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ABSTRACT

Traditional aeronautical power systems, typically based on
fossil fuels, present a series of limitations, including: i) the
added weight associated with onboard fuel storage, ii) limited
endurance due to fuel consumption, and iii) the emission of
atmospheric  pollutants. These constraints  become
particularly critical in application scenarios where extended
endurance and environmental sustainability are key
requirements. A notable example is represented by high-
altitude, long-endurance (HALE) unmanned aerial vehicles
(UAVs), whose deployment is rapidly expanding due to their
suitability for a wide range of missions, including
surveillance, environmental monitoring, and long-range
communications. To enable the technological advancement
of such platforms, alternative power generation architectures
must be explored. In this context, hybrid electric power
systems, integrating solar panels, lithium-ion batteries, and
fuel cells, offer a promising solution. Solar and fuel cell
subsystems ensure stable and continuous power generation
over extended periods, including during night-time
operations, while lithium-ion batteries provide high-power
bursts during transient phases such as take-off, landing, or
auxiliary system activation. Nevertheless, the use of these
hybrid systems introduces unique challenges in terms of
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safety, reliability, and system complexity. They must operate
in harsh environmental conditions and often require remote
monitoring  capabilities that enable condition-based
intervention without interrupting critical missions. To
address these challenges, this paper presents a Health and
Usage Monitoring System (HUMS) for a hybrid power
system composed of a solar panel, a lithium-ion battery, and
a fuel cell, developed through the integration of digital twin
modeling and artificial intelligence (Al) techniques. In
particular, Al data-driven methods provide a powerful and
flexible framework for monitoring the complex system
composed of multiple energy sources. However, to achieve
reliable performance, they require large and representative
datasets, which are often unfeasible to obtain experimentally.
To overcome this limitation, a digital twin of the hybrid
power system is developed in the MATLAB/Simulink
environment and used to simulate system behavior under
both healthy and faulty conditions. The resulting synthetic
data are then employed to train diagnostic/prognostic
algorithms. This approach offers an efficient and scalable
solution for implementing intelligent health monitoring in
hybrid power systems, enhancing reliability, autonomy, and
operational availability in long-endurance UAV applications.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs), commonly defined as
drones or aircraft that operate without an onboard pilot, are
extensively employed both in civil and military applications
performing tasks that are unsuitable or unsafe for humans. In
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the civil domain, UAVs are adopted for a wide range of
purposes, including: (i) scientific research and remote
sensing, (ii) forestry monitoring, (iii) rapid detection of the
disaster area after earthquakes, tsunamis, and hurricanes, and
(iv) seasonable inspection for the survivors in hazardous
situations (Zhang, et al., 2022). In the military sector, UAVs
are primarily deployed for intelligence, reconnaissance and
surveillance (ISR) missions. Their role in this field has
become increasingly important, largely due to their ability to
carry out long-duration flights that human pilots could not
sustain (Ozbek, Yalin, Ekici, & Karakoc, 2020). This
capability is effectively exemplified by military high altitude
long endurance (HALE) UAVs, which operate at altitudes of
15-20 km and can remain airborne for periods ranging from
several days to even months without the need to land.
Achieving such extended endurance critically depends on the
propulsion system that must combine high power density and
high energy density. The former influences the maximum
speed, payload capacity, operational altitude and climbing
rate, while the latter directly determines the achievable flight
endurance (Gang & Kwon, 2018). Traditionally, most long
endurance UAVSs have been powered by internal combustion
engines (ICEs). Although these systems are characterized by
adequate specific power and specific energy, they are also
affected by several limitations, namely: (i) the need to store
fuel onboard which increases the overall weight of the UAV
consequently impacting its performance, (ii) the finite fuel
supply, which constrains endurance since thrust generation
relies on continuous fuel consumption, (iii) high emissions
and a considerable environmental impact, which conflict with
the growing demand for greener and more sustainable
platforms, and (iv) the generation of noise and vibrations,
which may compromise operational stealth and structural
integrity during prolonged missions (Chen & Khaligh, 2010).
To address such limitations, electrical propulsion systems
have emerged as a viable alternative. The most widely
adopted technologies for UAV applications include lithium-
ion (Li-ion) batteries, fuel cells, and solar photovoltaic (PV)
panels. Li-ion batteries are extensively used in small UAVS;
however, their relatively low specific energy compared to
ICEs makes them unsuitable for large UAV that require
prolonged endurance. Fuel cells offer higher specific energy
and generate clean power, as they operate through
electrochemical reactions with water as the only by-product.
Nevertheless, their use is constrained by the need to store
hydrogen on board. Specifically, once the stored hydrogen is
depleted, the fuel cells can no longer operate, i.e., the
endurance they provide is directly determined by the
available hydrogen storage capacity. Lastly, solar panels can
provide continuous energy obtained through the photovoltaic
effect. However, in real-world scenarios their power output
is significantly influenced by environmental conditions, such
as irradiance and ambient temperature variations, as well as
by the UAV’s orientation which affects the effective incident
solar radiation. Overall, each of these electric power sources,
when used individually, present intrinsic limitations that

