Cleaning Maintenance Logs with LLM Agents for Improved
Predictive Maintenance

Valeriu Dimidov', Faisal Hawlader?, Sasan Jafarnejad® and Raphagl Frank*

1234 mterdisciplinary Centre for Security, Reliability and Trust (SnT)
University of Luxembourg
29 Avenue J.F. Kennedy L-1855, Luxembourg

firstname.lastname @uni.lu

ABSTRACT

Economic constraints, limited availability of datasets for re-
producibility and shortages of specialized expertise have long
been recognized as key challenges to the adoption and ad-
vancement of predictive maintenance (PdM) in the automo-
tive sector. Recent progress in large language models (LLMs)
presents an opportunity to overcome these barriers and speed
up the transition of PAM from research to industrial practice.
Under these conditions, we investigate the potential of LLM-
based agents to support PdAM cleaning pipelines. Specifi-
cally, we focus on maintenance logs, a critical data source
for training well-performing machine learning (ML) mod-
els, but one often affected by errors such as typos, missing
fields, near-duplicate entries, and incorrect dates. We evalu-
ate LLM agents on cleaning tasks involving six distinct types
of noise. Our findings show that LLMs are effective at han-
dling generic cleaning tasks and offer a promising foundation
for future industrial applications. While domain-specific er-
rors remain challenging, these results highlight the potential
for further improvements through specialized training and en-
hanced agentic capabilities.

1. INTRODUCTION

Industrial data-driven PdM initiatives involving automotive
vehicles often span several years due to the rarity of failures
and the need to accumulate extensive sensor data. In their
early stages, such projects primarily consist of passively col-
lecting operational data and maintenance logs. However, the
data acquisition process is typically neither monitored by hu-
mans nor supported by automated mechanisms to validate the
correctness of raw data. Consequently, the resulting datasets
are frequently noisy and require extensive cleaning before be-
ing used in downstream tasks.

These data quality issues are well-documented in the PdM
literature. For instance, the authors of (Prytz, Nowaczyk,
Rognvaldsson, & Byttner, 2015) report common problems in

truck maintenance logs, such as missing entries, manual in-
put errors, and low fault resolution. They note that main-
tenance logs were not originally designed for data mining
purposes and argue that such limitations introduce substan-
tial label noise into predictive models. Along the same lines,
the authors of (Del Moral, Nowaczyk, & Pashami, 2022) em-
phasize that real-world repair logs related to hospital steril-
izers often contain uncertain dates, undocumented interven-
tions, and records that do not reflect actual failures but rather
preventive maintenance activities. In addition, in an ad hoc
study aimed at identifying key data quality pitfalls that pre-
vent Finnish multinational OEMs from providing effective
after-sales maintenance services, the authors of (Madhikermi,
Buda, Dave, & Framling, 2017) highlight that technicians fre-
quently omit critical fields such as component codes, reason
codes, and action codes. These omissions severely hinder
root cause analysis, failure prediction, and the training of re-
liable models.

Currently, data cleaning activities are carried out at the
end of the monitoring phase of a PAM project. They fol-
low an iterative error-detection and error-repair cycle, rely-
ing on pipelines implemented through scripts and software
tools. Nevertheless, the process remains partly manual, time-
consuming, and error-prone, often failing to eliminate all
sources of inconsistency. As a result, some records cannot
be repaired and are discarded, while others are only partially
corrected, leaving residual noise that ultimately degrades the
performance of predictive models.

This challenge motivates the exploration of novel Al-driven
approaches, such as LLM-based agents, to enable more effi-
cient and reliable data curation in PdM. In particular, LLMs
offer the potential to shift the cleaning paradigm from batch-
oriented processing to stream-based, real-time correction,
allowing agents to detect and repair errors as records are
ingested. This study represents an initial step toward a
broader investigation into whether LLM-based maintenance

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

log cleaning can outperform traditional approaches. By
benchmarking LLLM agents across diverse noise types, we
aim to assess their strengths, limitations, and suitability for
industrial deployment. To support this investigation, our con-
tributions are fourfold:

1. Define a taxonomy of common noise patterns specific to
automotive PdM data.

2. Propose an open source framework for generating syn-
thetic logs with controlled noise. The framework, named
AgenticPdmDataCleaner, is publicly available'.

3. Benchmark multiple LLMs on cleaning tasks.

4. Analyze error types and limitations, providing guidance
for adapting LLM agents to industrial PdM settings.

The remainder of this manuscript is structured as follows.
Section 2 reviews related work on data cleaning techniques,
ranging from classical rule-based and probabilistic ap-
proaches to recent LLM-driven frameworks. Section 3
presents our framework for synthetic fleet data generation,
including the system model, data sources, and controlled
noise injection mechanisms designed to reproduce real-world
inconsistencies in maintenance logs. Section 4 introduces
our methodology, detailing the LLM-based agent framework,
task definitions, and evaluation setup. Section 5 provides
information about the benchmarking configuration and the
metrics used to evaluate the experiments. Section 6 reports
the benchmarking results, while Section 7 discusses the
scientific and industrial implications of our findings, em-
phasizing both the strengths and limitations of the proposed
approach. Finally, Section 8 concludes the paper and outlines
directions for future research.

2. RELATED WORKS

Classical data cleaning approaches rely on rule-based vali-
dation, statistical profiling, and integrity constraints to detect
and correct inconsistencies (Fan & Geerts, 2012; Ilyas & Chu,
2015). To overcome their limitations, (Chu et al., 2015) pro-
posed Katara as a system that leverages knowledge bases and
crowdsourcing. The system maps table semantics to exter-
nal knowledge, validates uncertain cases with human input,
and suggests top-k repairs for erroneous tuples, thereby com-
bining automated reasoning with selective crowd involve-
ment. HoloClean extends this line of research by introduc-
ing a probabilistic inference framework that unifies signals
from integrity constraints, external data, and statistical co-
occurrence patterns to perform holistic data repairing, signifi-
cantly improving repair quality compared to isolated methods
(Rekatsinas, Chu, Ilyas, & Ré, 2017).

