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ABSTRACT

The rapid improvements of modern machine tools have be-
came new challenge of traditional maintenance operators.
While machine manuals are growing with new modules like
robot or pallet system, understanding and acting on these in-
structions of all facilities remains a challenge for operators.
This paper proposes a large language model based multi-
agent system to ask human operator’s need, to search man-
uals about the given error code, and to suggest maintenance
procedures. These sequences include action, user interface
target, preconditions, and expected outcomes, and are exe-
cuted by agent capable of interacting with Human—Machine
Interfaces. The multi-agent system is comprising four agents:
a chatbot, solution_finder, actor, and supervisor. Each agent
operates based on role-specific prompts that define their re-
sponsibilities and decision rules. Instead of relying on prede-
fined rule sets, the system interprets unfamiliar or previously
unseen alarms by reasoning over machine manuals and con-
text, enabling flexible and scalable maintenance. The system
was implemented on a commercial system of CNC machine
tools and successfully performed automatic responses to se-
lected alarms.

JONGSU PARK et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Appropriate maintenance is critical in manufacturing compa-
nies, where unexpected machine failures lead to significant
losses. While some maintenance tasks require technical ex-
pertise, a significant number of minor issues can be addressed
directly via Human—Machine Interfaces (HMIs) by adjusting
parameters or executing simple commands. In these cases,
the issue is resolved by conducting troubleshooting accord-
ing to error codes in the manual.

But understanding and following these instructions can be
difficult for unskilled workers especially. For instance, when
alarm message shows “G28 FOUND IN SEQUENCE”, the
troubleshooting instruction is “Perform the reference posi-
tion return”. Operators must interpret what each terminol-
ogy means (ex. G28 code or SEQUENCE), and also need to
know how return the reference position of each axis. Because
advanced machine tools have been fully customized, in par-
ticular, a single human operator is not possible to understand
all terminologies and all operation methods of many machine
manuals in a short time. This knowledge gap requires for
someone who assist and guide step-by-step instruction suit-
able to unskilled workers.

Recent advancements in Large Language Models (LLMs)
provide new opportunities for automating the interpretation
and execution of industrial maintenance tasks. LLMs can un-
derstand unstructured text, including technical manuals and
error logs, and generate contextually appropriate responses.
With the integration of LLM agents and tools, their applica-
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tions now extend beyond question answering to include task
execution such as code generation and robot control.

This paper presents a multi-agent framework powered by
an LLM to support autonomous maintenance of industrial
equipment. The system processes user inputs, including er-
ror codes, identifies corresponding procedures from manuals,
and converts them into executable action sequences. By rec-
ognizing the positions of User Interface (UI) components on
the HMI and executing each step, the system achieves au-
tonomous maintenance.

The framework consists of four agents: a chatbot agent that
communicates with the user to understand the task, a solution
finder agent that searches the manuals for appropriate proce-
dures and converts them into action steps, an actor agent that
performs HMI-level operations, and a supervisor agent that
coordinates the entire workflow. The system can handle unfa-
miliar or previously unseen alarms by reasoning over textual
documentation, enabling general-purpose maintenance with-
out relying on strictly predefined rules.

The proposed approach was implemented on the HMI of
a Computerized Numerical Control (CNC) machine tool.
The system successfully responded to operational alarms
by retrieving procedures and executing the necessary ac-
tions. These results demonstrate the potential of LLM-based
prompt-driven maintenance systems for use in real industrial
environments. Unlike ChatGPT with external servers, the
proposed framework employs an on-premise LLM to ensure
full data confidentiality within industrial facilities. This local
deployment prevents sensitive maintenance data from being
transmitted outside the factory network, and enables real-time
reasoning and control in latency-critical environments. The
main contributions of this paper are as follows:

1. Manual-driven troubleshooting interpretation: We pro-
pose a method that leverages LLMs to interpret error codes
and textual troubleshooting instructions from machine tool
manuals, thereby bridging the knowledge gap for unskilled
operators.

2. On-premises deployment for industrial security: We
ensure data confidentiality and low-latency reasoning by de-
ploying a fully local LLM within the factory network, ad-
dressing the security and privacy concerns inherent to cloud-
based solutions.

3. Multi-agent framework for autonomous maintenance:
We design a multi-agent architecture that coordinates user
interaction, retrieval of manual-based procedures, task plan-
ning, and execution, enabling scalable and flexible automa-
tion.