restrict their applicability. For this reason, hybrid
architectures have attracted increasing attention in recent
years as a means to improve the efficiency and capability of
electric propulsion system in long endurance UAVs
applications. These configurations integrate two or more
electric power sources to compensate for the limitations of
each individual technology while enhancing the overall
system performance (Lee, Park, Kim, Yang, & Ahn, 2012),
(Zhang, Liu, & Xu, 2016). Considering hybrid architectures
based on two power sources, the most common solutions,
especially for HALE UAVs, integrate Li-ion batteries with
PV panels or with fuel cells. For low- and medium-altitude
long-endurance UAVSs, several studies have instead proposed
the combination of Li-ion battery, fuel cell and PV panels as
the optimal strategy to maximize UAV’s endurance (Lee,
Kwon, Park, & Kim, 2014), (Harvey, et al., 2012) . In these
works, PV panels have been adopted as the primary energy
source, supplying power mainly during the daylight phases of
the mission, the battery has been employed to meet peak
power demands, leveraging its fast dynamic response and
high power density, whereas the fuel cells has been used as
the main power source during night phases, when no
irradiance was available for the PV panels. These studies
have brought evidence of the effectiveness of three-
component hybrid architectures in enhancing flight duration
and indicate that such configurations could also represent a
promising solution for HALE UAVSs. Nevertheless, the
practical implementation of these systems, along with their
potential extension to high-altitude scenarios, still faces
several challenges. One of the most critical is ensuring the
safety and reliability of the propulsion system over prolonged
periods and under extreme environmental conditions.
Addressing this requirement calls for the development of
remote monitoring strategies capable of minimizing the risk
of propulsion system failures while avoiding unnecessary and
costly maintenance operations. Such approach can also help
prevent avoidable mission interruptions, thereby enabling
more continuous and efficient UAV operations. However,
designing a successful monitoring strategy for hybrid power
systems is particularly challenging due to the large volume
and heterogeneity of data required to assess the health of
multiple power sources under varying operational conditions.
In this regard, the adoption of data-driven artificial
intelligence (Al) techniques, particularly deep neural
networks (DNNs), represent a viable solution. In fact, in
recent years, DNNs have gained much attention in health
monitoring applications across various engineering domains,
due to their ability to extract meaningful features from high-
dimensional inputs (Khatir, et al., 2025). Despite this, DNNs
based diagnostic algorithms also come with some limitations,
the major of which consists in the need of a huge amount of
training data. Specifically, supervised DNNs require large
labeled datasets including both healthy and faulty system
information and acquiring such data experimentally is often
impractical because of cost constraints. In this context, the
present work proposes a health and usage monitoring system
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(HUMS) for UAV hybrid power systems, based on a digital
twin framework combined with DNNs. The digital twin is
conceived as a virtual replica of the physical power system,
capable of simulating its behavior under both nominal and
faulty conditions. This model enables the generation of
extensive synthetic datasets that can be used to train DNNs
for fault diagnosis of the power sources. The ultimate goal is
to establish a preliminary version of a HUMS that can later
be extended to include prognostic capabilities and real-time
interaction with the physical system.

The paper is organized as follows. Section 2 presents the
modeling of the hybrid power system (HPS) under nominal
conditions, describes the modification introduced to model
the most relevant faults affecting the three power sources, and
provides a brief comparison of the simulated HPS behavior
under nominal and faulty conditions. Section 3 details the
adopted diagnostic framework, including a description of the
training database generation, the diagnostic algorithms
architectures and the DNNSs training. Section 4 discusses the
performance of the diagnostic algorithms during both the
training and testing phases. Finally, Section 5 draws the main
conclusion of the study and outlines possible future
developments.

2. NUMERICAL MODELING OF THE HPS

The HPS was modeled in the MATLAB/Simulink
environment, where each component of the physical system
was numerically represented through dedicated blocks. The
block-diagram of the complete model, reproducing the main
subsystems of real architecture, is shown in Figure 1.
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Figure 1. Schematic representation of the HPS model.

The main components of the model are the three power
sources, namely the PV panel, the Li-ion battery and the fuel
cell together with the onboard load and the energy
management system (EMS). Each source is interfaced with
the main DC bus through a dedicated DC-DC converter, and
all are connected in parallel to supply the load. The EMS
coordinates the operation of the sources to satisfy the

instantaneous power demand, while the converters ensure
proper integration with the DC bus, as the operating voltage
of each source may differ from that imposed on the bus. To
guarantee that the model is representative of a realistic
application, the main model parameters were derived from
data of commercially available items compatible with a low-
speed long-endurance UAV. This UAV class was also
adopted as the reference platform for defining the mission
profile and the corresponding load requirements. In
particular, based on data reported in the literature from flight
tests of hybrid-electric UAVs of this type, the rated power
during cruise was set to 200 W, whereas the maximum peak
power demand during ascent was set to 1 KW. On this basis,
the developed model was first employed to simulate the
behavior of the HPS under nominal operating conditions of
each source. Subsequently, the model was extended to
include representations of the main degradation and faults
affecting the individual sources. The modeling approach and
the main parameters employed under both nominal and faulty
conditions are described in detail in the following sections.

