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ABSTRACT

Engineering drawings such as CAD draft sheets are widely
used in manufacturing to document product structure, part
geometry, and dimensional specifications. While these doc-
uments contain valuable information, they are not typically
organized to support step-by-step assembly tasks, which can
present challenges for non-expert technicians during installa-
tion, maintenance, or repair. This paper presents a system
that automatically generates structured and human-readable
assembly instructions from CAD drafts by combining a vi-
sion model, an OCR model, and a language model. The vision
model, trained on a constructed synthetic dataset, was able to
detect mechanical components with an average precision score
of 95.2% on real CAD sheets, while the OCR model suc-
cessfully extracted dimensional information. These outputs,
together with existing description text, were processed by a
language model to produce clear and interpretable assembly
steps. A synthetic dataset was used to train the vision model,
addressing the lack of publicly available CAD annotations.
The results demonstrate that the proposed system improves the
interpretability and usability of engineering documentation in
assembly-related tasks.

1. INTRODUCTION

In modern manufacturing environments, consistent and accu-
rate production processes depend not only on advanced ma-
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chinery and automation but also on reliable technical docu-
mentation. Among various forms of documentation, assem-
bly instructions serve as a key resource for guiding techni-
cians through product construction and installation tasks. As
production systems become more complex, the demand for
clear, interpretable instructions increases, particularly in set-
tings where inexperienced or cross-functional personnel are
involved. At the same time, a shortage of skilled maintenance
and assembly technicians has been reported in many indus-
tries, due in part to the increasing complexity of tasks and
the limited supply of trained labor (Bocák, Holubek, & Tirian,
2022). These factors highlight the need for more accessible
and structured documentation to support both expert and non-
expert technicians.

Engineering drawings, such as Computer-Aided Design
(CAD) draft sheets, are commonly used to convey product
structure, part geometry, and dimensional specifications. In
most industrial settings, CAD models and their corresponding
draft sheets are readily available for each product, as part
of standard design and production workflows. While these
documents contain essential technical information, they are
not designed to provide step-by-step guidance for assembly.
Interpreting CAD drafts often requires domain expertise, and
the documents typically lack information such as tool usage
or the selection of compatible hardware. For less experienced
users, this can result in slower assembly processes or increased
reliance on external support.

This paper presents a system that automatically generates
structured and human-readable assembly instructions from
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CAD draft sheets by combining a vision model, an Optical
Character Recognition (OCR) model, and a large language
model (LLM). The vision model detects mechanical compo-
nents in the drawings, while the OCR model extracts dimen-
sional data. These outputs, along with existing textual descrip-
tions, are processed by a language model to generate step-by-
step assembly procedures. To overcome the lack of annotated
data for training, a synthetic dataset was generated using avail-
able CAD models. By combining these components, the pro-
posed system improves the usability of engineering documen-
tation and supports more accessible and consistent assembly
workflows.

The rest of this paper is structured as follows: Section 2 re-
views prior research on AI-based documentation and instruc-
tion generation. Section 3 details the proposed system archi-
tecture and implementation. Section 4 presents experimental
results and analysis, and Section 5 concludes the paper with a
discussion of findings, limitations, and future directions.

2. LITERATURE REVIEW

Assembly documentation supports not only initial product
build, but also maintenance, repair, and remanufacturing,
where correct sequencing and component handling directly af-
fect reliability, safety, and service quality. In industrial prac-
tice, technicians rely heavily on engineering drawings such
as CAD draft sheets to understand geometry, part relation-
ships, and dimensional specifications. Yet these drawings are
not organized as step-by-step procedures, and they often omit
explicit tool usage, hardware selection, and assembly order,
making them difficult for less-experienced personnel to inter-
pret efficiently. These limitations have motivated research on
transforming unstructured engineering documents into task-
oriented assembly guidance through computer vision, OCR,
and language model.