Subsequent works, increasingly based on ML, divided the
data cleaning task into error detection and error correc-

'https://github.com/Vale92882/
agentic-predictive-maintenance-cleaning

tion. HoloDetect addresses detection by framing it as a few-
shot learning problem (Heidari, McGrath, Ilyas, & Rekatsi-
nas, 2019), while Raha automates the configuration of mul-
tiple detection strategies to minimize manual intervention
(Mahdavi et al., 2019). For correction, Baran provides a
unified framework that ensembles candidate repairs through
semi-supervised and transfer learning (Mahdavi & Abedjan,
2020).

More recently, large language models have been explored
as general-purpose engines for structured data curation.
(Narayan, Chami, Orr, & Ré, 2022) demonstrated that foun-
dation models like GPT-3 can be adapted to entity match-
ing, error detection, schema matching, and imputation via
prompting, achieving competitive performance with mini-
mal supervision. (Zhang, Dong, Xiao, & Oyamada, 2024)
extended this view by benchmarking GPT-3.5, GPT-4, and
GPT-4o0 as data preprocessors across multiple tasks, showing
that LLMs can rival specialized baselines when guided by
prompt engineering techniques such as zero/few-shot con-
ditioning, contextualization, and batch prompting. Beyond
static prompting, (Bendinelli, Dox, & Holz, 2025) introduced
a benchmark where LLM agents iteratively clean intention-
ally corrupted datasets through tool calls and performance
feedback, correcting simple row-level anomalies but strug-
gling with distributional shifts and contextual errors. Finally,
(Qi, Miao, & Wang, 2025) proposed CleanAgent, which
integrates declarative APIs with LLM-based agents to au-
tomate data standardization tasks such as date and address
formatting.

Despite these advances, the potential of LLM-based agents to
curate domain-specific PAM logs remains largely unexplored,
leaving an open question about their applicability to industrial
environments.

3. FRAMEWORK FOR SYNTHETIC FLEET DATA GEN-
ERATION WITH NOISE INJECTION

In the automotive sector, the release of production data is rare.
This is primarily due to privacy concerns and the reluctance
of OEMs and workshops to disclose details about equipment
reliability or internal processes. To address this limitation, we
developed a synthetic data generation framework that serves
as a proxy for the real-world scenarios we aim to investigate.
The log schema used in our framework is a simplified adap-
tation of the ontology proposed by (Woods, Selway, Bikaun,
Stumptner, & Hodkiewicz, 2024). Nevertheless, for the scope
of this study, the generated logs are sufficient.

The framework supports the generation of synthetic fleet data
in both tabular and time-series formats. It includes mech-
anisms for controlled noise injection into tabular data, en-
abling systematic evaluation of an agent’s ability to detect
and repair inconsistencies when correlating multiple tables
or linking tabular records with time-series signals. In the cur-

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Sensor Data Stream

F
(& [e)
o | @&
A\ (070)J #;F/

Edge
Devices

Automobiles

Fleet

Faulfy P (b)
Vehicle "
Healthy P
Vehicle "*7® (&)

Monitoring
Platform

H Vehicle / Sensors
© i Information
Retreival

@ J—
--------------- > .‘Q
Imaintenance record] -

Workshop Maintenance Log

Figure 1. Fleet Monitoring, Repair, and Maintenance Logging Process.

rent implementation, the fleet registry and time-series data are
generated without noise and serve as clean reference signals.
These can be leveraged by agents to infer or correct corrupted
entries in the maintenance logs.

A synthetic data generator provides several benefits. It en-
ables the creation of diverse datasets for studying the statisti-
cal significance of proposed methodologies and can be safely
ingested by LLMs without raising privacy concerns. Further-
more, given that LLMs tend to memorize benchmark datasets,
synthetic generators provide a means to overcome this issue
by allowing benchmarking on datasets with similar statistical
distributions but novel instances.

3.1. System Model

The overall architecture of the fleet monitoring and main-
tenance logging process is depicted in Figure 1. The fleet
F ={v1,va,...,un} consists of N vehicles, each equipped
with telematics devices that stream telemetry to a central
monitoring platform . When a failure is detected, the af-
fected vehicle is sent to a workshop W for repair, where tech-
nicians consult the platform P to retrieve diagnostic data and
vehicle information. Once the intervention is completed, the
maintenance activity is recorded in the maintenance log M,
which contains both administrative details—such as identi-
fiers, dates, and vehicle references—and technical details de-
scribing the affected system, subsystem, and component, the
activity performed, and additional contextual metadata. A
complete schema of M is provided in Section 3.2.4.

Modeling Assumptions

To isolate the impact of data quality issues in the maintenance
logs, we assume the following simplifications:

Al Fleet Homogeneity — all vehicles share the same make,
model, and component specifications.

A2 Fleet Staticity — no vehicles are added to or removed
from the fleet during the monitoring period.

A3 Uniform Operational Profile — all vehicles are as-
sumed to operate under the same usage patterns and duty
cycles.

A4 Single Maintenance Event Constraint — each vehicle
experiences at most one maintenance event.

A5 Centralized Maintenance Facility — all repairs are
performed at a single facility using a standardized main-
tenance log schema.

A6 Corrective Repairs — all the maintenance records are
related to corrective maintenance activities

Although these assumptions simplify the naturally diverse
and evolving characteristics of real-world fleet management,
and by extension, the preprocessing of maintenance record,
they enable the construction of a controlled benchmarking
dataset. Future developments will aim to relax these con-
straints to better reflect real-world conditions.

3.2. Data Sources

The process described in the previous section gives rise to
four data sources that capture different aspects of the fleet
monitoring and maintenance workflow: Fleet Registry, Sen-
sor Data, Service Operations Catalog, and Maintenance Log.
Together, they provide the foundation for validating, cleaning
and transforming maintenance records.