2.1. Modeling under nominal conditions

Each block associated with one of the power sources
implements an equivalent circuit model (ECM) that
reproduces the main electrical behavior of the corresponding
physical component. This approach provides a simplified yet
effective representation of the sources, enabling a
computationally efficient system level simulation of the
hybrid power system. Specifically, the Li-ion battery is
represented by an ECM consisting of a controlled voltage
source in series with a resistor. The resistor accounts for the
internal ohmic resistance of the battery, while the value of the
controlled voltage varies according to the charging and
discharging conditions. This ECM formulation allows
deriving a mathematical relation between the battery terminal
voltage and the output current, as expressed in Eq. (1):

Vbatt = fl(lt! i*l l) —Ri (1)

where R is the internal resistance, it is the battery’s capacity,
i*is the low frequency battery dynamic, i is the battery
current and the function f;(it,i* i) is the voltage of the
controlled voltage source during discharging. This function
is defined according to Eq. (2):

fi(it,i*,i) = Eq — K%- it + Aexp(—B-it) (2)
where E; is the constant voltage of the battery, K is the
polarization constant, Q is the maximum battery capacity, A
is the exponential zone amplitude, and B is the exponential
capacity. During the charging phase the output voltage of the
battery is evaluated as in Eq. (3):

Viaee = f2(it, i%,0) — Ri (3)
where the function £, (it, i*, i) is defined according to Eq. (4):
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The ECM used to describe the operation of the fuel cell has
the same structure as that adopted for the battery, consisting
of a controlled voltage source in series with a resistor. In this
case, the controlled voltage source is associated with
activation loss, i.e., the voltage drops due to the energy
barrier that must be overcome for the electrochemical
reactions to occur, while the resistor represents the ohmic loss
due to the resistance to electron flow within the cell.
Accordingly, the relation between the fuel cell terminal
voltage and its output current is expressed by Eg. (5):

L .
Vie = Egc — NAIn (?) — ipcRinternal ®)
0

where E, is the open circuit voltage of the fuel cell, N is the
number of cells, A is the Tafel slope, i, is the exchange
current, ir. is the output current of the fuel cell and R;perna
is the internal series resistance. The PV panel is also
represented through an ECM, composed of a current source,
a diode, a parallel resistance and a series resistance. The
current source together with the diode reproduces the
behavior of the solar cell, the series resistance accounts for
ohmic losses due to current transport through the
semiconductor material and contacts, while the parallel
resistance models leakage currents across the p—n junction
and along the cell surface. According to this model, the
relationship between the output current i and voltage V of the
panel is given by Eqg. (6):

v V +iR
i=iL—i0exp[qu ]— s (6)

celanT RSH

Where i, is the current produced by the current source, i, is
the cell’s saturation current, q is the electron charge, N.;; is
the number of solar cells, n is the diode ideality factor
dependent on the material doping, K is the Boltzmann
constant, T is the cell’s temperature in unit Kelvin, V; is the
diode voltage, R is the series resistance and Ry is the shunt
resistance. The governing equations of each ECM depend on
a set of quantities internally computed within the Simulink
blocks on the basis of user-defined parameters. In this work,
these parameters were derived from manufacturer datasheets
of commercially available products taken as reference for the
battery, the fuel cell and the PV panel. In particular, the Li-
ion battery was modeled using data from a 25.2 V 10 Ah
rechargeable pack composed of 35 cells and provided by EV
lithium, the PV panel was modeled using data from
SunPower A-300 solar cells arranged into three parallel
strings of 52 cells each, and the fuel cell was modeled using
the H-200 proton exchange membrane fuel cell (PEMFC)
provided by Horizon Educational. The block of every power
source is connected in series with a dedicated DC-DC
converter block which is required to adapt the voltage levels

of the individual sources to that of the DC bus and to regulate
the power flow. Depending on the source, different converter
typologies were considered: a boost converter for the fuel cell
and the PV panel and a bidirectional converter for the battery,
operating as a boost converter during discharge and as a buck
converter during charge. Both the boost and buck converters
were modeled as electrical circuits composed of an inductor,
a switching device, a diode and a capacitor. Their operation
depends on the switching device which is driven by a pulse-
width modulation (PWM) signal that periodically opens or
closes the switch. Then the duty cycle D of the PWM
determines the relation between input and output voltage of
the converter, as shown in Egs. (7) and (8):

Vy =V, - —— )

VH=VL'D (8)

where V7 is the input voltage while V, is the output voltage
is. Moreover, the duty cycle D is exploited to control the
operating conditions of the power sources. Assuming that the
main DC bus voltage remains stable over time, D is varied to
modify the input voltage and consequently shifts the
operating point of the power source along its characteristic
curve. To implement this control, two different controllers
were considered: a Proportional-Integral-Derivative (PID)
power controller for the FC and a Maximum Power Point
Tracking (MPPT) controller for the PV. In addition, the PV
controller integrates a second control law based on the PID
algorithm. This control law becomes necessary when the
battery is fully charged and the power demand is lower than
the maximum power that the PV can generate. In this
scenario, the excess energy cannot be stored, requiring the
PV power to be limited to match the power absorbed by the
load. The controllers operate according to the output signals
provided by the EMS. The EMS is an active, rule-based EMS
based on the following principles: (i) the PV panel is
prioritized as the main power source during the daytime
phases of the mission, (ii) the Li-ion battery is primarily
employed to compensate for sudden load variations or peak
power demands, and can be recharged by the PV panel when
excess energy is available, (iii) the battery state of charge
(SOC) is constrained between an upper and a lower threshold,
the latter being set to ensure safe landing in case both the PV
panel and the fuel cell fail to supply energy, and the former
to prevent overcharging, (iv) the fuel cell is designated as the
main power source during nighttime phases of the mission.
The pseudocode corresponding to the EMS is reported in
Figure 2. The symbols used in the pseudocode are defined as
follows: P,,, Py, and P, denote the power generated by the
PV panel, the fuel and the battery, respectively; P,
represents the power demanded by the load; P,y ;max: Premax
and Pp; mq, indicate the maximum power that can be
delivered by the PV panel, the fuel and the battery,
respectively; soc, and SOC;, correspond to the upper and
lower SOC limits of the battery.
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Algorithm 4 EMS Control Logic
1. if SOC = SOCy and P,eq < Py mas then
2: Py = Preg

6: else if P..y > Pyymar and SOC = SOCT, then
T Py = Pponas

8: Py = (Preg — Ppy) - (SOC — S0C,) /100

9 Pre= Preg — Ppo — Py

11: else if SOC < SOC), then

12: Pov = Ppomas

13: Pre = min{(Ppy — Preg + Pot,mar - (SOCL — SOC) /20, Pjemax }
14: Py = Preq — Ppo — Pre

15:

16: else if P..y < Ppymae then

17: Pov = Ppomas

18: Pr.=10

19: Py = Preg — Py

20:

21: end if

Figure 2. Control logic of the EMS.