Recent advances show steady progress in the digitization and
interpretation of engineering drawings. The work on auto-
matic digitization of raster engineering drawings integrates de-
tection and text recognition for legacy mechanical drawings,
enabling structured extraction from 2D documents (Maupou et
al., 2024). Dedicated OCR pipelines for engineering drawings
further demonstrate robust text detection and table extraction
tailored to technical layouts (Villena Toro, Wiberg, & Tarkian,
2023). Beyond text, component- and topology-level under-
standing has improved through graph- and learning-based rep-
resentations for 2D drawings (Zhang et al., 2023) and few-shot
symbol detection in CAD-like diagrams (Jamieson, Elyan, &
Moreno-Garcı́a, 2024). In parallel, visually rich document un-
derstanding (VDU) has benefited from multimodal transform-
ers such as LayoutLMv3 (Huang, Lv, Cui, Lu, & Wei, 2022)
and OCR-free approaches like Donut (Kim et al., 2021), while
DocVQA benchmarks have established multi-modal evalua-
tion protocols for reasoning over documents that combine lay-

out, text, and figures (Tito, Mathew, Jawahar, Valveny, &
Karatzas, 2021).

For perception front-ends, one-stage object detectors such as
YOLOv7 provide accurate, real-time detection suitable for
structured technical imagery when training data are sufficient
(Wang, Bochkovskiy, & Liao, 2023). However, assembling
large annotated datasets for engineering drawings remains
costly. To mitigate this, recent studies have adopted synthetic
data generated from 3D CAD, domain randomization, and ren-
dering pipelines that reduce labeling effort while maintain-
ing strong sim-to-real generalization in manufacturing con-
texts (Pasanisi, Rota, Ermidoro, & Fasanotti, 2023; Schraml
& Notni, 2024; Monnet, Petrovic, & Herfs, 2024; Li, 2023).
Finally, integrating perception outputs with LLMs is emerg-
ing as a viable route to produce coherent, human-readable
procedural instructions from technical sources, including text-
to-instruction generation with ontology/RAG support and as-
sessments of LLM-based assistants in manual assembly set-
tings (Holvoet, van Bekkum, & de Vries, 2024; Colabianchi,
Costantino, & Sabetta, 2024; Duan et al., 2025).

While these studies demonstrate significant progress in dig-
itizing technical documents and generating procedural con-
tent, most still treat visual and textual modalities indepen-
dently, depend on domain-specific annotated datasets, or as-
sume well-structured instruction templates. Few works tackle
the combined challenges of interpreting unstructured CAD
draft sheets, where geometric information, dimensional anno-
tations, and symbolic text coexist in dense and ambiguous lay-
outs, and converting them into coherent, human-readable as-
sembly procedures without any manual labeling.

In contrast, the proposed approach introduces a unified percep-
tion language framework that not only integrates vision, OCR,
and language models, but also establishes a cross-modal rea-
soning process in which the LLM reconciles inconsistencies
between detected geometry and extracted text. Moreover, syn-
thetic datasets generated from 3D CAD renderings serve not
merely as data augmentation but as a domain bridging mech-
anism to overcome the representation gap between photoreal-
istic CAD images and abstract engineering drafts. This com-
bination enables scalable, annotation free generation of inter-
pretable assembly instructions, a direction largely unexplored
in prior work.

3. METHODOLOGY

3.1. System Architecture

The proposed system integrates a vision model, an OCR
model, and an LLM to convert CAD draft sheets into com-
plete, human-readable assembly instructions. The overall
workflow is illustrated in Figure 1. The CAD draft sheets con-
tain detailed geometric depictions of each mechanical compo-
nent, along with dimensional specifications, tool types, and a
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Figure 1. Proposed system architecture

brief procedural description outlining the intended sequence
of assembly. While this procedural description is concise and
not directly executable as an instruction manual, it serves as a
valuable reference for determining the correct order of opera-
tions.