4. Executable HMI-level actions: We demonstrate auto-
mated maintenance through direct GUI manipulations on real

HMIs, showing how high-level reasoning can be grounded
into executable actions.

5. End-to-end system implementation and validation: We
implement the proposed framework on a CNC machine tool
HMI and validate its effectiveness by successfully respond-
ing to selected alarms, thereby showcasing the feasibility of
LLM-driven prompt-based maintenance in real industrial en-
vironments.

The remainder of this paper is organized as follows: Section
2 reviews related works of LLM based maintenance system.
Section 3 describes the system architecture composed of four
agents. Section 4 presents the experimental results of the pro-
totype. Section 5 discusses the advantages and limitations.
Section 6 concludes this paper with future directions.

2. RELATED WORK

In industrial environments, maintenance is essential for max-
imizing productivity and reducing lead time. For this rea-
son, recent studies have explored a variety of approaches
to predictive and preventive maintenance. CNN-LSTM hy-
brid models integrating vibration and temperature sensor data
have been used to predict component failures days in advance
(Garcia, Rios-Colque, Pefa, & Rojas, 2025). To address real-
time adaptability, IoT data streams have been leveraged to
dynamically prioritize maintenance tasks (Pinciroli, Baraldi,
& Zio, 2023). A preventive maintenance framework based on
a modified TPM methodology was implemented in an auto-
motive assembly line and reduced equipment failure rates by
15% (Hardt, Kotyrba, Volna, & Jarusek, 2021). Efforts have
also been made to develop containerized solutions. For ex-
ample, four primary stages of software maintenance, namely
image detection, scheduling, security measures, and evalua-
tion, have been compared (Malhotra, Bansal, & Kessentini,
2024).

However, most of these approaches focus on prediction or
detection. This means that even if a fault is anticipated or de-
tected, human intervention is still required to carry out the ac-
tual corrective actions, leading to delays and potential down-
time. Moreover, they require large amounts of historical sen-
sor data and domain-specific model training, and depend on
customized IoT infrastructure, which limits scalability and
delays deployment. To address these limitations, there is a
need for a system capable of interpreting maintenance in-
structions and executing them autonomously.

Unlike traditional rule-based or statistical models, LLMs
have been noted for their flexible reasoning and natural lan-
guage understanding, enabling adaptive operation in het-
erogeneous and dynamic environments (He, Treude, & Lo,
2025). The integration of LLMs into industry has been rec-
ognized as a promising approach for enhancing decision-
making and supporting human—machine collaboration (Shao,



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Basit, Karri, & Shafique, 2024). Research has also been con-
ducted on tuning LLM models to effectively understand ma-
chine tool equipment manuals and provide users with targeted
assistance based on that understanding (Cho, Park, & Um,
2024).

In industrial contexts, most LLM applications have remained
at the chatbot level, focusing primarily on natural language
understanding. Only recently has research advanced toward
using LLMs as active agents to support various industrial
functions.

Intelligent agents are autonomous entities that perceive their
environment, make decisions, and perform actions to achieve
objectives. While single-agent systems have been valued for
their simplicity, they face scalability limitations. Multi-agent
systems overcome these constraints by distributing responsi-
bilities among specialized agents, enabling parallelism, spe-
cialization, and fault tolerance. Several notable studies illus-
trate these advancements.

An LLM-based industrial automation multi-agent system
with validator and reprompting agents was developed to im-
prove control reliability and safety (Vyas & Mercangoz,
2024). A multi-agent framework combining mechanical,
electronics, control, and software engineering agents was de-
signed to produce functional prototypes with minimal hu-
man intervention (Wang et al., 2025). The LLM-Agent-
Controller was introduced as a domain-specific framework in
which a supervisor coordinated specialized agents for con-
troller design, modeling, analysis, and simulation (Zahedifar,
Mirghasemi, Baghshah, & Taheri, 2025).

MASDebugFW presented an LL.M-assisted debugging envi-
ronment for multi-agent industrial control systems, enabling
real-time inspection of agent states, condition-based break-
points, and stepwise execution in model-driven simulations
(Tezel & Kardas, 2025). DeCoAgent (Jin, Ye, Lee, & Qiao,
2024) employed LLMs within a decentralized framework
based on blockchain smart contracts, allowing secure and
trustless cooperation between industrial agents.