The load block models a generic onboard load, which is not
limited to the electric motor but may also include auxiliary
devices such as cameras, sonars, and other electronic
systems. In the model, these elements are represented by a
variable resistor, whose resistance is dynamically adjusted
according to a prescribed power profile reflecting the power
demand during the UAV mission.

2.2. Modeling under faulty conditions

The numerical model of the HPS was modified to account for
the main damage and degradation mechanisms affecting the
three power sources. The phenomena considered were
selected from faulty conditions reported in the literature
according to two criteria: (i) occurrence within a time frame
relevant for the UAV operational lifespan, and (ii) significant
impact to the power output of the source. Based on these
criteria, the modeled mechanisms are: hotspots, microcracks
inside the silicon layer of a cell, and cracks in the protective
glass for the PV panel, internal short circuits (ISC) and loss
of lithium inventory for the battery, inlet pressures reduction,
flooding and drying, and carbon monoxide (CO) poisoning
for the fuel cell. The physical processes underlying these
phenomena were not explicitly modeled. Instead, the
Simulink blocks of each source were adapted to reproduce
their equivalent effects on the electrical behavior of the
system. In the case of the PV panel, the entire system was
represented by two separate blocks: the first models three
parallel strings with 52 — Ny cells per string, and the second
models three parallel strings with Ny cells per string, where
Ny is a user-defined parameter denoting the number of
damaged cells. This separation enables the reproduction of a
realist condition un which only part of the panel is affected
by damage, while the remaining portion operates in healthy
conditions. Two bypass diodes are also connected in series

with the two blocks, consistently with real PV panel design,
where they are integrated to mitigate the adverse effects of
faulty cells. To simulate the presence of a hotspot, the
irradiance input to the block representing the damaged
portion is modulated by a gain factor D;. Setting D, =0
corresponds to complete shading of the affected cells. This
representation is consistent with real operating conditions, as
shading prevents the cells from generating current through
the photovoltaic effect, forces them into reverse bias, and can
lead to hotspot formation. Cracks in the protective glass are
modeled using the same approach but D, is assigned a value
between 0 and 1 to represent a partial reduction of the
irradiance on the damaged cells. In fact, glass cracks alter the
optical properties of the glass layer and only partially reduce
the irradiance reaching the silicon layer. As a result, the
affected cells are not entirely unable to convert light into
current, but they generate a lower current compared to
undamaged cells. Microcracks in the silicon layer are
modeled by introducing a parallel resistor connected to the
second block. This additional resistance decreases the local
shunt resistance of the affected section, simulating leakage
current paths introduced by the presence of microcracks. This
reflects the physical reality in which microcracks
compromise the structural and electrical continuity of the
silicon layer, causing localized current losses and a reduction
in the effective output current. In addition to the parallel
resistor, the gain factor D, is also maintained in the model to
reduce the effective irradiance incident on the affected cells.
Although microcracks do not directly reduce the amount of
light reaching the silicon layer, as would happen with
macroscopic cracks or shading, their presence decreases the
cell’s ability to generate photocurrent. Thus, the combined
effect of the parallel resistor and the adjusted irradiance
models both the electrical leakage due to microcracks and the
consequent reduction in current generation capacity. For the
battery, the internal short circuit is simulated by introducing
a parallel resistor across the terminals of the battery block.
This resistor represents the low resistance pathway that forms
inside the battery cell when the separator between the two
electrodes is compromised. A lower short-circuit resistance
results in a larger fraction of the current bypassing the
external load, amplifying the effect of ISC. The loss of
lithium inventory is modeled by reducing the nominal
capacity parameter of the battery block. The reduction in
nominal capacity is assumed to be directly proportional to the
lithium loss (Gantenbein, Schénleber, Weiss, & Ivers-Tiffée,
2019). In particular, the rated capacity of the battery Q is
evaluated as shown in Eg. (9):

Q = Quom - (1 = LLI) 9)

where Q... iS the nominal capacity while LLI is expressed
as the fraction of lost lithium relative to the total lithium
originally present in the battery. Referring to the fuel cell, the
variations in hydrogen and air inlet pressures can be caused
by several factors including clogging in the piping, air filter
blockage, damage to the tubing, aging of seals and joints
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between supply system components, leaks and
malfunctioning parts. Regardless of the cause, a partial
reduction in the inlet pressures can be directly modeled by
modifying the corresponding input variables of the hydrogen
and air feeding pressure for the fuel cell block. With regard
to flooding and drying, these phenomena act directly on the
electrochemical processes within the fuel cell. Flooding
occurs when water obstructs the transport of oxygen to the
active catalytic sites, impairing the oxygen reduction
reaction. Conversely, under drying conditions, the membrane
lacks sufficient water to support effective proton (H*)
conduction. From a modeling perspective, both phenomena
are equivalently represented by a series resistor to the fuel
cell block. In fact, the damaged membrane and obstructed
catalytic sites effectively behave as an increased resistance
compared to the nominal state. Finally, CO poisoning, caused
by the presence of CO in the hydrogen stream, is represented
by a diode-resistor pair added in series to the fuel cell block.
The diode simulates activation losses due to the slow kinetics
of the electrochemical reactions on the reduced active area of
the catalyst. The resistor, on the other hand, represents chmic
losses due to the presence of CO, which impedes the transport
of reactants to, and removal of products from, the catalytic
sites.

