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ABSTRACT 

Traditional aeronautical power systems, typically based on 

fossil fuels, present a series of limitations, including: i) the 

added weight associated with onboard fuel storage, ii) limited 

endurance due to fuel consumption, and iii) the emission of 

atmospheric pollutants. These constraints become 

particularly critical in application scenarios where extended 

endurance and environmental sustainability are key 

requirements. A notable example is represented by high-

altitude, long-endurance (HALE) unmanned aerial vehicles 

(UAVs), whose deployment is rapidly expanding due to their 

suitability for a wide range of missions, including 

surveillance, environmental monitoring, and long-range 

communications. To enable the technological advancement 

of such platforms, alternative power generation architectures 

must be explored. In this context, hybrid electric power 

systems, integrating solar panels, lithium-ion batteries, and 

fuel cells, offer a promising solution. Solar and fuel cell 

subsystems ensure stable and continuous power generation 

over extended periods, including during night-time 

operations, while lithium-ion batteries provide high-power 

bursts during transient phases such as take-off, landing, or 

auxiliary system activation. Nevertheless, the use of these 

hybrid systems introduces unique challenges in terms of 

safety, reliability, and system complexity. They must operate 

in harsh environmental conditions and often require remote 

monitoring capabilities that enable condition-based 

intervention without interrupting critical missions. To 

address these challenges, this paper presents a Health and 

Usage Monitoring System (HUMS) for a hybrid power 

system composed of a solar panel, a lithium-ion battery, and 

a fuel cell, developed through the integration of digital twin 

modeling and artificial intelligence (AI) techniques. In 

particular, AI data-driven methods provide a powerful and 

flexible framework for monitoring the complex system 

composed of multiple energy sources. However, to achieve 

reliable performance, they require large and representative 

datasets, which are often unfeasible to obtain experimentally. 

To overcome this limitation, a digital twin of the hybrid 

power system is developed in the MATLAB/Simulink 

environment and used to simulate system behavior under 

both healthy and faulty conditions. The resulting synthetic 

data are then employed to train diagnostic/prognostic 

algorithms. This approach offers an efficient and scalable 

solution for implementing intelligent health monitoring in 

hybrid power systems, enhancing reliability, autonomy, and 

operational availability in long-endurance UAV applications. 

1. INTRODUCTION 

Unmanned aerial vehicles (UAVs), commonly defined as 

drones or aircraft that operate without an onboard pilot, are 

extensively employed both in civil and military applications 

performing tasks that are unsuitable or unsafe for humans. In 
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the civil domain, UAVs are adopted for a wide range of 

purposes, including: (i) scientific research and remote 

sensing, (ii) forestry monitoring, (iii) rapid detection of the 

disaster area after earthquakes, tsunamis, and hurricanes, and 

(iv) seasonable inspection for the survivors in hazardous 

situations (Zhang, et al., 2022). In the military sector, UAVs 

are primarily deployed for intelligence, reconnaissance and 

surveillance (ISR) missions. Their role in this field has 

become increasingly important, largely due to their ability to 

carry out long-duration flights that human pilots could not 

sustain (Özbek, Yalin, Ekici, & Karakoc, 2020).  This 

capability is effectively exemplified by military high altitude 

long endurance (HALE) UAVs, which operate at altitudes of 

15–20 km and can remain airborne for periods ranging from 

several days to even months without the need to land. 

Achieving such extended endurance critically depends on the 

propulsion system that must combine high power density and 

high energy density. The former influences the maximum 

speed, payload capacity, operational altitude and climbing 

rate, while the latter directly determines the achievable flight 

endurance (Gang & Kwon, 2018). Traditionally, most long 

endurance UAVs have been powered by internal combustion 

engines (ICEs). Although these systems are characterized by 

adequate specific power and specific energy, they are also 

affected by several limitations, namely: (i) the need to store 

fuel onboard which increases the overall weight of the UAV 

consequently impacting its performance, (ii) the finite fuel 

supply, which constrains endurance since thrust generation 

relies on continuous fuel consumption, (iii) high emissions 

and a considerable environmental impact, which conflict with 

the growing demand for greener and more sustainable 

platforms, and (iv) the generation of noise and vibrations, 

which may compromise operational stealth and structural 

integrity during prolonged missions (Chen & Khaligh, 2010). 

To address such limitations, electrical propulsion systems 

have emerged as a viable alternative. The most widely 

adopted technologies for UAV applications include lithium-

ion (Li-ion) batteries, fuel cells, and solar photovoltaic (PV) 

panels. Li-ion batteries are extensively used in small UAVs; 

however, their relatively low specific energy compared to 

ICEs makes them unsuitable for large UAV that require 

prolonged endurance. Fuel cells offer higher specific energy 

and generate clean power, as they operate through 

electrochemical reactions with water as the only by-product. 