The CAD drafts are processed in parallel by two detection
modules. The vision model identifies each mechanical compo-
nent, while the OCR model detects and reads text embedded in
the drafts, capturing screw specifications and tool information.
The procedural description present in the draft is also extracted
at this stage and preserved as a sequencing reference for later
use.

The outputs from these two models, together with the extracted
procedural description, are processed by the LLM, which is
guided by a system prompt to produce clear, document-style
assembly instructions. The LLM merges the visual and tex-
tual information, applies logical reasoning to ensure internal
consistency, and resolves incomplete or imperfect detections
by inferring plausible details from the available context. By
combining component recognition, dimensional and tooling
details, and sequence cues from the original draft, the system is
able to generate coherent, step-by-step assembly instructions
that maintain technical accuracy while improving clarity and
usability for human operators.

3.2. Data Acquisition and Preprocessing

The development of the proposed system required the prepa-
ration of CAD draft sheets and corresponding training data for
the vision model. The CAD drafts were designed using con-
ventional engineering drawing formats, then exported as PDFs
and converted to high-resolution images for processing. Since
publicly available datasets for this domain are scarce, synthetic

data generation was employed to create a sufficiently large and
diverse dataset.

Synthetic datasets were generated using Unity Perception.
3D CAD models of basic mechanical components were ar-
ranged in randomized positions and orientations to simu-
late realistic part layouts. Lighting conditions, rotation, and
placement of objects were varied to introduce visual diver-
sity. The illumination environment was adjustable, allowing
control over the position, angle, and intensity of the light
source as desired. Object orientation and placement were
also configurable. Object positions were randomly assigned
within a predefined spatial range (x, y, z), where each co-
ordinate was uniformly sampled within the specified bounds
[xmin, xmax], [ymin, ymax], [zmin, zmax]. The rotation of each
object was randomly generated over the full range of [0◦, 360◦]
for each axis (x, y, z). The total number of objects in the
dataset was 18, consisting of four distinct categories: two
types of screws, one base, and one top part attached to the
base. An example of the rendered scene is shown in Figure ??.
Unity Perception automatically provided object location meta-
data for each rendered image, eliminating the need for manual
annotation and enabling efficient preparation of training labels.

3.3. Model Training and Implementation

3.3.1. Vision Model for Component Detection

The vision module integrates two complementary detection
processes: mechanical component recognition and textual in-
formation extraction. Both operate on the same CAD draft in-
put, producing complete visual and textual data for instruction
generation.

For component recognition, YOLOv11 was selected due to
its favorable trade-off between accuracy, speed, and compu-
tational efficiency. YOLOv11 achieves higher accuracy with
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Figure 2. Generated image example using Unity Perception.

fewer parameters and faster inference by introducing efficient
modules that enhance feature extraction and attention (Jocher
& Qiu, 2024). The model was trained on the synthetic dataset
described in Section 3.2, enabling specialization for engineer-
ing drawings rather than natural images. At inference, the
model processes each draft as a high-resolution image and out-
puts a list of detected components.

In parallel, textual information is extracted using EasyOCR,
chosen for its robustness in handling varied orientations and
font styles common in CAD drafts. This stage retrieves di-
mensional and tool information for screws to ensure accurate
integration into the final instructions. The OCR outputs are
returned as structured text entries.

The results from component recognition, OCR extraction, and
procedural description parsing are combined into a single
structured dataset, which serves as the input for the LLM.

3.3.2. Large Language Model for Assembly Instruction
Generation

The final stage uses the open-source gpt-oss:20b model
via Ollama to convert the combined outputs into coherent,
human-readable assembly instructions. Inputs include the de-
tected component list, dimensional and tool details, and the
brief procedural description from the CAD draft, which serves
as a sequencing guide.