2.3. Simulations results

The Simulink model was adopted to simulate and analyze the
behavior of the HPS during a representative mission scenario.
The simulations were first performed under nominal
operating conditions and subsequently repeated under faulty
conditions. The mission profile was defined to replicate the
basic sequence of operations of a typical UAV flight and
consists of four phases: (i) warm-up and take-off, (ii) climb,
with a duration corresponding to 15 minutes in real flight
conditions and a maximum power demand of 1 kW, (iii)
cruise, the longest mission phase, characterized by a nominal
power demand of 200 W with additional power peaks of 20%
of this value to mimic the temporary use of onboard systems,
and (iv) descent, characterized by a reduced power demand
of 160 W. The complete mission profile, together with the
simulated phases, is shown in Figure 3.

cruise
>

>

climb descent

warm-up and
take-off

landing

simulated scenario

Figure 3. Schematic representation of the UAV mission
profile.

The overall duration of the flight mission was set to 24 h to
simulate the operation of all three power sources. Moreover,
to reduce computational time, one day of real-world

operation was condensed into a 3 h time window. For the sake
of simplicity, the effects of latitude and weather conditions
were neglected. The only environmental parameters
considered were: (i) ambient temperature, fixed at 25 °C, and
(ii) solar irradiance whose variations were determined based
on a model of the sun’s trajectory as a function of time of day
and seasonal variations. In relation to the results presented in
this work, equinox conditions were assumed, corresponding
to 12 hours of daylight and 12 hours of darkness, with a
maximum irradiance of 1000 W/m?. Furthermore, the take-
off time was set to 12 pm. The results of the simulations are
summarized in Figures 4, 5, 6 and 7. Specifically, Figures 4
and 5 illustrate the power distribution among the three
sources along with the power demand under nominal and
faulty conditions, respectively. The main findings from
Figure 4 can are as follows: (i) during take-off, both the
battery and the PV panel contribute to supplying power to the
load, with the battery largely compensating for the
insufficient contribution of the PV panel, (ii) during the
daytime cruise phase, the PV panel acts as the primary energy
source and, whenever its output exceeds the load demand, the
surplus power is used to recharge the battery, resulting in a
negative battery power, (iii) as irradiance decreases towards
zero, the PV panel power decreases as well and the fuel cell
begins to supply the load, and (iv) during the night, the fuel
cell operates as the main power source, with the battery
assisting particularly during peak demands associated with
the activation of auxiliary onboard systems. Figure 5 reports
similar results, with some differences arising from the
simulated presence of a glass crack in the PV panel, modeled
as a 20% reduction of the incident solar irradiance and 10
damaged cells per string. This condition is considered as a
representative example of anomaly in the HPS. The presence
of the glass crack primarily affects the power generated by
the PV panel. As shown in Figure 5, during the initial phases
of the mission, the maximum PV power reaches only 400 W,
which is lower than the value observed under nominal
conditions. As a result, the battery is more heavily utilized,
reaching a peak power of 600 W. Furthermore, due to the
reduced PV output, the battery remains less charged
throughout the day, which in turn leads to increased use of
the fuel cell during nighttime operation. These differences
can be further analyzed by examining Figures 6 and 7, which
present the power profiles of each source, along with a
characteristic parameter, under both nominal and faulty
conditions. In general, the power delivered by the PV panel
follows the solar irradiance trend, reaching its peak when
irradiance is at its maximum and dropping to zero when
irradiance is absent. However, under faulty conditions, it is
evident that the PV panel produces less power even though
solar irradiance remains unchanged. Regarding the battery, it
can be observed that after the climb phase, the SOC remains
around 60% under nominal conditions, while it drops to
approximately 40% under faulty conditions. As previously
mentioned, this results in a higher reliance on the fuel cell
during the night, which is further confirmed by the hydrogen
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consumption profile: in the faulty case, hydrogen
consumption shows a steeper trend compared to the nominal
case. Overall, the presented results also confirm the correct
operation of the EMS, which effectively distributes power
generation among the sources to continuously meet the power
demand and successfully maintain the battery SOC within its
operational limits, ranging from a lower threshold of 20% to
an upper limit of approximately 90%.
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Figure 4. Power profiles of the load and the three power
sources during the UAV mission under nominal conditions.
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UAYV mission under nominal conditions.
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Figure 7. Power profiles and corresponding characteristic
parameters of the PV panel, battery, and fuel cell during the
UAYV mission under faulty conditions.

