smoothing window; smaller blend factors are generally
favorable; and the late-life weighting exponent has minor
influence. The computational profile is lightweight: the full
62-fold LOCO evaluation completes in about one minute on
a CPU-only workstation (=1.0 s per fold), facilitating rapid
iteration and deployment. These results indicate that a
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similarity-based framework which centered on regime-aware
indicator design, monotonic calibration, and neighbor
matching can deliver competitive accuracy while preserving
transparency and practical efficiency for industrial PHM.

1. INTRODUCTION

Semiconductor manufacturing equipment plays a pivotal role
in sustaining progress in integrated circuit and photovoltaic
industries, yet failure prognostics remains challenging due to
regime-rich operation, heterogeneous sensors, and complex
subsystem interactions. Downtime from unexpected failures
or scheduled maintenance can incur substantial losses in
high-volume production.

Prognostics and Health Management (PHM) addresses these
challenges by estimating Remaining Useful Life (RUL) to
support condition-based maintenance. Over the past decade,
data-driven approaches, especially deep models such as
LSTM and TCN, have achieved strong results on benchmark
datasets. However, they often require large, labeled datasets
and significant computational resources, and their limited
interpretability can hinder industrial adoption.

As an alternative, similarity-based prediction estimates RUL
by comparing a target trajectory with previously observed
ones. This family of methods is appealing for semiconductor
equipment, where fault data are relatively scarce, operating
conditions vary across runs, and traceability of predictions is
important for industrial adoption. By focusing on relative
similarity rather than learning a global mapping, similarity-
based approaches can remain data-efficient and transparent
while aligning with standard evaluation practice.

In this study, a similarity-based methodology is evaluated on
the PHM2018 ion mill etching (IME) dataset as a case study.
The pipeline integrates regime-aware normalization,
supervised  health-indicator ~ construction,  monotonic
calibration, and neighbor-based estimation, and is assessed
under leave-one-cycle-out (LOCO) evaluation to enable
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direct comparison with deep baselines. Results show that the
approach outperforms a state-of-the-art deep model, while
preserving computational efficiency on CPU-only hardware,
positioning it as a lightweight and interpretable alternative for

industrial RUL prediction in complex manufacturing systems.

2. RELATED WORK

Recent surveys on PHM identify RUL prediction as a core
enabler of condition-based maintenance and document an
ongoing shift from physics-based modeling to data-driven
and deep learning approaches, while highlighting persistent
challenges in data scarcity, operating-condition shift,
interpretability, benchmarking practice, and deployment cost
(Ferreira & Gonaalves, 2022; Berghout & Benbouzid, 2022;
Wu et al., 2024; Liu et al., 2025). These reviews commonly
motivate hybrid or lightweight alternatives that balance
accuracy with transparency and practical efficiency.

Within manufacturing, semiconductor equipment has
emerged as a representative and demanding RUL setting due
to regime-rich operation and heterogeneous sensor suites. A
concrete line of work has coalesced around the PHM2018
IME dataset: recurrent baselines for the flowcool subsystem
have been explored (Wu et al., 2021); hybrid TCN-LSTM
with attention has been proposed to capture both local and
long-range dependencies (Hsu et al., 2022); transfer-learning
pipelines align tools or conditions prior to fine-tuning (Liu et
al., 2021); and Transformer-based variants introduce channel
re-weighting or multi-scale, multi-branch temporal encoders
(Yuan & Wang, 2023; Yuan & Wang, 2024). Within this
stream, ATCN-LSTM (Darwish, 2024) is frequently adopted
as a strong deep baseline and serves as the principal point of
reference for comparison in the present study.

In parallel, similarity-based prediction (SBP) has been
surveyed as an interpretable and lightweight alternative in
PHM: a degradation indicator is constructed, similarity to
historical trajectories is evaluated, and RUL is inferred via
neighbor aggregation (Xue et al., 2022). Foundationally,
trajectory SBP by Wang et al. (2008) and its extended
dissertation (Wang, 2010) formalized trajectory-level
matching and influenced numerous variants. This lineage is
followed here for IME by combining regime-aware indicator
design and neighbor-based estimation.

Taken together, prior work shows that IME RUL has been
dominated by deep neural pipelines whereas similarity-based
approaches have been less examined for semiconductor
equipment despite their interpretability and low compute.
This gap frames the present study, which assesses a
similarity-based methodology on PHM2018 IME dataset and
contrasts it with a strong deep baseline (ATCN-LSTM) under
a common evaluation setup (Darwish, 2024).