A task-specific system prompt directs the LLM to maintain the
correct assembly order and associate screw specifications and
driver types based on OCR data. When detections are incom-
plete or inconsistent, the LLM applies contextual reasoning to
reconcile discrepancies, ensuring technical accuracy. The out-

put is a step-by-step narrative that preserves the precision of
engineering documentation while improving clarity for human
operators.

4. EXPERIMENT AND RESULTS

4.1. Experimental Setup

A case study was conducted using the base part of the Igus
robolink robot system to evaluate the proposed method. The
CAD drafts for this component were created in a conventional
engineering drawing format, exported as PDFs, and converted
to high-resolution image pages for processing.

The synthetic dataset generated with Unity Perception was
split into training, validation, and testing sets to support model
development and performance evaluation. The YOLOv11
component detection model was trained from scratch using
this dataset, with input drafts resized to the network’s native
resolution and default hyperparameters applied.

All experiments were carried out on a workstation equipped
with an NVIDIA GeForce RTX 3060 GPU (12 GB VRAM),
an Intel Core i7 processor, and 40 GB of RAM, running the
Windows 10 operating system. The implementation was based
on PyTorch 2.5.1 with CUDA 12.1 support.

4.2. Results and Analysis

4.2.1. Result of Component Detection Model

The vision model was trained on a synthetic dataset of 40,000
images generated using Unity Perception. Its performance
was assessed using standard object detection metrics: preci-
sion (the ratio of correct detections to all detections), recall
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(the ratio of correct detections to all actual objects), and mean
average precision (mAP), which summarizes detection accu-
racy across classes and confidence thresholds.

Figure 3. Precision-Recall curves and mAP of the vision
model. The curves show that the model maintains high pre-
cision across most recall levels, indicating stable and reliable
detection performance for all component classes.

Figure 3 shows the precision–recall curves for each class,
along with the mAP at IoU threshold 0.5. The model achieved
an overall mAP of 0.952, with individual average precision
scores of 0.995 for BASE, 0.969 for TOP, 0.931 for screw 1,
and 0.913 for screw 2. With an average score of 95.2%, these
results demonstrate that the trained model is highly effective in
detecting both large mechanical components and smaller fas-
teners.

When applied to colored CAD renderings (Figure 4), the
trained vision model successfully detected all four target com-
ponent classes, which are BASE, TOP, screw 1 and screw 2,
with high confidence scores. The detection results closely
aligned with ground truth annotations, both in terms of bound-
ing box localization and correct class assignment.

However, performance declined when the same model was ap-
plied to engineering CAD draft sheets (Figure 5). The drafts
differ significantly from the training domain in three key
ways: (1) the absence of color and shading results in reduced
texture cues, (2) the presence of dense dimension annotations
and leader lines introduces visual clutter that can be mistaken
for object edges, and (3) line thickness and projection style
in technical drawings differ from the photorealistic appear-
ance of training renderings. These differences led to missed
detections, particularly for small parts such as screws, and

Figure 4. Detection result of rendered CAD image: detected
parts (right) and annotated parts (left).

caused incorrect object counts. A possible mitigation is align-
ing rendered CAD images with draft sheets and transferring
detected coordinates between domains. Since rendered CAD
images achieved near-perfect detection accuracy, their bound-
ing boxes could be calibrated to the draft sheet coordinate
system. This approach would allow missing parts in the draft
detection to be supplemented by the CAD results, improving
coverage for small or hidden components while maintaining
consistency with the draft representation.

Figure 6. OCR result of a CAD draft sheet: The OCR module
detected tool specifications directly from the drawing labels.

Alongside the visual detection process, the OCR module was
applied to read dimensional and tooling information directly
from the CAD draft sheets (Figure 6). It successfully iden-
tified screw size labels such as 3.4 mm and 3.9 mm, as well
as driver types including IP15 Torx Plus and T20 Torx. This
ensured that precise assembly details, which may not be visu-
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Figure 5. Detection result of CAD draft sheet: detected parts (right) and annotated parts (left)

ally distinguishable from geometry alone, were reliably cap-
tured. Even when the vision model missed components due to
differences in appearance between CAD models and technical
drafts, the OCR output preserved these critical specifications,
providing complete and accurate inputs for the instruction gen-
eration stage.