3. METHODOLOGY

The numerical model of the HPS was employed to generate a
comprehensive dataset of simulation signals used to train the
diagnostic algorithms. This dataset was constructed by
running multiple simulations under various operating
scenarios, including both nominal and faulty conditions. In
the case of faulty scenarios, only single fault conditions were
considered, that is, each simulation involved a fault affecting
only one power source at a time. This approach is based on
the assumption that the simultaneous occurrence of multiple
failures, either within the same source or across different
sources, is less likely in realistic scenarios. The resulting
signals were then used as input data for diagnostic algorithms
based on deep neural networks (DNNs). Two main DNN

architectures were adopted in this study: Multi-Layer
Perceptrons (MLPs) and Convolutional Neural Networks
(CNNs). An MLP is a type of feedforward artificial neural
network consisting of an input layer, one or more hidden
layers, and an output layer. Each layer is fully connected to
the next, and nonlinear activation functions are applied at
each hidden layer to enable the learning of complex
relationships. MLPs are widely used in classification and
regression tasks, and when composed of multiple hidden
layers, represent one of the basic architectures in deep
learning. A CNN, on the other hand, is a deep neural network
architecture particularly suited for processing data with
spatial or temporal structure, such as images or time series.
CNNs apply learnable convolutional filters to local regions
of the input, automatically extracting meaningful features.
These layers are typically followed by pooling and fully
connected layers. CNNs are especially effective in pattern
recognition tasks and have seen broad application in a variety
of areas including fault detection in time-series data. Further
details regarding the generation of the training dataset and the
design and implementation of the diagnostic algorithms are
provided as follows.

3.1. Training database generation

The training database was constructed from signals obtained
through multiple simulations of the HPS. All simulations
were based on the same mission scenario described in Section
2.3, with the only varying parameter being the takeoff time,
which was randomly assigned for each run. Considering the
possible damage mechanisms affecting the three power
sources, a total of eight faulty cases were modeled. To enrich
the database and to better reflect realistic operating
conditions in which damage may manifest at different
severities, two severity levels were defined for each case: a
partially damaged condition and a fully damaged condition.
Accordingly, one simulation was performed for each damage
mechanism at each severity level, resulting in a total of 16
faulty condition simulations. In addition, a further simulation
was carried out to represent the healthy state of the HPS. The
outcome of these simulations is a set of .csv files, each
containing the time histories of key electrical and
environmental signals recorded during an individual mission.
Specifically, for the PV panel the selected signals include the
output voltage and current, together with the irradiance
applied as input to the panel block. In addition, the voltage
and current at the terminals of the bypass diodes are recorded
to enable discrimination among different damage types. For
the fuel cell, the stack’s electrical outputs are considered,
namely the terminal voltage and the output current. For the
battery, the monitored signals are the terminal voltage,
current, and the SOC. Beyond the time histories of these
signals, each .csv file also includes metadata fields reporting:
(i) the model parameters used to simulate the specific
damage, (ii) the mission take-off, (iii) the type of damage
applied, and (iv) the severity level considered for the applied
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damage. Subsequently, the signals collected into the .csv file
were preprocessed before being fed into the diagnostic
algorithms. Different preprocessing strategies were adopted
depending on the specific power source. In particular, for the
PV panel and fuel cell, a 10-second moving average sliding
window was applied to each signal to attenuate high-
frequency components introduced by the DC-DC converters.
The mean value computed within each window was then used
as the input to the DNNSs, as the dynamic behavior of these
sources is less critical for diagnostic purposes. A different
approach was adopted for the battery, where voltage, current,
and SOC were recorded as time series over 100-second
intervals and then processed using a 1-second moving
average sliding window on each time series. This different
strategy is necessary because battery faults are primarily
linked to capacity fade and altered charge—discharge
dynamics, which only become evident when analysing the
temporal evolution of its electrical behaviour.

3.2. DNNs based diagnostic framework

The developed diagnostic algorithms consist of deep neural
networks (DNNs) designed to independently monitor the
health status of each power source. Specifically, two separate
neural networks (NNs) are employed for each source: (i) a
regression network used for damage detection, which also
accounts for varying damage severity levels, and (ii) a
classification network used for damage identification, i.e., to
distinguish between the different damage types considered
for that source. The regression network is trained to predict a
quantitative health indicator (HI) that reflects the fault
severity on a continuous scale from 0 to 2, where 0 indicates
a healthy state (HI = 0) and 2 represents a fully damaged state
(HI = 2). Based on the predicted HI, the classification
network assigns the current state to one of three predefined
fault classes, represented by discrete labels ranging from 0 to
1 and associated with the different damage types. A
schematic representation of this diagnostic framework,
combining the two NNs, is shown in Figure 8.
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Figure 8. Schematic representation of the adopted diagnostic
framework.

For the PV module, the regression neural network is
implemented as a MLP trained using three input signals: PV
panel current, voltage, and incident irradiance. Accordingly,
the input layer of the MLP consists of three neurons, one for
each signal, while the output layer consists of a single neuron
providing the predicted HI, normalized on a scale from 0 to
2. A similar MLP architecture is used for the classification
network. However, in this case, the input set is extended to
include the voltage and current of the bypass diode, resulting
in a larger input layer. The output layer is also expanded to
include three neurons, each corresponding to one of the
predefined damage classes. Each output neuron returns the
predicted probability that the input corresponds to a given
damage type. These probabilities are normalized to sum to
one, and the final classification result is assigned to the class
with the highest probability. For the fuel cell, the NNs
architectures closely mirrors those adopted for the PV panel.
Specifically, an MLP regressor maps the stack voltage and
current to a continuous HI, while a second MLP classifier
uses the same signals to identify the fault mode. An overview
of the MLP architectures adopted for the PV panel and the
fuel cell is shown in Figure 9.
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Figure 9. PV panel and fuel cell MLPs architectures.