Collectively, these works demonstrate the flexibility, scala-
bility, and adaptability of LLM-based multi agents system,
while also emphasizing the need to address safety, large-
scale integration, and robustness for industrial deployment.
Building upon this foundation, this paper proposes a practi-
cal framework that uses a local LLM-based multi agents sys-
tem to secure the private data, while automatically executing
maintenance cases on the HMIL.

While recent studies have demonstrated the potential of
LLM-driven multi-agent frameworks for industrial control
and automation, most of these systems depend on cloud-
hosted models or simulated environments. For instance,
(Vyas & Mercango6z, 2024) relied on external APIs to co-
ordinate agentic control tasks, and (Zahedifar et al., 2025)

focused on conceptual controller design rather than execu-
tion on physical HMIs. Similarly, DeCoAgent (Jin et al.,
2024) emphasized decentralized cooperation but did not ad-
dress security constraints in factory networks. In contrast,
the present work deploys an entirely on-premise LLM that
performs retrieval, reasoning, and control within a closed in-
dustrial network. This local deployment ensures data confi-
dentiality, low latency, and direct interaction with real HMI
interfaces, representing a practical step toward secure and
fully autonomous maintenance. In other words, unlike cloud-
dependent or simulation-only approaches, this paper high-
lights a factory-ready, secure, and fully local multi-agent sys-
tem where LLM-driven reasoning directly translates into ex-
ecutable maintenance actions.

3. SYSTEM FRAMEWORK
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Figure 1. An architecture of the proposed system.

This paper proposes an autonomous maintenance system that
is based on a multi-agent architecture with a LLM at its core.
The system supports industrial equipment maintenance, re-
duces operator workload, and improves productivity.

The intended application involves maintenance tasks that can
be performed through basic HMI operations, for example pa-
rameter adjustments or mode changes. To resolve an alarm
or error without operator intervention, the problem context is
interpreted, the correct procedure is identified from machine
documentation, and the required actions are executed through
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Figure 2. Agent State and the data flow of the proposed system.

the HMI. By following official machine manuals, consistent
execution is ensured and maintenance information remains
accessible.

The proposed architecture is independent of specific equip-
ment types, which allows deployment across various ma-
chines. To meet security requirements in industrial envi-
ronments, a local LLM and Retrieval-Augmented Generation
(RAG) techniques are employed so that sensitive data is re-
tained within the facility(Lewis et al., 2020).

Figurel presents the overall control flow, showing how the
Supervisor agent coordinates the workflow by activating the
Chatbot, Solution Finder, and Actor agents as required. The
multi-agent framework provides modularity, flexibility, and
robustness, and the distribution of responsibilities across
agents for user interaction, documentation retrieval, action
execution, and workflow supervision enables efficient oper-
ation, adaptability to different configurations and error con-
ditions, and effective use of LLM capabilities through role-
specific configurations.

3.1. Role of Agents

The following section describes the role of each agent in the
proposed system in detail. As shown in Figurel, the archi-
tecture consists of four primary agents: Supervisor, Chatbot,
Solution Finder, and Actor. Dividing the task among differ-
ent agents allows the system to handle complex tasks in an
organized and dependable way.

The Supervisor manages the overall workflow, acting as the
central decision-maker of the system. It reads the current state
and recent messages, determines the next agent to act, and
assigns a concise role description. The Supervisor ensures
that the process follows the intended sequence: initiating the
conversation through the Chatbot, retrieving and structuring

the solution via the Solution Finder, executing the procedure
with the Actor, and returning to the Chatbot for user feedback.
It focuses solely on process coordination, error handling, and
ensuring task completion.

The Chatbot serves as the direct interface between the user
and the system, beginning by asking the user for their main-
tenance request and collecting any necessary details such as
tool names or parameter values. It delivers responses from
the other agents and requests feedback to confirm whether
the task has been completed to the user’s satisfaction. Beyond
simply relaying messages, the Chatbot interprets the content
of the conversation to identify the maintenance problem that
must be addressed. For example, if a user states, “Error code
1 occurred, please help.” the Chatbot understands this as a
requirement to resolve the specific fault described by “Error
code 1”7 and frames it as a clear operational goal. This goal
is then forwarded to the Solution Finder, ensuring that subse-
quent steps are directly aligned with the user’s actual need.

The Solution Finder uses the problem definition provided
by the Chatbot to locate the exact maintenance instructions
within the machine’s documentation. This search is carried
out through a Retrieval-Augmented Generation (RAG) pro-
cess, which enables direct access to the most relevant sections
of large manuals.