3.2.1. Fleet Registry

The fleet registry F stores the master records of all vehicles
in the monitored fleet. Each entry corresponds to a unique de-
vice installed on a vehicle and includes key identifiers such as
the device_id, name, license_plate, and VIN. Tem-
poral fields active_from and active_to define the op-
erational period during which the device was active. This reg-

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

(a) Fleet Registry

device_id name license_plate VIN

0 b754A (b754A) AHA4657 KT6HABKW6LWZD5747

1 b242F (b242F) CT9935 0T1UNZHC09032KBLY

2 DbI89E (b189E) KA4582 RKR3PCOK6HVW3ZSWA

3 b338E (b338E) P09928 N6NGFAHS53H7R4C44

(b) Signal Table (c) Service Operations Catalog

device_id date odometer km travelled System Subsystem Component Activity
0 b338E 2022-06-14 358156 196 0 Powertrain Engine Cylinder Head Repair
1 b338E 2022-06-15 358257 100 1 Brake System Hydraulic Brake Brake Pads Replace
2 b338E 2022-06-16 358257 0 2 HVAC Air Compressor Repair
3 b338E 2022-06-17 358257 0 Conditioning
4 b338E 2022-06-18 358257 0 3 Steering Rack and Pinion =~ Steering Rack Replace
5 b338E 2022-06-19 358257 0 4 HVAC Cooling Coolant Pump Replace
6 b338E 2022-06-20 358257 0
7 b338E 2022-06-21 358365 108
8 b338E 2022-06-22 358556 190
(d) Maintenance Log
wo_num start_date end_date license_plate system subsystem component activity work_description
WO129 2021-05-03 2021-05-07 AH4657 Powertrain Engine Cylinder Head Repair Repaired cylinder head.
WO0827 2021-01-02 2021-01-06 CT9935 Brake System Hydraulic Brake Brake Pads Replace Replaced brake pads.
WO0329 2021-08-31 2021-09-04 KA4582 HVAC Air Conditioning Compressor Repair Repaired air conditioning compressor.
WO0679 2022-06-16 2022-06-21 P0O9928 Steering Rack and Pinion ~ Steering Rack Replace Replaced steering rack.
Figure 2. Clean data excerpts: (a) Fleet Registry, (b) Signal Table, (c) Service Operations Catalog, (d) Maintenance Log.
(a) Maintenance Log

wo_num start_date end_date license_plate system subsystem component activity work_description label
WO129 2021-05-03 2021-05-07 (b754A) Powertrain ~ Engine Cylinder Head Repair Repaired cylinder head. Ml
WO827 2021-01-02 2021-01-06 CT9935 Brake Sysem Hydraulic Brake Brake Pads Replace Replaced brake pads. M3
WO0329 2021-08-31 2021-09-04 KA4582 HVAC Air Conditioning Repair Repaired air conditioning M4
WO0679 2022-06-16 2022-06-21 P0O9928 Steering Rack and Pinion Steering Rack Replace Replaced steering rack. M6
WO333 2022-06-16 2022-06-21 TEST - - - Test Testing the IT system. M5
WO0429 2021-08-31 2021-09-04 WI0000 HVAC Cooling Coolant Pump Replace Replaced worn-out ... M2

Figure 3. Noisy Maintenance Log.

istry serves as reference for linking vehicle identifiers across
sensor data, maintenance logs, and other datasets.

3.2.2. Sensor Data

The sensor dataset S contains time-stamped operational mea-
surements collected from onboard devices. In the current
implementation, it includes only a single signal, namely the
odometer_km reading for each vehicle, indexed by the
unique device_id and a date field. The odometer_km
values represent the cumulative distance traveled by the ve-
hicle at the given date, providing a monotonically increasing
metric of vehicle usage. The linkage of device_id to the
fleet registry ensures consistent association between sensor
readings and the corresponding vehicle metadata.

3.2.3. Service Operations Catalog

Each intervention performed during a workshop visit can be
mapped to a predefined taxonomy, referred to as the service
operations catalog. In our service operations catalog, each
workshop intervention is organized along a three-tier hierar-
chy. At the top level is the system, a broad functional do-
main of the vehicle such as Powertrain, Chassis, or Electrical.

Within each system, we distinguish subsystems that narrow
the focus of the task (e.g., the Engine or Transmission within
the Powertrain system). Finally, the most specific category
is the component, which identifies the exact part addressed
during the intervention. Beyond this hierarchical classifica-
tion, every record also specifies the type of activity, such as
replacement or repair.

The service operations catalog used in this work spans 10 sys-
tems, 26 subsystems, and 34 components across 142 entries.
Unlike the other data sources, it is static and was constructed
manually.

3.2.4. Maintenance Log

The maintenance log M contains structured fields that cap-
ture the administrative and technical aspects of a mainte-
nance intervention. Administrative fields include identi-
fiers such as the work order number (wo_num) as well as
temporal information (start_date, end.date) and the
license_plate used to link the intervention to a specific
vehicle. Technical fields specify the scope of the interven-
tion, from the high-level system down to the subsystem
and individual component, along with the performed

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

activity and its textual work_description. Addi-
tional metadata—such as the work_order_type indicating
whether the intervention was corrective, preventive or predic-
tive provides contextual information for subsequent analysis.

3.3. Noise Injection Framework

To realistically evaluate the ability of LLM-based agents
to clean maintenance records, we introduce a noise injec-
tion framework that systematically corrupts otherwise clean
synthetic logs. This framework is grounded in a taxon-
omy of common errors observed in industrial datasets—such
as identifier misalignments, missing values, and incorrect
dates—and provides mechanisms to reproduce them in a con-
trolled manner. By generating paired clean and noisy datasets
with configurable proportions of each noise type, the frame-
work enables reproducible benchmarking and fine-grained
analysis of model performance under diverse data quality
challenges.

3.3.1. Noise Taxonomy

In real-world PdM deployments, maintenance logs rarely
conform perfectly to their intended schema. Noise can arise
from human error, inconsistent data entry practices, or incom-
plete integration between workshop and fleet monitoring sys-
tems. For the purposes of our study, we denote the absence
of noise as MO and introduce six additional noise types:

M1 Vehicle identifier misalignment — The default vehi-
cle identifier field 1icense_plate is replaced with
device_id, name, or VIN, breaking the linkage be-
tween maintenance records and the fleet registry. As
shown in Figure 3a, record WO129 has (b754A) as

license_plate, whichis a device name in Figure 2a.