Nevertheless, their use is constrained by the need to store 

hydrogen on board. Specifically, once the stored hydrogen is 

depleted, the fuel cells can no longer operate, i.e., the 

endurance they provide is directly determined by the 

available hydrogen storage capacity. Lastly, solar panels can 

provide continuous energy obtained through the photovoltaic 

effect. However, in real-world scenarios their power output 

is significantly influenced by environmental conditions, such 

as irradiance and ambient temperature variations, as well as 

by the UAV’s orientation which affects the effective incident 

solar radiation. Overall, each of these electric power sources, 

when used individually, present intrinsic limitations that 

restrict their applicability. For this reason, hybrid 

architectures have attracted increasing attention in recent 

years as a means to improve the efficiency and capability of 

electric propulsion system in long endurance UAVs 

applications. These configurations integrate two or more 

electric power sources to compensate for the limitations of 

each individual technology while enhancing the overall 

system performance (Lee, Park, Kim, Yang, & Ahn, 2012), 

(Zhang, Liu, & Xu, 2016). Considering hybrid architectures 

based on two power sources, the most common solutions, 

especially for HALE UAVs, integrate Li-ion batteries with 

PV panels or with fuel cells. For low- and medium-altitude 

long-endurance UAVs, several studies have instead proposed 

the combination of Li-ion battery, fuel cell and PV panels as 

the optimal strategy to maximize UAV’s endurance (Lee, 

Kwon, Park, & Kim, 2014), (Harvey, et al., 2012) . In these 

works, PV panels have been adopted as the primary energy 

source, supplying power mainly during the daylight phases of 

the mission, the battery has been employed to meet peak 

power demands, leveraging  its fast dynamic response and 

high power density, whereas the fuel cells has been used as 

the main power source during night phases, when no 

irradiance was available for the PV panels. These studies 

have brought evidence of the effectiveness of three-

component hybrid architectures in enhancing flight duration 

and indicate that such configurations could also represent a 

promising solution for HALE UAVs. Nevertheless, the 

practical implementation of these systems, along with their 

potential extension to high-altitude scenarios, still faces 

several challenges. One of the most critical is ensuring the 

safety and reliability of the propulsion system over prolonged 

periods and under extreme environmental conditions. 

Addressing this requirement calls for the development of 

remote monitoring strategies capable of minimizing the risk 

of propulsion system failures while avoiding unnecessary and 

costly maintenance operations. Such approach can also help 

prevent avoidable mission interruptions, thereby enabling 

more continuous and efficient UAV operations. However, 

designing a successful monitoring strategy for hybrid power 

systems is particularly challenging due to the large volume 

and heterogeneity of data required to assess the health of 

multiple power sources under varying operational conditions. 

In this regard, the adoption of data-driven artificial 

intelligence (AI) techniques, particularly deep neural 

networks (DNNs), represent a viable solution. In fact, in 

recent years, DNNs have gained much attention in health 

monitoring applications across various engineering domains, 

due to their ability to extract meaningful features from high-

dimensional inputs (Khatir, et al., 2025). Despite this, DNNs 

based diagnostic algorithms also come with some limitations, 

the major of which consists in the need of a huge amount of 

training data. Specifically, supervised DNNs require large 

labeled datasets including both healthy and faulty system 

information and acquiring such data experimentally is often 

impractical because of cost constraints. In this context, the 

present work proposes a health and usage monitoring system 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025 

3 

(HUMS) for UAV hybrid power systems, based on a digital 

twin framework combined with DNNs. The digital twin is 

conceived as a virtual replica of the physical power system, 

capable of simulating its behavior under both nominal and 

faulty conditions. This model enables the generation of 

extensive synthetic datasets that can be used to train DNNs 

for fault diagnosis of the power sources. The ultimate goal is 

to establish a preliminary version of a HUMS that can later 

be extended to include prognostic capabilities and real-time 

interaction with the physical system. 

The paper is organized as follows. Section 2 presents the 

modeling of the hybrid power system (HPS) under nominal 

conditions, describes the modification introduced to model 

the most relevant faults affecting the three power sources, and 

provides a brief comparison of the simulated HPS behavior 

under nominal and faulty conditions. Section 3 details the 

adopted diagnostic framework, including a description of the 

training database generation, the diagnostic algorithms 

architectures and the DNNs training. Section 4 discusses the 

performance of the diagnostic algorithms during both the 

training and testing phases. Finally, Section 5 draws the main 

conclusion of the study and outlines possible future 

developments.  