By using RAG, the system can have several advantages. It
allows the underlying documentation to be changed and man-
aged easily for each specific machine, which makes adapta-
tion simpler. It reduces the need for fine-tuning or building
large datasets, since the language model can be used without
additional training. It keeps all base documentation stored lo-
cally, which ensures data security. It also performs a retrieval
step before answer generation, helping to minimize halluci-
nations and improve the reliability of the output.
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Once the instructions are found, the Solution Finder refines
them into a set of atomic actions that can be directly exe-
cuted on the HMI. Each action is described in a structured
format with one discrete operation per step, including clear
preconditions, targets, and expected outcomes. By convert-
ing technical instructions into an execution plan, the Solution
Finder eliminates interpretation errors and ensures the Actor
can carry out the procedure reliably.

The Actor executes the maintenance procedure on the HMI
according to the executable action list provided by the Solu-
tion Finder. It interacts with the machine interface by per-
forming actions consists of clicking Ul in the HMI, and en-
tering text values into fields. The Actor ensures that each
action is carried out in the correct order and verifies that the
expected outcome of each step is achieved before proceeding.
This execution layer connects textual instructions with direct
system operation, enabling automatic maintenance without
human intervention.

3.2. Agent Workflow

Figure2 presents the data flow among the agents, showing
how information moves through the system. The exchange
of data is managed through a predefined agent state.

In a multi-agent framework, the agent state is an essential de-
sign element that serves as shared memory. It allows agents to
work independently while keeping a unified view of the task.
By storing the current status, goal, interaction history, and ex-
ecution details, it supports integration and tracking of work. It
functions like an observation in reinforcement learning.

In this system, the agent state contains messages, user re-
quest, goal, steps, routing, and information about the last
agent and its role. Messages are updated as the process moves
through each agent, allowing the system to track progress.
The user request is the initial question provided by the user,
and the goal is the operational objective derived from that re-
quest. These elements guide the flow so that agents maintain
focus on the defined task. The agent state also stores routing
details for the next agent, including its role and whether user
input is needed. Steps are an executable list of actions. Each
step contains a sequence, which is a natural language descrip-
tion of the instruction. A condition describes the requirement
before executing the step. An action is a single atomic opera-
tion such as clicking a UI element or entering text. A target is
the UI element or textbox to be acted upon, with possible de-
tails like name, type, optional user input, and coordinates. An
expected outcome explains the result if the step is performed
correctly.

The Supervisor reads the agent state both at the initial run and
after each agent has completed its role, then sets routing ac-
cording to the current state. For example, at the start, to iden-
tify the operational goal, the Supervisor routes to the Chatbot.

Once the operational goal is clearly defined, the Supervisor
routes to the Solution Finder to obtain the relevant instruction
information. The Chatbot engages with the user, records the
request in the state, and determines the operational goal from
the dialogue. The Solution Finder retrieves the exact instruc-
tion from the machine documentation that matches the goal.
The retrieved instruction and its file path are then provided to
the LLM model within the Solution Finder. Then this content
is transformed into a sequence of atomic actions that can be
executed on the HMI, with each step containing a single op-
eration, condition, target, and expected result. When the step
list is completed, routing is updated to the Actor for execu-
tion. The Actor reads the step list from the state and performs
the specified actions on the HMI. If text input is required, the
Actor selects the textbox, requests the value from the user,
and enters it. If a click is needed, the LLM model in the Ac-
tor uses the target name to find the x and y coordinates in
the HMI and then clicks the coordinates. After all steps are
completed, the Supervisor sets routing back to the Chatbot to
report the results. The Chatbot informs the user of the out-
come. If the task is complete, the Supervisor routes to finish.
If further assistance is needed, the goal is updated and a new
cycle starts.

Each agent functions as an independent module, using the
provided agent state information and updating it as needed.
This modular design allows any single agent to be replaced
or modified without changing the rest of the system. For ex-
ample, the Actor agent in the current implementation can be
replaced with an Actor agent with tailored input methods for
the specific environment, improving usability and accuracy.
Alternatively, instead of an Actor agent, another agent who
delivers the step list through an Augmented Reality interface
could be introduced, enabling use as a co-pilot system. This
independence of each agent ensures that the architecture re-
mains versatile and applicable across diverse industrial envi-
ronments.®

4. IMPLEMENTATION & EXPERIMENT

This section details the implementation of the proposed
multi-agent LLM framework and the experiments conducted
to assess its effectiveness in HMI-driven maintenance tasks.
We first summarize the technology stack and runtime envi-
ronment used to build the system. We then describe the end-
to-end agent workflow as it operates in practice from task
intake to HMI execution. Finally, we present three evalu-
ations that measure (i) the stability and adaptability of the
multi-agent architecture, (ii) quantitative performance across
repeated runs, and (iii) the effectiveness of transforming man-
ual instructions into an executable action list.