M2 Out-of-fleet vehicles — Records reference valid plates
belonging to vehicles outside the monitored fleet
F, introducing exogenous observations. For Ex-
ample, Figure 3a, record WO429 lists WIO000 as
license_plate, which is absent from the Fleet Reg-

istry (Figure 2a).

M3 Invalid values - Categorical fields (system,
subsystem, component, activity) contain to-
kens outside the controlled vocabulary (typos or non-
standard labels). For instance, in Figure 3a the record

WO827 has a typo in the field system.

M4 Missing values — One categorical field is left empty,
yielding structurally missing information. In Figure 3a,

record WO329 contains an empty component field.

MS5 Digital system test — Entries document installation, cal-
ibration, or testing of the monitoring system rather than
vehicle maintenance interventions and should be segre-
gated. Considering Table 3a, the record WO333 has nu-

merous field labeled as TEST.

M6 Wrong end dates — The end_date is inconsistent
with the intervention timeline inferred from oper-
ational signals. Specifically, record WO679 reports
end_date=2022-06-21, which conflicts with the usage
pattern for b338E in Table 2b.

These categories represent the primary types of noise ob-
served in a real-word log and fleet environment provided by
GrupoA, a Colombian multinational operating across various
industrial sectors, including automotive equipment manufac-
turing, machinery, and mining.

3.3.2. Noise Injection Mechanisms

Definitions

e N: Total number of entries to generate.

o T ={t1,ts,..

e 7w = (m,m,...,TK): Proportions of each noise type,
with S35 = 1.

* Dy, C D: Subset of entries of type ti, with |Dy| = m; N.

., tx }: Set of noise types

Each noise type ¢t € T is associated with a noise generators
Sk, which defines how corrupted or clean entries are created.
Regardless of the noise category, each generator yields two
aligned datasets: the clean records £ and the noisy records £’.
The framework is designed to be fully configurable, allow-
ing the user to adjust the proportions 75 of each noise type
to match specific experimental setups. Moreover, the noise
taxonomy is extensible: new noise types can be seamlessly
incorporated by defining additional generators and integrat-
ing them into 7. This design enables the creation of diverse
and realistic noise patterns, supporting both controlled exper-
iments and exploratory evaluations.

¢ Absence of Noise
Sp:&E—E

This generator returns the input entry unaltered. Itis used
to generate noise-free records and corresponds to t;, =
to, the special case representing absence of noise.

¢ Corruptive Noise
Sp:E—E

The generator receives a clean entry £ and applies a
transformation to produce a corrupted version £’.

¢ Generative Noise
Sk : @ — & !

The generator does not rely on an existing clean entry but
generates corrupted entries from scratch.

Table 1 maps each implemented noise type to the correspond-
ing class in our noise taxonomy.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Table 1. Classification of noise types

ID | Name Noise Type
MI1 | Vehicle id misalignment | Corruptive
M2 | Out-of-fleet vehicles Generative
M3 | Invalid values Corruptive
M4 | Missing values Corruptive
M5 | Digital system test Generative
M6 | Wrong end dates Corruptive

3.3.3. Fleet Data Generation

The fleet data generation process follows a two-step ap-
proach. First, we create a clean dataset that integrates in-
formation from the fleet registry, service operations catalog,
and sensor signals to produce consistent maintenance records.
This clean version serves as the ground truth. In the second
step, we regenerate the maintenance log by injecting con-
trolled noise according to predefined categories, while keep-
ing the other data sources unchanged. The result is a pair
of aligned datasets—clean and noisy—that enable systematic
benchmarking of LLM-based agents under realistic data qual-
ity challenges.

Clean Data Sources

The process of clean fleet data generation depends on three
key parameters: the time interval during which the fleet is
monitored, the country of registration, and a static service op-
erations catalog.

The generation begins with the creation of the device_table,
which lists all vehicles in the simulated fleet. For each vehi-
cle, a unique internal identifier is assigned, following a pre-
defined pattern (e.g., b742C), along with a license plate gen-
erated according to the country of registration format. Each
entry also includes a globally unique vehicle identification
number (VIN) and a display name, which by default is the
device id enclosed in parentheses. The number of entries in
this table is determined by the expected number of mainte-
nance records, as defined in Assumption Al.

Once the fleet registry is established, the maintenance table
is generated. Currently, all noise generators in the framework
inherit from a common noise-free schema £, which defines
the structure and content of clean maintenance records. Un-
der this schema, each vehicle is associated with an activity
randomly drawn from the service operations of the workshop.
The start date of each record is selected uniformly at random
within the monitoring period, and the end date is set between
four and seven days later. The textual work_description
is produced by a large language model instructed to in-
clude both the component and activity terms in a concise,
technician-style note.

The final stage involves producing the sensor time-series,
which records daily odometer readings for each vehicle
across the monitoring window. The simulation begins by as-

signing an initial odometer value uniformly at random be-
tween 0 and 300,000 km. Each subsequent day, the trav-
elled distance is drawn from a normal distribution with mean
1 = 200 km and standard deviation o = 20 km. Maintenance
periods influence the signal: no distance is recorded for days
entirely within a maintenance interval, while the first and last
days of such intervals contribute half of the sampled distance.

At the end of the clean data generation process, we obtain
the tuple (F,S, W, M), where F denotes the fleet registry,
S the sensor time-series, YV the workshop metadata, and M
the maintenance log. The clean maintenance log M serves as
the ground truth for all downstream evaluation tasks.

Noisy Data Sources

In the noise generation step, the maintenance table M is re-
generated while preserving the other data sources. Each noise
generator is invoked in the same sequence as in the clean gen-
eration process.