3. METHODOLOGY

The proposed approach consists of four main stages: (i)
regime-based normalization, (ii) supervised health indicator
(HI) construction, (iii) monotonic calibration, and (iv)
similarity-based RUL estimation using polynomial trajectory
fitting and neighbor search. A schematic overview of the
framework is shown in Figure 1.

Input Data
PHM2018 IME / Tool 01_M02 / F1 / RUL = 5000 sec

v

(i) Regime-based Normalization

« OC features (Voltage, Current, Pressure)
« StandardScaler & MiniBatchKMeans (train-only fit)
+ Cluster-wise z-normalization

v

(ii) Supervised HI Construction

- Feature selection (train-only):
corr(y) top-k + derivatives
+ Weighted Ridge (w = (1 — y)Xy})

v

(iii) Monotonic Calibration

* Blend: h_blend = A-HI + (1 — A)(1 — p_tail)
* |sotonic regression

(iv) Similarity-based RUL Estimation

« Poly2 fit per training cycle (HI_cal vs t)
« Neighbor search by residual distance
- Distance-weighted aggregation of RUL

v

Output
Predicted RUL (LOCO, per fold)

Figure 1. Overview of the proposed similarity-based RUL
prediction methodology

3.1. Regime-based Normalization

To mitigate variability arising from heterogeneous operating
conditions, operating-condition (OC) features (e.g., beam
voltage, beam current, flowcool pressure) are standardized
and clustered on the training partition of each fold.

Letx; € R™ denote the OC feature vector for sample i.
Standardization and clustering are performed as

Xi — |

Zl = , .

o " Tkelw., K}

Iz —mellz (1)

where u, o are the training mean and standard deviation of
the OC features and p, is the centroid of cluster k obtained
by MiniBatchKMeans. The learned scaler and centroids are
then applied to both training and test samples within the fold.
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Each sample is assigned a regime label c;.

Given the regime labelc;, each sensor channel s is normalized
in a cluster-wise manner to capture deviations relative to its
regime:

Si — Hsg;
Sign = _ 2

Osc; T €
with pg, and ag., computed on the training partition for
regime ¢;, and small constant € > 0 added to avoid division
by zero when within-regime variance is negligible. This
transformation reduces between-regime variance while
preserving regime-consistent degradation trends, providing a
common scale on which feature selection and HI construction
(Section 3.2) operate effectively.

3.2. Feature Selection and Health Indicator
Construction

A supervised target is defined on the tail region as
RUL;
RUL pax
where RUL,,,, is specified in Section 4.2. From cluster-wise
normalized sensor channels s; ,, (Section 3.1), the top-k

features are selected on the training partition using Pearson
correlation with y:

yi = € [0,1] ®)

Cov(s,y)

p(s,y) = ,F = {s:top-k by |p(s, V)[} 4)

sOy

To capture short-horizon change, finite-difference

derivatives are added for each s € F:

S; — Sij—
= (5)
ti—tiq

where t; denotes elapsed time in seconds within a cycle and
d denotes a window of length; when t; —t;_; < 0 the
derivative is set to 0 and optionally clipped to a bounded
range for numerical robustness. Time-progress covariates
Dean @Nd pZ,; are further included. The resulting feature
vector is

z; = [Si,zn (ste!F); Si(d) (s'€1F); Prairis ptzail,i] €R™ (6)
A weighted Ridge model is then fitted to construct a health
indicator (HI). Let Z, denote standardized features (mean—
variance scaling on the training partition). The HI prediction
is

ho=f(z)=w'Z )

with parameters obtained by

w=agmin ) wili-wTz+adwll(8)

i€Dtrain

w

Here, w; = (1 — y;)Y assigns greater importance to late-life
samples, « is the Ridge regularization parameter, and y

controls the degree of weighting. The resulting HI trajectory
reflects degradation progression in a data-driven yet
interpretable manner.

3.3. Monotonic Calibration

To promote a monotonic degradation profile, the predicted
HI is blended with a simple time-based prior and then
calibrated by isotonic regression. The blended indicator is
defined as

h?lend — ﬂjl\l + (1 - l)(l - ptail,i) (9)

where A € [0,1] controls the contribution of the model
prediction versus the prior. An isotonic mapping g (-) is then
fitted on the training partition of each fold and applied to both
training and test samples within the fold:

g =arg min

2
g€Elsotonic Zi (yl - g(h?lend)) (10)
hi' = g(hy'*) (11)

The learned mapping enforces a monotone relationship
consistent with the decreasing target in the tail region,
yielding a calibrated trajectory h°* that is smoother and
aligned with expected degradation.