The battery diagnostic framework follows the same two-
stage approach, with one NN estimating a continuous HI and
a second NN identifying the specific damage mechanism.
However, unlike the PV panel and fuel cell modules, the
battery networks must process sequential data to capture the
temporal dynamics associated with capacity fade and charge—
discharge behavior. For this reason, one-dimensional CNNs
were adopted instead of MLPs. The first CNN, tasked with
damage severity estimation, has an input layer that accepts a
pre-processed 100x3 matrix of battery signals, where the
rows represent 100 time samples within the interval and the
columns correspond to voltage, current, and SOC. This input
is followed by multiple consecutive convolutional layers
designed to automatically learn features from the time series,
and a max pooling layer that progressively reduces the
temporal dimension while preserving the most relevant
featurest. fully connected layers that map them into a single
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continuous output. The resulting feature representation is
then passed to fully connected layers that map it into a single
continuous output. The final layer consists of a single neuron
producing the HI. For damage mechanism identification, the
same CNN architecture is employed; however, the regression
output is replaced by a fully connected layer with as many
neurons as fault classes, followed by a SoftMax activation to
generate a probability distribution over the possible fault
types. The CNN architectures described so far are illustrated
in Figure 10.
3 convolutional

layers Dense layers for
+ features elaboration

Single output node for regression

0 — HI

pooling layer

argmax() Damage
label

//
//
N
[[softmax |

Y | Multiple output nodes for regression

Figure 10. Battery CNN architectures.

3.3. DNNs training

The developed diagnostic algorithms were trained within a
MATLAB environment, where each of the six neural
networks, two per power source, was independently trained
from the other. To this end, the input database was split to use
the 70%, 20% and 10% of the input signal for training,
validation and test, respectively. All the DNNs were trained
adopting the Adam optimizer and an initial learning rate of
1e™3 . During training, the learning rate was gradually
reduced following a piecewise decay schedule, where it was
multiplied by a factor of 0.9 every 25 epochs. Regarding the
total number of epochs, a distinction was made based on the
power source. The networks associated with the PV panel and
fuel cell, which operate on lower-dimensional inputs, were
trained for 200 epochs. Conversely, the battery networks
required longer training, up to 500 epochs, to achieve
accurate results on higher-dimensional inputs. Furthermore,
to enhance training performance, a Bayesian optimization
strategy was employed to identify the optimal set of
hyperparameters. The hyperparameters considered include
the number of hidden layers, the number of neurons per
hidden layer, the activation function, and the mini-batch size
for the MLPs of the PV panel and fuel cell. For the battery
CNNSs, the number of filters per convolutional layer was also
included in the optimization process. Table 1 summarizes the
optimized hyperparameters for all six neural networks, while
Table 2 presents the corresponding loss functions. In these
tables, regression NNs are denoted by the number 1, while
classification NNs are denoted by the number 2.

Table 1. Summary of optimized hyperparameters.

NN architecture | Activation Mini-
function batch size
PV 1 6 hidden layers, Sigmoid 1028
16 neurons
PV |2 6 hidden layers, Sigmoid/Sof | 1028
16 neurons tMax
FC 1 4 hidden layers, RelL,U 1028
50 neurons
FC 2 4 hidden layers, ReL U/ 1028
50 neurons SoftMax
Batt | 1 3 Convolutional ReLU 128
layers (24/48/48
filters) + 6 fully
connected layers
(6 neurons)
Batt | 2 3 Convolutional RelLU/ 128
layers (24/48/48 SoftMax
filters) + 6 fully
connected layers
(6 neurons)
Table 2. Training loss functions.
Loss function
PV |1 Mean squared error (MSE)
PV |2 Categorical cross entropy loss (CCE)
FC |1 Mean squared error (MSE)
FC |2 Categorical cross entropy loss (CCE)
Batt | 1 Mean squared error (MSE)
Batt | 2 Categorical cross entropy loss (CCE)

4. RESULTS AND DISCUSSION

4.1. Offline diagnostic algorithms testing

The performance of the trained DNNs were evaluated on the
test dataset comprising simulation signals that were not used
during training or validation. For the regression networks,
two standard evaluation metrics were adopted: Root Mean
Square Error (RMSE) and the coefficient of determination
(R%?). The RMSE provides a measure of the average
magnitude of the prediction error by computing the square
root of the mean squared difference between the predicted Hl
and the corresponding ground-truth values. A lower RMSE
indicates higher prediction accuracy. The coefficient of
determination quantifies how well the predicted HI values
capture the variance of the true values. An R?of 1 indicates
perfect agreement between prediction and ground truth,
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whereas an R2 of 0 implies that the model performs no better
than simply predicting the mean of the dataset. The RMSE
and R? scores obtained for each of the three regression
networks are reported in Table 3.

Table 3. Performance metrics for the regression networks.

RMSE R?
PV 0.049 0.996
FC 0.034 0.998
Batt 0.039 0.998

As shown in Table 3, all three regression networks achieved
accurate performance on the test set. However, the PV panel
model exhibited slightly lower accuracy compared to those
for the fuel cell and the battery. For the classification
networks, the performance of the trained DNNs were
evaluated using the confusion matrices. In these matrices,
each row represents the true class and each column the
predicted class. An ideal classifier would produce a matrix
with all values concentrated along the diagonal, indicating
perfect classification. Off-diagonal entries represent
misclassifications and help identify which fault modes are
more frequently confused with others. The confusion
matrices obtained for the classification models associated
with the PV panel, the fuel cell, and the battery are shown in
Figures 11, 12, and 13, respectively.