Corruptive noises (M1, M3, M4, M6) operate by copying the
clean records £ and modifying selected fields, whereas gen-
erative noises (M2, M5) create entirely new records £ with-
out referencing the clean dataset. Specifically, M1 replaces
the license_plate field with another vehicle identifier
(e.g., device_table, VIN); N3 invalidates service catalog
fields (system, subsystem, component, activity)
through fixed invalid labels, typos, field swaps, or mis-
matched hierarchy substitutions; M4 clears one or more cat-
egorical fields; M6 shifts the end_date field forward, in or-
der to create an inconsistency with the intervention timeline.
On the generative side, M2 produces valid-looking mainte-
nance entries linked to license plates absent from the mon-
itored fleet, and M5 synthesizes maintenance records docu-
menting testing of the fleet monitoring system.

At the end of the noisy data generation process, we obtain the
tuple
<‘F7 S? W? M/>7

where M is the noisy version of the maintenance log, replac-
ing the clean M from the noise-free dataset. Additionally, it
includes, for each record, a label indicating the applied per-
turbation operator (i.e., the specific noise type) or marking it
as noise-free when no corruption is present.

4. METHODOLOGY
4.1. LLM-empowered log cleaning

We propose to replace the traditional batch oriented log
cleaning process with an LLM empowered stream process-
ing pipeline. The key changes lies in two aspects. First, we
transition from offline batch processing, where log entries are
accumulated and cleaned retrospectively, to real time stream
processing, which enables immediate detection and correc-

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

>
Data | o
Sources —_%]

(2) '} <tools>

Log Cleaning API

accept

reject

update

LLM-based Agent

Figure 4. Agent environment with data sources and Log Cleaning APL. (1)
A noisy record m)_is provided to the LLM-based agent; (2) the agent op-
tionally queries enterprise data sources through database tools; (3) the agent
issues a structured action to the Log Cleaning API: accept, reject, or update.

tion of anomalies as records are ingested. Second, we aug-
ment the stream processing pipeline with a novel LLM-based
component. This component acts as an intelligent agent that
not only detects noisy or incomplete log entries but also per-
forms contextual repairs.

4.2. Agent Environment

To evaluate the ability of LLM-based agents to detect and
clean noisy maintenance logs, we design a digital environ-
ment that exposes two interfaces to the agent: (i) read-only
tools over the enterprise data sources (Section 3.2) and (ii)
a dedicated Log Cleaning API. The former is instantiated on
top of a relational DB while the latter is implemented as a set
of agentic output functions.

Table 2 summarize the DB tools used in our study. The agent
is equipped with capabilities to list the available database ta-
bles, inspect their schema, and query the data they contain. In
practice, the assumption that all relevant information resides
within a single data source does not always hold. However,
in our experimental setup, the focus is not on evaluating the
agent’s ability to operate across heterogeneous platforms, but
rather on assessing its capacity to successfully complete the
curation tasks.

The Log Cleaning API is specified in Table 3. This API en-
ables the agent to select exactly one of three actions on a
record based on it’s work order number field : accept, reject,
or update.

4.3. Task

The core task is formulated as a three-class classification
problem over individual maintenance log entries. Given a
noisy record m’, the LLM-based agent must select one of the
following mutually exclusive actions:

1. accept - the record is clean and requires no modification.

Table 2. Database tools available to the agent.

Tool Signature

list_tables ()

Purpose and Return

Enumerates available tables
so the agent can discover the
database surface before
issuing queries.

Provides schema
introspection for a given table
(columns and data types).
Executes a SQL SELECT
query with a row cap
(1imit) to avoid large
responses.

describe_table (table_name)

run-sql (query, limit)

Table 3. Log Cleaning API methods available to the agent.

Method Signature Purpose

accept (wo-num) Confirms the record as clean.

reject (wo_num) Marks the record as
out-of-scope or irreparable.

update (wo_num, field, wvalue) Applies asingle field-level

correction to the record
before accepting it.

2. reject - the record is irreparable or out-of-scope

3. update - the record contains correctable noise, and the
agent must apply a single-field correction.

We observe that noise-free records must always be accepted,
records affected by generative noise must be rejected, and
records affected by corruptive noise must be updated.

Figure 4 illustrates the expected end-to-end workflow. (1) A
raw record m/, is passed to the LLM-based agent. (2) The
agent orchestrates a short sequence of tool calls. (3) Based
on the gathered evidence, the agent must choose exactly one
action and submit it to the Log Cleaning APL

The outputs of the experiments fall into four categories. In
addition to the three valid actions, the task may fail due to
the agent’s inability to correctly invoke the available tools or
output functions. These failure cases are explicitly tracked to
assess the robustness of each model.

A key constraint in this study is that no examples must be pro-
vided in the prompt. The agent is guided solely by a system
prompt and task instructions, which define its role as a data
curator, list the available database tools, and specify the per-
mitted API actions. This design choice ensures that the agent
must generalize to unseen noise patterns. This constraint
reflects real-world PAM scenarios, where corrupted records
may arrive in isolation, noise patterns may evolve over time,
and prior examples may not be available or representative. As
such, the agent must rely on schema understanding, contex-
tual reasoning, and external data sources to make informed
decisions.

This setup allows us to assess the agent’s robustness and
adaptability in realistic, zero-shot conditions.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Table 4. Selected large language models for benchmarking: context and price
(per 1M tokens).

Model Prov. Ctx (k) Cost in/out
nemotron-nano-9b-v2 NVIDIA 131 $0.04/$0.16
gpt-0ss-20b OpenAl 131 $0.04/$0.15
gpt-oss-120b OpenAl 131 $0.072/%0.28
qwen3-next-80b-a3b-instr. Qwen 262 $0.098 /$0.391
kimi-k2-0905 MoonshotAl 262 $0.38/%$1.522
apt-5 OpenAl 400 $1.25/$10.00

4.4. Experimental Protocol

This research aims to evaluate the capability of LLMs to clean
noisy maintenance records. The evaluation is structured into
three main steps: environment generation, prompt engineer-
ing, and per-model evaluation.

Environment Generation Given a fleet size NV and a set
of per-noise proportions 7y, we instantiate R + 1 environ-
ments as described in Section 3.3.3, using distinct random
seeds to ensure statistical independence. Each environment is
associated with a parameter set 6, sampled randomly from a
predefined search space ©.