3.4. Similarity-based RUL Estimation

For each fold, the calibrated HI trajectory of every training
cycle is approximated on the normalized tail time t € [0,1]
by a quadratic

RP°Y (t) = a,t? + b.t + c. (12)

fitted on that training cycle’s h°* (t). Given a test trajectory
observed up to t*, let T* c [0, t*] be the sampled grid. The
dissimilarity between the test and a training cycle c is
measured by the mean absolute residual

1
d@=—:§ |h&l(£) — B2V ()] (13)
|T | teT*

The k training cycles with the smallest d(c) form the
neighbor set v (if fewer than k candidates are available, all
available neighbors are used).

To map the test end-point to the neighbor’s time scale, t', C
[0, 1] is obtained by solving

ast'’> + b.t' + c, = h& (t") (14)
If two admissible real roots exist in [0, 1], the one closest to

t* is selected. If no admissible root exists, that neighbor is
skipped. The neighbor-specific RUL is then

RUL, = (1 —t.) - RUL 4y (15)

Finally, the prediction is aggregated with distance-based
weights
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m — ZceN(d(C) + 6)_p }_?ULC (16)

Yeen(d(c) +€)7P
where N is the set of neighbors, € > 0 safeguards numerical
stability and p > 0 controls the decay with distance. All
quantities used for fitting (quadratic coefficients and
distances) are computed on training cycles within the fold,
and the resulting prediction is evaluated on the held-out test
cycle.

4. EXPERIMENTAL SETUP

This section outlines the dataset, preprocessing pipeline,
evaluation protocol, hyperparameter configuration, and
computational environment used in the study.

4.1. Dataset

Experiments were conducted on the PHM2018 IME dataset,
which contains multivariate condition-monitoring records
from twenty tools. The dataset provides 24 feature variables
sampled at 4-second intervals, comprising five categorical
attributes (e.g., wafer ID, tool ID, recipe) and nineteen
numerical sensor channels (e.g., voltage, current, pressure,
flow). Three failure types are annotated: F1 (Flowcool
Pressure Dropped Below Limit), F2 (Flowcool Pressure Too
High Check Flowcool Pump), and F3 (Flowcool Leak).

In this work, the scope is restricted to Tool 01_MO02 and the
F1 fault mode as a case study, consistent with prior work.
Run-to-failure traces were consolidated into cycles and RUL
labels were assigned accordingly.

4.2. Preprocessing

Raw records were prepared through a sequence of standard
steps prior to model training. First, only samples
corresponding to the active operating state were retained
(FixtureShutterPosition = 1). Each run-to-failure trace was
then consolidated into cycles, and an elapsed time axis was
computed per cycle relative to its start to provide a consistent
temporal reference.

Next, the dataset was restricted to the tail region, retaining
only samples with RUL < 5000; observations with RUL >
5000 were regarded as normal operating conditions and
excluded, following prior practice on this dataset. This
restriction emphasizes degradation progression and provides
a common prediction target across experiments.

Finally, regime-based normalization was applied to mitigate
variability —across operating conditions. Operational-
condition features (e.g. beam voltage, beam current, and
flowcool pressure) were standardized and clustered on the
training partition of each fold (MiniBatchKMeans). The
learned scaler and cluster centroids were then applied to both
training and test samples within the fold, after which cluster-
wise z-normalization was computed for all sensor channels to
express deviations relative to the assigned regime. These

steps yield a harmonized representation that supports the
subsequent feature selection and HI construction.

4.3. Evaluation Protocol

All experiments followed a leave-one-cycle-out (LOCO)
protocol at the cycle level. In each fold, a single cycle was
held out for testing, and the remaining cycles were used for
training. The preprocessing pipeline described in Section 4.2
was applied with all parameters estimated on the training
partition of the fold. The learned scaler, cluster centroids, and
regime statistics were then applied to the held-out test cycle.

Within each fold, feature selection (correlation ranking and
derivative construction), health-indicator fitting (weighted
Ridge), and monotonic calibration (isotonic mapping) were
performed on the training partition only. The calibrated
health indicator of each training cycle was used to construct
the neighbor models for similarity-based estimation;
predictions were subsequently generated along the tail of the
held-out test cycle.