2. NUMERICAL MODELING OF THE HPS 

The HPS was modeled in the MATLAB/Simulink 

environment, where each component of the physical system 

was numerically represented through dedicated blocks. The 

block-diagram of the complete model, reproducing the main 

subsystems of real architecture, is shown in  Figure 1. 

 

Figure 1. Schematic representation of the HPS model. 

 

The main components of the model are the three power 

sources, namely the PV panel, the Li-ion battery and the fuel 

cell together with the onboard load and the energy 

management system (EMS). Each source is interfaced with 

the main DC bus through a dedicated DC-DC converter, and 

all are connected in parallel to supply the load.  The EMS 

coordinates the operation of the sources to satisfy the 

instantaneous power demand, while the converters ensure 

proper integration with the DC bus, as the operating voltage 

of each source may differ from that imposed on the bus. To 

guarantee that the model is representative of a realistic 

application, the main model parameters were derived from 

data of commercially available items compatible with a low-

speed long-endurance UAV. This UAV class was also 

adopted as the reference platform for defining the mission 

profile and the corresponding load requirements. In 

particular, based on data reported in the literature from flight 

tests of hybrid-electric UAVs of this type, the rated power 

during cruise was set to 200 W, whereas the maximum peak 

power demand during ascent was set to 1 kW. On this basis, 

the developed model was first employed to simulate the 

behavior of the HPS under nominal operating conditions of 

each source. Subsequently, the model was extended to 

include representations of the main degradation and faults 

affecting the individual sources. The modeling approach and 

the main parameters employed under both nominal and faulty 

conditions are described in detail in the following sections.  

2.1. Modeling under nominal conditions 

Each block associated with one of the power sources 

implements an equivalent circuit model (ECM) that 

reproduces the main electrical behavior of the corresponding 

physical component. This approach provides a simplified yet 

effective representation of the sources, enabling a 

computationally efficient system level simulation of the 

hybrid power system. Specifically, the Li-ion battery is 

represented by an ECM consisting of a controlled voltage 

source in series with a resistor. The resistor accounts for the 

internal ohmic resistance of the battery, while the value of the 

controlled voltage varies according to the charging and 

discharging conditions. This ECM formulation allows 

deriving a mathematical relation between the battery terminal 

voltage and the output current, as expressed in Eq. (1): 

𝑉𝑏𝑎𝑡𝑡 = 𝑓1(𝑖𝑡, 𝑖∗, 𝑖) − 𝑅𝑖 (1) 

where 𝑅 is the internal resistance, 𝑖𝑡 is the battery’s capacity, 

𝑖∗ is the low frequency battery dynamic, 𝑖  is the battery 

current and the function 𝑓1(𝑖𝑡, 𝑖∗, 𝑖)  is the voltage of the 

controlled voltage source during discharging. This function 

is defined according to Eq. (2): 

𝑓1(𝑖𝑡, 𝑖∗, 𝑖) = 𝐸0 − 𝐾
𝑄

𝑄 − 𝑖𝑡
∙ 𝑖𝑡 + 𝐴𝑒𝑥𝑝(−𝐵 ∙ 𝑖𝑡) (2) 

where 𝐸0  is the constant voltage of the battery, 𝐾  is the 

polarization constant, 𝑄 is the maximum battery capacity, 𝐴 

is the exponential zone amplitude, and 𝐵 is the exponential 

capacity. During the charging phase the output voltage of the 

battery is evaluated as in Eq. (3): 

𝑉𝑏𝑎𝑡𝑡 = 𝑓2(𝑖𝑡, 𝑖∗, 𝑖) − 𝑅𝑖 (3) 

where the function 𝑓2(𝑖𝑡, 𝑖∗, 𝑖) is defined according to Eq. (4): 
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𝑓2(𝑖𝑡, 𝑖 ∗, 𝑖)

= 𝐸0 − 𝐾
𝑄

𝑖𝑡 + 0.1 ∙ 𝑄
∙ 𝑖∗ − 𝐾

𝑄

𝑄 − 𝑖𝑡
∙ 𝑖𝑡

+ 𝐴𝑒𝑥𝑝(−𝐵 ∙ 𝑖𝑡) 

(4) 

The ECM used to describe the operation of the fuel cell has 

the same structure as that adopted for the battery, consisting 

of a controlled voltage source in series with a resistor. In this 

case, the controlled voltage source is associated with 

activation loss, i.e., the voltage drops due to the energy 

barrier that must be overcome for the electrochemical 

reactions to occur, while the resistor represents the ohmic loss 

due to the resistance to electron flow within the cell. 