Prompt Engineering We select an environment and a large
language model (outside the evaluation set £LM) and fine-
tune a prompt p. The output of this step is a parametric
prompt template 7', which adapts to each individual record
m.

Per-Model Evaluation For each llm € LLM and each
environment—parameter pair (¢, #), we perform the following
steps:

1) Tabular Serialization. Flatten the noisy maintenance
log of environment € into an iterable collection My, =
m(, where each record is represented as a set of
field—value pairs.

2) Record Processing. For each record m in the serial-
ized maintenance log My, we construct a task-specific
prompt p tailored to the record’s content. This prompt
is then submitted to the selected language model, along
with the environment-specific parameters 6, resulting in
an action a. The action is propagated to the original
record to produce a cleaned version . Each cleaned
record is then added to the cumulative set of processed
records, denoted by M.

Finally, we compute evaluation metrics by comparing the
cleaned records M against the reference targets of environ-
ment env. These metrics are then aggregated across all envi-
ronments to produce a global performance summary for each

model. More details about the metrics will be provided in the
following sections.

Input: LLM, N, {m:},0, R

ENV « {};

forr < 1to R+ 1do
env + GenerateFleetEnv(N, {7 });
0 < SelectParameters(©);
ENV.append(env,d);

end

t +— BuildPromptTemplate(ENV.pop())

foreach [lm € LLM do

foreach (env,0) € ENV do

M’ <+ TabularDataSerialization(env.M’);

M« {};
foreach m’ € M/, do
p < BuildPrompt(t,m’);
a < CallLLM(p, llm, 6);
m < ApplyAction(m’, a);
M « M U .
end

end

end
Algorithm 1: Experiment Design

4.5. LLMs

We evaluate six production LLMs, grouped by capacity into
small (Nemotron-Nano-9B-v2), medium (gpt-oss-20B), and
large (Qwen3-Next-80B-A3B-Instruct, gpt-oss-120B, Kimi-
K2-0905, and GPT-5). These models have been chosen for
their agentic capabilities (tool/function calling and schema-
constrained outputs), long context windows, and diverse
provider ecosystems.

NVIDIA’s Nemotron is a 9B-parameter hybrid model that
combines Mamba-2/MLP layers with a small number of
attention blocks, targeting long-context reasoning at mod-
est compute. OpenAl’s open-weight gpt-oss models use
Mixture-of-Experts architecture (MoE). Gpt-0ss-20b acti-
vates 3.6B parameters per token, while the 117B model acti-
vates 5.1B. Qwen3-Next-80B-A3B-Instruct adopts a hybrid
MOoE layout, with 80B total parameters and 3B activated per
token for efficiency at 256k context. Kimi K2-0905 extends
the boundaries of sparse scaling, reporting 1T total param-
eters with 32B active per token and support for 256k-token
contexts. Finally, GPT-5 serves as a production baseline at
the top end of quality. OpenAl does not disclose parameter
counts or internal sparsity, so we treat it as a black-box dense
system and rely on the public interface for comparability.

Table 4 reports the context window sizes and token-level pric-
ing for each large language model selected for benchmarking.
These cost estimates are sourced from OpenRouterz, which

2https://openrouter.ai/

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Table 5. Error detection rate (EDR) and error corrected rate (ECR) by noise type and model

Noise nemotron gpt-oss-20b kimi-k2 qwen3 gpt-oss-120b gpt-5

EDR ECR EDR ECR EDR ECR EDR ECR EDR ECR EDR ECR
noise free 96.7% - 92.7% - 98.7% - 92.7% - 97.3% - 99.3% -
vehicle id mis. 0.0% 0.0% 6.7% 4.0% 6.0% 5.3% 6.7% 2.7% 9.3% 9.3% 27.7% 27.7%
out-of-fleet veh. 100.0% - 98.0% - 96.0% - 98.0% - 94.7% - 98.7% -
invalid value 24.7% 213% 727% 70.7% 82.0% 82.0% 86.0% 86.0% 81.3% 81.3% 83.7% 83.7%
missing value 7.3% 07% 953% 92.0% 813% 813% 933% 873% 993% 99.3% 100.0% 100.0%
digital system test ~ 98.7% - 97.3% - 95.3% - 56.0% - 94.7% - 99.7% -
wrong end date 0.7% 0.0% 0.7% 0.0% 0.0% 0.0% 4.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 6. LLM usage metrics per experiment and model

Model Request tokens Response tokens Time (s) Cost (USD)

nemotron 716250 + 14379 393667 £+ 8705 4230.52 + 786.67 0.09 £ 0.00

gpt-0ss-20b 1160641 + 50397 229529 + 18124 3543.66 +423.41 0.08 £ 0.00

kimi-k2 1921833 + 148116 48136 4 2736 3008.82 + 705.35 0.80 £ 0.06

qwen3 4944233 4+ 305278 119794 + 10829 3213.85+139.56 0.21 £0.01

gpt-oss-120b 1855565 + 48748 169320 4 4478 3907.89 + 448.30 0.18 £ 0.00

gpt-5 1043889 4+ 30472 455698 £ 14705 11051.15+1718.27 5.86 +0.17

provides unified access to a diverse set of commercial and
open-weight models through a standardized API. All prices
are reported per 1 million tokens, separated into input and
output rates, and reflect public pricing tiers at the time of eval-
uation.

5. PROMPTING, BENCHMARK CONFIGURATION AND
METRICS

Prompting All experiments in this study were performed
using zero-shot prompting. The prompt template was man-
uvally crafted and evaluated using GPT-5 Mini. The system
prompt, user prompt template, and instruction set are pro-
vided in the Appendix.

Dataset Configuration For all experiments, we fix the fleet
size to N = 210 vehicles and generate a total of 210 main-
tenance records per environment. The noise distribution is
uniform across all categories, with 30 records for each of the
six noise types (M7 to Mpg) and 30 noise-free records (My).

Despite the fact that real-world maintenance logs exhibit
highly skewed noise distributions (e.g., test records occur
sporadically, while typos are more frequent), this balanced
setup facilitates per-noise-type analysis.