Performance was quantified using RMSE and MAE. Unless
otherwise noted, the primary figure of merit is the average
RMSE across LOCO folds, reported in the main comparison
table; MAE is provided as a secondary indicator. All method
comparisons (including the deep baseline) were conducted
under the same preprocessing and evaluation protocol,
enabling a direct assessment on a common footing.
Hyperparameter settings referenced by the evaluation (e.g.,
number of neighbors, penalty/weighting, window lengths)
are summarized in Section 4.4.

IV,
RMSE = J—Z (RUL, — RUL;)* (A7)
N i=1
1oV
MAE = NZ | RUL, — RUL, | (18)
i=1

4.4. Hyperparameters

The principal hyperparameters are grouped by pipeline stage
and kept fixed across folds unless a one-factor sensitivity
sweep is reported in the Results section.

Table 1. Default values used in experiments

Ridge regression regularization: 10.0
Late-life weighting exponent: y 3.0
Blend factor: 4 0.6
Smoothing window 9
Derivative window 5
Number of selected features 8
Number of neighbors 8
Distance exponent: p 2.0
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4.5. Computational Environment

Experiments were conducted on a local workstation running
macOS 15.6.1 (arm64) with an 8-core ARM processor and 18
GB of memory. All experiments were executed on CPU only,
using Python and standard scientific libraries (NumPy,
pandas, scikit-learn). The runtime of the leave-one-cycle-out
evaluation was measured and the run time per fold was 1.0
second.

This efficiency highlights a key advantage of the similarity-
based approach: competitive accuracy can be achieved
without specialized hardware such as GPUs, enabling fast
evaluation and deployment even in resource-constrained
environments.

5. RESULTS

5.1. Main Comparison with Prior Work

Table 2 summarizes the average RMSE across LOCO folds
for the F1 fault mode on the PHM2018 IME dataset under a
common preprocessing and evaluation setup. The proposed
similarity-based method achieved 453.53, which is
substantially lower than the ATCN-LSTM baseline (597.35
s). Baseline values for RFR, MLP, LSTM, TCLSTM, DW-
GRU, DW-GRU-FCs, HF-MS-MBTransformer, and ATCN-
LSTM are taken from Darwish et al., 2024. The proposed
result is obtained in this study. Among the methods listed in
Table 2, the proposed approach attains the lowest error,
providing a strong reference point for the subsequent
analyses.

Table 2. Average RMSE for F1 fault mode

Model RMSE (F1)
RFR 5476

MLP 5196

LSTM 1469
TCLSTM 601.47
DW-GRU 1014
DW-GRU-FCs 998
HF-MS-MBTransformer 646.42
ATCN-LSTM (baseline) 597.35
Proposed (Similarity-based) 453.53

5.2. Representative Predictions

Figure 2 shows representative prediction results for selected
cycles. The trajectories show that the calibrated health
indicator and neighbor-based estimation produce monotonic
and smooth predictions that track degradation over the tail
region. The predicted RUL trajectory closely follows the
ground truth over the entire region, with only minor
deviations observed.

RUL Prediction
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Figure 2. Examples of predicted RUL vs. ground truth for
representative cycles

5.3. Sensitivity to Hyperparameters

One-factor-at-a-time sweeps were conducted around the
default configuration in Table 1, varying a single parameter
while holding the others fixed at the best setting identified in
preliminary trials. Evaluation followed the LOCO protocol
under the common preprocessing setup. Figure 3 reports
RMSE as a function of each parameter: (a) number of
selected features k, (b) derivative window, (c) smoothing
window, (d) blend factor A, and (e) late-life weighting
exponent y.

For the number of selected features k (Fig. 3a), performance
improved as k decreased, with the best result achieved at k=1.
This indicates that a single highly informative feature
dominated the degradation representation for fault mode F1.
The derivative window length (Fig. 3b) and the smoothing
window length (Fig. 3c) produced moderate variations, with
settings of 3-5 for the derivative window and 9 for the
smoothing window providing the most favorable results. The
blend factor A (Fig. 3d) showed a tendency toward smaller
values being more effective, while the late-life weighting
exponent y (Fig. 3e) had only minor influence within the
tested range.
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Figure 3. RMSE vs. hyperparameter settings. (a) number of
selected features k, (b) derivative window length, (c)
smoothing window length, (d) blend factor A, and (e)