Normalized Confusion Matrix on Test Set (Accuracy = 100.00%)

True Class

0 1 2
Predicted Class

Figure 11. Confusion matrix for the PV panel classification
network.

Normalized Confusion Matrix on Test Set (Accuracy = 99.83%)

True Class

0 1 2
Predicted Class

Figure 12. Confusion matrix for the fuel cell classification
network.

Normalized Confusion Matrix on Test Set (Accuracy = 99.88%)

True Class

0 1
Predicted Class

Figure 13. Confusion matrix for the battery classification
network.

The confusion matrices show that the classification networks
correctly identify the fault type in most cases, with only a few
misclassifications observed for the fuel cell and the battery.

4.2. Real-time diagnostic algorithms testing

To further evaluate the performance of the diagnostic
algorithms and assess their generalization capability, the
developed DNNs were integrated into the HPS modeling
environment and executed in parallel with the system
simulations. This setup emulates the real-time operation of
the diagnostic framework as it would occur onboard the UAV
and enables the assessment of: (i) the predictive accuracy of
the DNNs under realistic operating conditions, and (ii) the
functionality of the entire diagnostic workflow, including the
conditional activation of the DNNSs and their interaction with
the EMS. The latter aspect is particularly relevant for the
monitoring of the PV panel and the fuel cell, which is enabled
only during specific mission phases. At night, for instance,
the PV panel is inactive due to the absence of sunlight, and
its health monitoring is therefore suspended. Likewise, when
the PV panel does not operate at its maximum power point
(MPP), the characteristic curves of healthy and degraded cells
tend to overlap, making it difficult to reliably discriminate
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between the two conditions. For this reason, PV monitoring
is activated exclusively when the panel operates at MPP and
when the irradiance level exceeds 250 W/m?. The first
condition is directly obtained from the EMS control signal,
while the second is retrieved from the irradiance signal.
Analogously, fuel cell monitoring is enabled only when the
device is operating at maximum power. This choice prevents
unnecessary activation during daytime periods, when the fuel
cell is not expected to operate. The proposed diagnostic
framework is evaluated through two representative scenarios.
The first considers a one-day flight with a fully degraded
battery caused by an ISC. The second examines a two-day
flight in which the fuel cell experiences progressive
degradation, modeled as gradually increasing pressure drops.
The corresponding real-time diagnostic results are reported
in Figures 14 and 15.
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Figure 14. Results of the diagnostic algorithms for the first
scenario.
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Figure 15. Results of the diagnostic algorithms for the
second scenario.

L

Severity
\
Fault type

lldentification not activated

Time (hr)

The results reported in Figure 14 indicate that the regression
network associated with the PV panel and the fuel cell, both
operating under nominal conditions, correctly predict a Hl
close to zero, thereby confirming their ability to recognize
healthy states and preventing unnecessary activation of the
corresponding classifiers. For the battery, both regression and
classification networks demonstrate the effectiveness of the
framework: the fault mechanism is correctly identified from
the start of the mission. Although the regression model
slightly underestimates the severity in the early phase of the
flight, the HI progressively converges toward the correct
value as more temporal data become available. The accuracy
demonstrated by the results in Figure 14 is preserved also in
the more complex scenario of a time-evolving degradation
affecting the fuel cell. As shown in Figure 15, both the
regression and classification networks for the fuel cell
correctly capture the progression of the fault, with the
regression model closely following the gradual increase in
severity and the classifier identifying the correct fault type
throughout the mission. All other networks remain highly
accurate, except for a late-mission false positive in the battery
networks, classified as an ISC.
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5. CONCLUSIONS

This study presented the development of a HUMS for a HPS
intended for long-endurance UAYV applications, integrating a
digital twin framework with DNNs for fault detection and
identification. The entire hybrid architecture, comprising a
PV panel, a Li-ion battery, and a fuel cell coordinated by an
active EMS, was modeled in the MATLAB/Simulink
environment. The numerical framework was then employed
to carry out multiple simulations designed to reproduce the
behavior of the system under a range of operating conditions,
including both nominal and faulty states of the three power
sources, within a realistic UAV mission profile. The results
obtained from these simulations demonstrate that the
developed model can reliably capture the behavior of the
hybrid power system across diverse scenarios. As such, it
represents a reliable tool for generating synthetic datasets to
support the training of data-driven diagnostic algorithms,
thereby overcoming the limitations posed by experimental
data availability. Building on this foundation, a diagnostic
framework combining regression and classification DNNs
was developed. The networks were trained on the synthetic
data, and their performance was subsequently evaluated on
an independent test dataset, both in offline and real-time
conditions. In both testing scenarios, the DNNs correctly
distinguished between healthy and faulty states of the three
power sources, successfully tracked the evolution of fault
severity, and accurately classified the underlying fault type,
with only minor misclassifications. These results confirm the
effectiveness of the proposed approach for monitoring UAV
HPS and provide a solid basis for future developments of this
work. Further studies will focus on: (i) extending the HUMS
to include prognostic algorithms, thereby enabling the
prediction of remaining useful life and fault progression, and
(ii) developing an experimental setup of the HPS to interface
the numerical model and the diagnostic/prognostic
algorithms with a real laboratory-scale system. This activity
is intended to validate the overall approach in a representative
real-world application, ultimately establishing a complete
digital twin through integration with the physical system and
assessing the full HUMS under controlled experimental
conditions.
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