Accordingly, the relation between the fuel cell terminal 

voltage and its output current is expressed by Eq. (5): 

𝑉𝑓𝑐 ≅ 𝐸𝑂𝐶 − 𝑁𝐴𝑙𝑛 (
𝑖𝑓𝑐

𝑖0

) − 𝑖𝑓𝑐𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  (5) 

where 𝐸𝑂𝐶  is the open circuit voltage of the fuel cell, 𝑁 is the 

number of cells, 𝐴  is the Tafel slope, 𝑖0  is the exchange 

current, 𝑖𝑓𝑐 is the output current of the fuel cell and 𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  

is the internal series resistance. The PV panel is also 

represented through an ECM, composed of a current source, 

a diode, a parallel resistance and a series resistance. The 

current source together with the diode reproduces the 

behavior of the solar cell, the series resistance accounts for 

ohmic losses due to current transport through the 

semiconductor material and contacts, while the parallel 

resistance models leakage currents across the p–n junction 

and along the cell surface. According to this model, the 

relationship between the output current 𝑖 and voltage 𝑉 of the 

panel is given by Eq. (6): 

𝑖 =  𝑖𝐿 − 𝑖0 exp [
𝑞𝑉𝑑  

𝑁𝑐𝑒𝑙𝑙𝑛𝐾𝑇
− 1] −

𝑉 + 𝑖𝑅𝑆

𝑅𝑆𝐻

 (6) 

Where 𝑖𝐿 is the current produced by the current source, 𝑖0 is 

the cell’s saturation current, 𝑞 is the electron charge, 𝑁𝑐𝑒𝑙𝑙  is 

the number of solar cells, 𝑛  is the diode ideality factor 

dependent on the material doping, 𝐾  is the Boltzmann 

constant, 𝑇 is the cell’s temperature in unit Kelvin, 𝑉𝑑  is the 

diode voltage, 𝑅𝑆 is the series resistance and 𝑅𝑆𝐻 is the shunt 

resistance. The governing equations of each ECM depend on 

a set of quantities internally computed within the Simulink 

blocks on the basis of user-defined parameters. In this work, 

these parameters were derived from manufacturer datasheets 

of commercially available products taken as reference for the 

battery, the fuel cell and the PV panel. In particular, the Li-

ion battery was modeled using data from a 25.2 V 10 Ah 

rechargeable pack composed of 35 cells and provided by EV 

lithium, the PV panel was modeled using data from 

SunPower A-300 solar cells arranged into three parallel 

strings of 52 cells each, and the fuel cell was modeled using 

the H-200 proton exchange membrane fuel cell (PEMFC) 

provided by Horizon Educational. The block of every power 

source is connected in series with a dedicated DC-DC 

converter block which is required to adapt the voltage levels 

of the individual sources to that of the DC bus and to regulate 

the power flow. Depending on the source, different converter 

typologies were considered: a boost converter for the fuel cell 

and the PV panel and a bidirectional converter for the battery, 

operating as a boost converter during discharge and as a buck 

converter during charge. Both the boost and buck converters 

were modeled as electrical circuits composed of an inductor, 

a switching device, a diode and a capacitor. Their operation 

depends on the switching device which is driven by a pulse-

width modulation (PWM) signal that periodically opens or 

closes the switch. Then the duty cycle 𝐷  of the PWM 

determines the relation between input and output voltage of 

the converter, as shown in Eqs. (7) and (8): 

𝑉𝐻 = 𝑉𝐿 ⋅
1

1 − 𝐷
 (7) 

𝑉𝐻 = 𝑉𝐿 ⋅ 𝐷 (8) 

where 𝑉𝐻 is the input voltage while 𝑉𝐿 is the output voltage 

is. Moreover, the duty cycle 𝐷  is exploited to control the 

operating conditions of the power sources. Assuming that the 

main DC bus voltage remains stable over time, 𝐷 is varied to 

modify the input voltage and consequently shifts the 

operating point of the power source along its characteristic 

curve. To implement this control, two different controllers 

were considered: a Proportional-Integral-Derivative (PID) 

power controller for the FC and a Maximum Power Point 

Tracking (MPPT) controller for the PV.  In addition, the PV 

controller integrates a second control law based on the PID 

algorithm.  This control law becomes necessary when the 

battery is fully charged and the power demand is lower than 

the maximum power that the PV can generate. In this 

scenario, the excess energy cannot be stored, requiring the 

PV power to be limited to match the power absorbed by the 

load. The controllers operate according to the output signals 

provided by the EMS. The EMS is an active, rule-based EMS 

based on the following principles: (i) the PV panel is 

prioritized as the main power source during the daytime 

phases of the mission, (ii) the Li-ion battery is primarily 

employed to compensate for sudden load variations or peak 

power demands, and can be recharged by the PV panel when 

excess energy is available, (iii) the battery state of charge 

(SOC) is constrained between an upper and a lower threshold, 

the latter being set to ensure safe landing in case both the PV 

panel and the fuel cell fail to supply energy, and the former 

to prevent overcharging, (iv) the fuel cell is designated as the 

main power source during nighttime phases of the mission. 