Technology stack and runtime environment. The system is
implemented with the following components:

* Large Language Models:
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— Qwen3(Yang et al., 2025): local on-premise model
inference to meet security requirements.

— GPT4.0(Achiam et al., 2023): multi-modal model
working on cloud for UI component detection only.

* HMI control: PyAutoGUI and PyWinAuto for pro-
grammatic Ul interaction on CNC HMI screens.

* LLM usage and RAG pipeline: A LangChain frame-
work was used to construct retrieval workflow (document
loading, chunking, vector retrieval) and LLM usage.

* Visualization and logging: UI screenshots and step-by-
step execution traces for debugging; per-run logs for tim-
ing and success-rate analysis.

Building on this foundation, the system operates through a
coordinated sequence of agents. Each agent performs a dedi-
cated role in the maintenance workflow, enabling the process
to progress smoothly from initial problem intake to final exe-
cution on the HMI.

For experimental validation, a custom error code and corre-
sponding manual was developed. The selected test case in-
volves an error code triggered when attempting to run a pro-
gram without a registered program on the HMI, requiring the
registration of a new program. The HMI platform used in this
implementation was SketchTurn (DNsolution, Korea).

Chatbot Agent: The Chatbot agent acts as the primary in-
terface with the user, explicitly prompting for CNC or ma-
chine tool-related issues (e.g., “How can I assist you with
your CNC or machine tool?”). It collects relevant details
such as alarm codes, machine parameters, or contextual de-
scriptions, and reformulates them into a concise operational
goal stored in the agent state. Upon system initialization, the
user is prompted accordingly, and once the request is received
(e.g., “Alarm A250625 occurred. Help me.”), the Chatbot
records it in the user_request field and, using its LLM model,
transforms it into a clear operational goal (e.g., “Resolve the
alarm A250625”). This goal serves as the foundation for sub-
sequent problem-solving by other agents.

* User request:
“Alarm No. A250625 occurred, help me”

¢ Reformulated operational goal:
“Resolve the alarm No. A250625” .

*  Output:
Updated agentstate with user_request and opera-
tional goal.

Solution Finder Agent: Once the operational goal is stored
in the agent state, the Solution Finder agent’s LLM model
searches the machine manual via a RAG pipeline to locate
the most relevant instruction. To minimize hallucinations in

an industrial context, the retrieved content is returned verba-
tim, without modification. The instruction is then refined into
an executable action list, where each step specifies a precon-
dition, a single atomic operation, the Ul element to interact
with, and the expected outcome. This structured format en-
sures that the Actor can execute the procedure deterministi-
cally. One of the critical evaluation points in this paper was
the transformation of textual instructions into fully atomic,
execution-ready commands. This step ensures that the Actor
agent can directly perform each operation without additional
interpretation, enabling seamless automation.

¢ Retrieved procedure:
Navigate to Program Manager — Create new
program — Confirm.

¢ Generated steps:
Atomic actions (e.g., click Program
Manager button, enter program name, en-
ter description, confirm with OK).

¢ OQOutput:
Updated agentstate with action list including
conditions, actions, targets, and expected out-
comes.

Actor Agent: The Actor agent executes the action list step-
by-step on the HMI, interacting with UI components. The
agent identifies each UI component and manipulates them by
entering parameters or pushing buttons. UI component recog-
nition is conducted through prompt-based multimodal LLM
processing. This enables identification of Ul components
from the HMI screenshot. And using LLM based recogni-
tion is easily adapted to diverse HMI configurations to ensure
compatibility and generalizability. While most modules run
on a secure on-premise local LLM to protect sensitive main-
tenance data, cloud LLM ‘GPT-4.0’ is selectively employed
for UI recognition to maximize detection accuracy. To min-
imize shared data in the public cloud, the proposed system
sends only screenshot image of current HMI to GPT-4.0 cloud
server, ensuring strict information security.
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* C(licked Program Manager and Program
New.