We generate R = 31 independent environments using dis-
tinct random seeds to ensure statistical robustness. Each en-
vironment is associated with a pair of LLM-specific decoding
parameters, randomly sampled from the space:

© = {temperature € (0,0.2), topp € (0.7,1.0)}

This sampling introduces controlled variability in decoding
behavior, allowing us to evaluate model robustness under
slight changes in generation dynamics.

Retry Mechanism and Failure Handling To account for
transient failures and improve robustness, we implement a
structured retry mechanism during inference. Each record is
allowed multiple attempts to be processed successfully before
being marked as failed. The retry policy is defined as follows:

¢ Output generation: The model is allowed up to 50 re-
tries to produce a valid structured output conforming to
the Log Cleaning API schema.

* Tool invocation: If the agent fails to execute a tool call
(e.g., SQL query or schema inspection), it is allowed up
to 3 retries per tool.

* Record-level recovery: If a record fails due to persistent
output or tool invocation errors, the entire repair process
is re-executed up to 3 times before the record is defini-
tively labeled as failed.

This mechanism ensures that occasional decoding anomalies
or transient tool failures do not disproportionately affect the
evaluation metrics. All failure cases are explicitly tracked and
included in the final analysis to reflect the practical reliability
of each model under realistic deployment conditions.

Metrics The cleaned dataset M is compared against the
ground truth to compute:

¢ Error Detection Rate (EDR) — proportion of records
for which the correct action was selected.

¢ Error Correction Rate (ECR) — proportion of records
for which the correct field-level fix was applied (only for
update actions).

In addition to task-specific performance, we track the follow-
ing usage metrics for each experiment execution: total num-
ber of request and response tokens, total execution time (in
seconds), estimated cost (in USD).

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

6. RESULTS

Table 5 summarizes performance across six noise categories,
as well as the noise-free condition, using the EDR and, where
applicable, the ECR. Noise-free records were reliably han-
dled by all models: EDRs exceeded 92% across the board,
with GPT-5 reaching 99.3%. For generative noise, digital sys-
tem test entries were almost always flagged correctly. Most
models achieved near-perfect rejection, and GPT-5 led with
99.7% EDR.

Corruptive noise showed sharper separation between models.
Large models handled categorical typos and missing values
substantially better than smaller ones: GPT-5 attained 83.7%
EDR/ECR on typos and 100% on missing values, indicating
both accurate action selection and successful single-field re-
pair. In contrast, Nemotron struggled on the same categories
(24.7% EDR on typos and 7.3% on missing values), under-
scoring sensitivity to fine-grained edits. The two most chal-
lenging corruptive cases were wrong end dates and vehicle
identifier misalignments. All models failed to correct wrong
end dates (0% ECR), and only GPT-5 showed moderate suc-
cess on identifier misalignment (27.7% EDR/ECR). These re-
sults suggest that temporal consistency checks and cross-table
identifier resolution remain open problems for current agentic
setups.

Table 6 reports resource usage per experiment, revealing a
clear cost—quality trade-off. GPT-5 was the most expensive
and slowest configuration (average $5.86 and 11,051s per
experiment), consistent with its top performance on several
categories. Nemotron, while the least capable on correc-
tion tasks, was the most economical (about $0.09 per run).
Kimi-k2 and gwen3 offered a more balanced profile, deliver-
ing mid-range EDR/ECR with sub-$1 costs. Overall, higher
EDR/ECR on corruptive noise correlates with increased to-
ken usage and latency, whereas budget-friendly models pro-
vide fast, low-cost passes that may suffice for high-confidence
acceptance/rejection but lag on precise repairs.

7. DISCUSSION

We observed that the agentic approach enabled a shift from
batch processing to stream processing in maintenance log
cleaning. The methodology simulated stream processing by
handling one record at a time, which—through integration
with external tools—enabled intelligent and context-aware
data curation. A key advantage was the autonomy of the
agents: they operated without explicit cleaning task specifi-
cation. The agents also demonstrated contextual reasoning by
leveraging multiple tables in real time when inferring correc-
tions. Moreover, this approach enabled the extension of data
curation tasks to include time-series information, whereas tra-
ditional solutions were typically limited to tabular formats.

Notably, even small and medium-sized models demonstrated

the ability to perform cleaning tasks. For instance, Nemotron,
with only 9B parameters, successfully detected generative
noise, while GPT-OSS-20B handled invalid and missing val-
ues with a good degree of accuracy.

The response time for processing individual records ranged
from a few seconds to several minutes, which we consider
acceptable for small and medium fleet contexts, given the rar-
ity of failures.

Despite these promising results in performing sector-agnostic
data cleaning, the inability to handle domain-specific noise
remained a significant limitation. Errors detectable through
temporal misalignmentsand and entity association are pre-
cisely where LLM agents could provide the most value.

We believe that current LLMs have not been trained on struc-
tured, domain-specific cases and therefore lack the induc-
tive bias required to generalize effectively in such contexts.
Consequently, more advanced prompting strategies and fine-
tuning, though at the expense of autonomy, could be em-
ployed to improve performance in these areas.

8. CONCLUSIONS AND FUTURE WORK

In this study, we investigated the potential of LLM agents to
clean noisy maintenance logs in PdM applications. We intro-
duced a synthetic data generation framework that simulates
realistic noise patterns across seven categories, including both
generic and domain-specific anomalies. We benchmarked six
production-grade LLMs using a stream-based agentic setup,
where each model was tasked with classifying and repairing
individual log entries via structured API calls. Performance
was evaluated using error detection rate and error correction
rate, alongside usage metrics such as runtime, token con-
sumption, and cost. LLM agents performed well at identify-
ing corruptive noise, recognizing noise-free records, and car-
rying out domain-agnostic repairs. By contrast, they under-
performed on domain-specific noise patterns, where schema
and process knowledge are required.