4.2.2. Result of Assembly Instruction Generation Model

The final stage employed the open-source gpt-oss:20b
model via Ollama to transform combined outputs from the vi-
sion and OCR modules into complete, human-readable assem-
bly instructions. Even though the CAD draft sheet detection
produced incomplete screw counts due to missed detections,
as shown in the figure 7, the LLM was able to infer and restore
the correct quantities by reasoning over the available textual
and visual data. In particular, it leveraged dimensional spec-
ifications and driver type details extracted by OCR to ensure
consistency across all fastening steps.

Figure 7 also demonstrates the difference between the con-
cise procedural description and the generated assembly in-
structions. The LLM output expanded the minimal input into
a detailed, logically ordered sequence that included specific
tooling requirements, fastening order, and verification checks.
Notably, even when the raw detection results were incomplete,
the final instructions provided accurate screw counts and asso-
ciated dimensions, ensuring technical correctness suitable for
real-world use.

While the results demonstrate that the proposed pipeline can
generate accurate and interpretable assembly instructions, the
current evaluation is limited to a single representative case.
The experiments were designed primarily to verify technical
feasibility, specifically, the integration of vision, OCR, and
language modules, rather than to measure user experience or
comparative performance. A broader validation, including

user studies to assess readability and task efficiency, will be
conducted in future work.

5. CONCLUSION

This study presented a multi-stage framework that integrates
a vision model, OCR, and a large language model to auto-
matically generate detailed, human-readable assembly instruc-
tions from CAD draft sheets. The vision model, trained on a
synthetic dataset of 40,000 images, achieved an overall mean
average precision (mAP) of 95.2%, with individual average
precision scores of 0.995 for BASE, 0.969 for TOP, 0.931 for
screw 1, and 0.913 for screw 2. While the model performed
reliably on colored CAD renderings, its accuracy decreased
when applied to engineering draft sheets due to differences in
color, annotation density, and visual style, indicating a domain
gap that requires further fine-tuning.

The OCR module successfully extracted all dimensional spec-
ifications (e.g., 3.4 mm, 3.9 mm) and tooling requirements
(e.g., T20 Torx, IP15 Torx Plus), ensuring that critical assem-
bly parameters were preserved even when visual detection was
imperfect. The LLM transformed the combined visual and tex-
tual outputs into complete, logically ordered instructions, and
in some cases, inferred more accurate fastening details than
those directly provided by the vision model.

Despite these promising results, the current system has limita-
tions. The vision model’s performance on draft sheets remains
sensitive to domain differences, and the LLM’s reasoning de-
pends heavily on the quality of its input data. Furthermore,
the evaluation focused primarily on a single case study, which
may limit generalizability to other product types and drawing
styles.

Future work will focus on fine-tuning the vision model
for CAD draft detection, incorporating real-world assembly
videos as an additional input source to capture richer con-
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Figure 7. Comparison between the original CAD draft description and the assembly guidance generated by the gpt-oss:20b
model. The LLM-generated instructions were derived from recognized dimensional and component information extracted
through the vision module, transforming descriptive text into structured, step-by-step assembly guidance.

textual information, and enhancing the system’s versatility
across varied assembly scenarios. User studies will be con-
ducted to assess how effectively the generated instructions im-
prove comprehension and assembly speed compared to tradi-
tional CAD drafts. Another promising direction is to align
CAD renderings with draft sheets so that high-confidence de-
tections from the renderings can be transferred to the drafts,
filling in missing details and reducing domain-related errors.
These developments aim to strengthen cross-format robust-
ness, improve detection accuracy, and broaden the applicabil-
ity of the proposed framework to diverse manufacturing and
maintenance documentation tasks.
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