* Entered program name: “Test Program”.
» Entered description: “for test”.
* Confirmed with OK and pressed ENTER.

* Returned to main screen and checked program
settings.

* Outcome:
Alarm A250625 cleared successfully.

Supervisor Agent: The Supervisor agent oversees the entire
workflow by interpreting the current agentstate and determin-
ing the next agent to execute. When a maintenance request is
initiated, it assigns the Chatbot as the first agent to gather de-
tailed input from the user. After each agent completes its task,
the Supervisor updates the agentstate and routes control ac-
cordingly. The workflow follows a clear sequence: the Chat-
bot receives the user’s request, the Solution Finder generates
a structured solution, and the Actor executes the plan, with
the Supervisor coordinating each step based on the evolving
agent state.

¢ Output:
Next agent — Chatbot
Role — ask user what they need
help with
Require user input — True

To evaluate the computational efficiency of the pro-
posed multi-agent system, the execution time of each
node—Supervisor, Chatbot, Solution Finder, and Ac-
tor—was measured individually 30 independent runs, and the
average execution time was calculated. In addition, the total
execution time for the complete workflow, in which all nodes
are executed sequentially, was measured under the same con-
ditions. Table 1 summarizes the results. The results indicate
that while the Solution Finder node exhibits the highest aver-
age execution time due to its complex reasoning process, the
total runtime for the full workflow remains within acceptable
limits for real-time or near-real-time applications. It is worth
noting that for the Chatbot and Actor nodes, the presence of
user input stages can cause variation in total execution time,
depending on how quickly the user responds.

To assess the functional accuracy of the proposed system, two
evaluation metrics were considered: (1) the success rate of
generating the correct action sequence for a given task, and
(2) the success rate of detecting the correct Ul coordinates
corresponding to the identified targets. Both metrics were

Table 1. Average execution time (seconds) 30 runs for each
node and the entire workflow

Node / Workflow Average Execution Time (s)
Supervisor Node 0.45

Chatbot Node 1.34

Solution Finder Node 35.15

Actor Node 139.89

Entire Workflow 183.35

evaluated over a series of test cases representative of realistic
industrial HMI operations. As shown in Table 2, the system
achieved a 76.6% success rate in sequence generation and a
23.3% success rate in coordinate detection. These results in-
dicate that the system can reliably interpret tasks and interact
with HMI elements, although occasional failures in coordi-
nate detection suggest potential improvements in visual ele-
ment recognition under varying interface conditions.

Table 2. Success rate of the full system in generating correct
sequences and detecting correct UI coordinates

Evaluation Metric Success Rate (%)
Correct sequence generation 76.6
Correct UI coordinate detection 23.3

5. DISCUSSION

This paper presents an autonomous maintenance framework
powered by a multi-agent LLM system and implements it
with machine tool HMIs. Unlike traditional approaches
where operators must manually perform all actions, the pro-
posed system can identify and execute solutions for simple
maintenance scenarios on its own. This reduces downtime,
increases productivity, and eases the operator’s workload. It
is particularly beneficial for inexperienced operators or sit-
uations where a single operator must manage multiple ma-
chines. In the implementation phase, the proposed multi-node
architecture was realized through the integration of supervi-
sor, chatbot, solution finder, and actor nodes. Performance
evaluation was conducted in two aspects: computational effi-
ciency and functional accuracy. The average execution time
of each node was measured over 30 runs, along with the aver-
age time for executing the entire workflow. Results show that
while the supervisor and solution finder nodes maintained rel-
atively stable processing times, the chatbot and actor nodes
exhibited variations due to the dependency on user input du-
ration. In terms of functional accuracy, the system achieved a
76.6% success rate in generating correct sequences and a n%
success rate in detecting correct UI coordinates. These results
indicate that the system is both computationally efficient and
capable of producing precise, context-aware action plans.

The main advantages of the proposed system are as follows:

* Autonomous problem-solving: The system can indepen-
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<Original Instruction>

B-82594EN-2/01 C. ALARM CODES

C.2 ALARM CODES

Error Codes

A250625 WARN NO PROGRAM FOUND
[Cause] When no NC program is available and the user attempts to start automatic operation, this
alarm appears. It may also occur when a program is accidentally deleted or not yet created.
[Remedy]
(1) Go to the Program Manager menu.
(2) Press the Program New button to create a new program.
(3) Enter the program name and optional description.
(4) Confirm by pressing [OK].
(5) After adding the program, this alarm will be cleared automatically.