Building on this initial investigation, several extensions are
envisioned to further advance the evaluation and the applica-
bility of LLM agents in automotive industrial settings. First,
the synthetic fleet data generator should incorporate an ex-
panded noise taxonomy that captures more realistic and com-
plex errors, such as multi-field corruptions, time-series in-
consistencies, inter-record contradictions, and semantic mis-
matches. Additionally, the data schema could be enriched to
include nested structures and optional fields, better reflect-
ing the intricacies of real-world maintenance logs. Improv-
ing agent performance will also require targeted fine-tuning
and the integration of persistent memory, enabling agents to
maintain context across multiple records and leverage histor-
ical decisions for more consistent and informed reasoning.

Overall, LLM-based maintenance log cleaning shows strong

10

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

potential to outperform traditional approaches in terms of au-
tonomy, flexibility, and real-time responsiveness. While cur-
rent limitations exist, we believe these can be mitigated. As
such, LLMs represent a promising direction for future PAM
data cleaning pipelines, especially as the technology contin-
ues to mature.

ACKNOWLEDGEMENT

This research was funded in whole, or in part, by the Lux-
embourg National Research Fund (FNR), grant reference
BRIDGES/2022/1S/17270233. For the purpose of open ac-
cess, and in fulfillment of the obligations arising from the
grant agreement, the author has applied a Creative Commons
Attribution 4.0 International (CC BY 4.0) license to any Au-
thor Accepted Manuscript version arising from this submis-
sion.

REFERENCES

Bendinelli, T., Dox, A., & Holz, C. (2025). Explor-
ing LLM agents for cleaning tabular machine learn-
ing datasets (No. arXiv:2503.06664). arXiv. doi:
10.48550/arXiv.2503.06664

Chu, X., Morcos, J., Ilyas, 1. F., Ouzzani, M., Papotti, P,
Tang, N., & Ye, Y. (2015). KATARA: A data clean-
ing system powered by knowledge bases and crowd-
sourcing. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data (pp.
1247-1261). ACM. doi: 10.1145/2723372.2749431

Del Moral, P., Nowaczyk, S., & Pashami, S. (2022). Filter-
ing misleading repair log labels to improve predictive
maintenance models. In Proceedings of the european
conference of the phm society 2022 (Vol. 7, pp. 110—
117). doi: 10.36001/phme.2022.v7i1.3360

Fan, W., & Geerts, F. (2012). Foundations of data qual-
ity management (Vol. 4). Morgan Claypool. doi:
10.2200/S00439ED1V01Y201207DTMO030

Heidari, A., McGrath, J., Ilyas, I. F, & Rekatsi-
nas, T. (2019). HoloDetect: Few-shot learn-
ing for error detection. In Proceedings of the
2019 international conference on management of
data (pp. 829-846). Retrieved 2025-08-13, from
http://arxiv.org/abs/1904.02285 doi:
10.1145/3299869.3319888

Ilyas, I. F., & Chu, X. (2015). Trends in cleaning relational
data: Consistency and deduplication. , 5(4), 281-393.
doi: 10.1561/1900000045

Madhikermi, M., Buda, A., Dave, B., & Framling, K. (2017).
Key data quality pitfalls for condition based mainte-
nance. In 2017 2nd international conference on system
reliability and safety (ICSRS) (pp. 474—480). IEEE.
doi: 10.1109/ICSRS.2017.8272868

Mahdavi, M., & Abedjan, Z. (2020). Baran: effec-
tive error correction via a unified context representa-
tion and transfer learning. , 713(12), 1948-1961. doi:
10.14778/3407790.3407801

Mahdavi, M., Abedjan, Z., Castro Fernandez, R., Madden,
S., Ouzzani, M., Stonebraker, M., & Tang, N. (2019).
Raha: A configuration-free error detection system. In
Proceedings of the 2019 international conference on
management of data (pp. 865-882). ACM. doi:
10.1145/3299869.3324956

Narayan, A., Chami, I, Orr, L., & Ré, C. (2022). Can foun-

dation models wrangle your data? , 16(4), 738-746.

doi: 10.14778/3574245.3574258

R., Nowaczyk, S., Rognvaldsson, T., & Byt-

tner, S. (2015). Predicting the need for ve-

hicle compressor repairs using maintenance records

and logged vehicle data. Engineering Applica-

tions of Artificial Intelligence, 41, 139-150. doi:

10.1016/j.engappai.2015.02.009

Qi, D, Miao, Z., & Wang, J. (2025). CleanA-
gent: Automating data standardization with LLM-
based agents (No. arXiv:2403.08291). arXiv. doi:
10.48550/arXiv.2403.08291

Rekatsinas, T., Chu, X., Ilyas, I. F, & Ré, C.
(2017). HoloClean: holistic data repairs with
probabilistic inference. , /0(11), 1190-1201. doi:
10.14778/3137628.3137631

Woods, C., Selway, M., Bikaun, T., Stumptner, M., & Hod-
kiewicz, M. (2024). An ontology for maintenance ac-
tivities and its application to data quality. , 715(2), 319—
352. doi: 10.3233/SW-233299

Zhang, H., Dong, Y., Xiao, C., & Oyamada, M.
(2024). Large language models as data prepro-
cessors (No. arXiv:2308.16361). arXiv. doi:
10.48550/arXiv.2308.16361

Prytz,

APPENDIX

11

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

[System Prompt

You are a meticulous data curator focused on
workshop maintenance logs.

When correcting records, you access the following
resources in the database:

e fleet.registry | contains all vehicles belonging to
the target fleet.

e service_catalog | defines valid categories and
their hierarchical structure for maintenance

records.

e signal_-odometer | tracks odometer readings for all
vehicles in the fleet.

Use these resources to validate and correct incoming
maintenance records.

Spot inconsistencies, check DB tables and propose
corrections when needed.

Figure 5. System Prompt and Agent Instruction

[User Prompt Template

You are given the next maintenance record:

(record)
Your task is to select exactly one of the following
actions and invoke the corresponding output

function:

« accept (work_order_number): the record is valid and
requires no changes.

« reject (work._order_number): the record is invalid
or out-of-scope for this fleet.

« update (work_order_number, field, value): the
record contains a correctable error; apply a
single-field fix.

Use the appropriate function to classify the record.

&

Figure 6. User prompt template used to guide agentic decision-making.

12