weighting exponent y

5.4. Summary of Findings

Across the PHM2018 IME evaluation under a common
preprocessing and LOCO setup, the proposed similarity-
based approach achieved lower average RMSE than the deep
baseline used for reference (Table 2). Representative
examples indicate that the calibrated, neighbor-based
predictions are monotonic and smoothly track the
degradation trajectory over the tail region (Figure 2). One-
factor sensitivity analyses further show consistent trends:
performance improves as the number of selected features k
is reduced, with the best result obtained at k=2; shallow
optima are observed for the derivative window in the 3-5
range and for the smoothing window around 9; smaller values
of the blend factor A are generally favorable within the tested
range; and the late-life weighting exponent y has only minor
influence (Figure 3). Taken together, these results indicate
that the method delivers competitive accuracy on F1 while
maintaining simple, interpretable behavior of the predicted
RUL trajectories.
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6. DISCUSSION

The experimental results indicate that a similarity-based
methodology can achieve competitive Remaining Useful Life
prediction for semiconductor manufacturing equipment. On
the PHM2018 IME task, the approach attained lower average
RMSE than a strong deep baseline (ATCN-LSTM) under a
common preprocessing and LOCO evaluation setup (Section
5.1). Representative trajectories further suggest that the
calibrated, neighbor-based predictions evolve monotonically
and smoothly over the tail region (Section 5.2), which is
desirable for maintenance decision-making.

The reasons for the comparatively strong performance on F1
are not yet fully understood and merit further study. Potential
contributing factors include differences in the degradation
mechanisms specific to F1, the number and coverage of
available cycles, and the signal-to-noise ratio of the most
informative sensor channels. Future analyses could
incorporate systematic feature-importance profiling, regime-
specific trajectory comparisons, and statistical assessments of
cycle-level variability to clarify whether the observed gains
arise from intrinsic properties of the F1 failure mode or from
characteristics of the data distribution (cf. Section 5.3).

The PHM2018 IME dataset comprises three failure modes
(F1-F3). The present study concentrates on F1 to provide a
clean and reproducible benchmark against a widely reported
deep baseline (ATCN-LSTM) and to isolate the contributions
of the similarity-based pipeline. This focus is consistent with
prior practice in the IME literature when establishing method
behavior under a single, well-defined condition.
Generalization across modes remains to be investigated.
Extension is expected to be straightforward in principle
because the pipeline is mode-agnostic but will require mode-
specific validation given differences in degradation
mechanisms, class balance, and sensor salience.

The scope of the present study was limited to Tool 01_M02
and the F1 fault mode, following prior practice in the IME
literature. While this setting provides a clear and reproducible
benchmark for comparison with deep baselines, extending
the applicability to other fault modes and tools remains an
important direction. Promising avenues include data
augmentation, few-shot learning strategies, and the use of
pre-trained time-series representations to improve robustness
when fewer cycles or more irregular signals are encountered.

An additional advantage lies in computational efficiency. The
full LOCO evaluation (62 folds) completed in approximately
one minute on a CPU-only workstation (=1.0 s per fold),
without specialized hardware (Section 4.5). This lightweight
profile suggests that similarity-based prediction can be
deployed rapidly and iterated frequently in production
settings, providing a practical alternative to resource-
intensive deep architectures while preserving interpretability
of the prediction basis.

7. CONCLUSION

A similarity-based methodology for Remaining Useful Life
prediction in semiconductor manufacturing equipment has
been presented. The pipeline which consisting of regime-
aware normalization, supervised health-indicator
construction, monotonic calibration, and neighbor-based
estimation was evaluated on the PHM2018 IME dataset (Tool
01_MO02, F1) under LOCO evaluation. The approach
achieved an average RMSE of 453.53, outperforming a
strong deep baseline (ATCN-LSTM, 597.35) while
preserving interpretability of the prediction basis and a
simple implementation pathway.

Beyond accuracy, the method exhibits a favorable
computational profile: the full 62-fold evaluation completed
in approximately one minute on a CPU-only workstation
(=1.0 s per fold), suggesting that rapid iteration and
deployment are feasible on commodity hardware. These
characteristics position similarity-based prediction as a
lightweight and industrially practical alternative to resource-
intensive deep architectures for complex manufacturing
systems.

The present study focused on F1 to provide a clear and
reproducible point of reference. Extending the methodology
and evaluation to F2 and F3, as well as to additional tools and
operating conditions, represents a natural next step to assess
cross-mode generalization. Promising directions include data
augmentation, few-shot learning strategies, and the use of
pre-trained time-series representations, as well as hybrid
frameworks that combine the transparency of similarity-
based estimation with the representational capacity of
modern deep models.
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