<Refined Step List> s

. Go to the Program Manager menu

. Press the Program New button to create a new program
Enter the program name

Enter the program name

Enter the optional description

Enter the optional description

Press [OK] to confirm

Check if the alarm is cleared

ONO U A WN =

"step™: 1,
"sequence”: "Go to the Program Manager menu",
“condition™: "Current screen is main menu”,

": "Click Mouse",

"name": "Program Manager",
"type": "Button”

"sequence”
"conditi

Press the Program New button to create a new program”,
Program Manager screen is displayed”,

f
"name": "Program New",
"type": "Button”

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 "step™ 2,
1

1

1

1

1

1

1

1

1 3

1 "expect”: "New program creation screen is displayed”
1
1
1
1
1
1

Figure 3. Comparison of the original instruction and the refined step list

dently identify and execute solutions for alarm codes, re-
ducing lead time and easing maintenance workload.

* From manuals to action: It transforms conventional man-
ual instructions into precise, execution-ready steps, al-
lowing the LLM agent to carry them out seamlessly.

* Highly scalable and adaptable: Through RAG and
prompt engineering, data can be updated quickly with-
out retraining, enabling smooth adjustments to manuals
or operational requirements.

» Security-first design: By running on a local LLM, the
system prevents sensitive maintenance information from
leaving the facility.

*  Modular and customizable: Its multi-agent architecture
allows tailored actor agents to boost performance in spe-
cific industrial contexts.

Traditional rule-based systems follow predefined rules for
specific situations. They work reliably for known scenar-
ios but cannot easily adapt when new alarm codes appear or
procedures change. Updating such systems usually requires
manual rewriting of rules, which slows response in rapidly
changing industrial settings.

In previous work, LLM applications in industrial contexts
have generally been limited to interpreting manuals or pro-
viding conversational assistance. The system described here
extends the role of LLM from an information provider to both
a task planner and an executor, enabling a smooth progression
from language understanding to HMI operation. The frame-
work performs the full workflow, starting with alarm code
identification, then procedure retrieval, Ul action mapping,
sequence execution, and result reporting. Within this process,

the LLM interprets procedures from official manuals, breaks
them down into atomic action steps, and translates them into
executable HMI operations such as button presses or param-
eter entries.

The proposed system offers strengths in flexibility, scalabil-
ity, and modularity. It does not rely on fixed rules, allowing
quick adjustment to new errors or changes in maintenance
instructions. Its design supports deployment across diverse
industrial systems, provided that manuals and HMI configu-
rations are available. The modular architecture, consisting of
the Supervisor, Chatbot, Solution Finder, and Actor, enables
targeted enhancements and environment-specific customiza-
tion through the replacement of individual components.

However, there are limitations and areas for future work.
Since key functions such as decision-making and UI iden-
tification rely heavily on the LLM, system stability can be
affected by the model’s performance. Adapting to dynamic
HMIs requires robust recognition and interaction in envi-
ronments where Ul layouts or element positions change.
Preventing hazardous actions necessitates safeguards to in-
tercept and block unsafe operations. Mitigating hallucina-
tions requires verification and filtering mechanisms to ensure
only valid, manual-based procedures are executed. Cross-
platform validation is also needed to confirm performance
across devices with different HMIs, protocols, and documen-
tation structures. Current research includes developing LLM-
in-the-loop and hybrid systems combining partial rule-based
logic to support LLM performance.

In summary, this work presents a system that can under-
stand maintenance steps and execute them directly through
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the HMI. This approach addresses the rigidity of older au-
tomation methods and moves toward more versatile and in-
telligent maintenance solutions.

6. CONCLUSION

The proposed LLM-based multi-agent framework demon-
strates that autonomous maintenance of machine tools can be
achieved by combining natural language understanding with
direct HMI operation. Through integration of the Supervisor,
Chatbot, Solution Finder, and Actor, the system connects pro-
cedural interpretation from manuals to fully executable action
sequences. Its successful implementation on a CNC machine
tool shows that manual-based procedures can be automated
accurately and securely with a local LLM. While further re-
finement is needed for handling dynamic interfaces and en-
suring operational safety, the results highlight the potential of
this approach to extend beyond CNC machines to a variety of
industrial systems.
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