The pseudocode corresponding to the EMS is reported in 

Figure 2. The symbols used in the pseudocode are defined as 

follows: 𝑃𝑝𝑣, 𝑃𝑓𝑐  and 𝑃𝑏𝑡 denote the power generated by the 

PV panel, the fuel and the battery, respectively; 𝑃𝑟𝑒𝑞  

represents the power demanded by the load; 𝑃𝑝𝑣,𝑚𝑎𝑥 , 𝑃𝑓𝑐,𝑚𝑎𝑥  

and 𝑃𝑏𝑡,𝑚𝑎𝑥  indicate the maximum power that can be 

delivered by the PV panel, the fuel and the battery, 
respectively; 𝑆𝑂𝐶𝐻 and 𝑆𝑂𝐶𝐿 correspond to the upper and 

lower SOC limits of the battery. 
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Figure 2. Control logic of the EMS. 

 

The load block models a generic onboard load, which is not 

limited to the electric motor but may also include auxiliary 

devices such as cameras, sonars, and other electronic 

systems. In the model, these elements are represented by a 

variable resistor, whose resistance is dynamically adjusted 

according to a prescribed power profile reflecting the power 

demand during the UAV mission. 

2.2. Modeling under faulty conditions 

The numerical model of the HPS was modified to account for 

the main damage and degradation mechanisms affecting the 

three power sources. The phenomena considered were 

selected from faulty conditions reported in the literature 

according to two criteria: (i) occurrence within a time frame 

relevant for the UAV operational lifespan, and (ii) significant 

impact to the power output of the source. Based on these 

criteria, the modeled mechanisms are: hotspots, microcracks 

inside the silicon layer of a cell, and cracks in the protective 

glass for the PV panel, internal short circuits (ISC) and loss 

of lithium inventory for the battery, inlet pressures reduction, 

flooding and drying, and carbon monoxide (CO) poisoning 

for the fuel cell. The physical processes underlying these 

phenomena were not explicitly modeled. Instead, the 

Simulink blocks of each source were adapted to reproduce 

their equivalent effects on the electrical behavior of the 

system. In the case of the PV panel, the entire system was 

represented by two separate blocks: the first models three 

parallel strings with 52 − Nd cells per string, and the second 

models three parallel strings with Nd cells per string, where 

Nd  is a user-defined parameter denoting the number of 

damaged cells. This separation enables the reproduction of a 

realist condition un which only part of the panel is affected 

by damage, while the remaining portion operates in healthy 

conditions. Two bypass diodes are also connected in series 

with the two blocks, consistently with real PV panel design, 

where they are integrated to mitigate the adverse effects of 

faulty cells. To simulate the presence of a hotspot, the 

irradiance input to the block representing the damaged 

portion is modulated by a gain factor D1 . Setting D1 =  0 

corresponds to complete shading of the affected cells. This 

representation is consistent with real operating conditions, as 

shading prevents the cells from generating current through 

the photovoltaic effect, forces them into reverse bias, and can 

lead to hotspot formation. Cracks in the protective glass are 

modeled using the same approach but D1 is assigned a value 

between 0 and 1 to represent a partial reduction of the 

irradiance on the damaged cells. In fact, glass cracks alter the 

optical properties of the glass layer and only partially reduce 

the irradiance reaching the silicon layer. As a result, the 

affected cells are not entirely unable to convert light into 

current, but they generate a lower current compared to 

undamaged cells. Microcracks in the silicon layer are 

modeled by introducing a parallel resistor connected to the 

second block. This additional resistance decreases the local 

shunt resistance of the affected section, simulating leakage 

current paths introduced by the presence of microcracks. This 

reflects the physical reality in which microcracks 

compromise the structural and electrical continuity of the 

silicon layer, causing localized current losses and a reduction 

in the effective output current. In addition to the parallel 

resistor, the gain factor D1 is also maintained in the model to 

reduce the effective irradiance incident on the affected cells. 

Although microcracks do not directly reduce the amount of 

light reaching the silicon layer, as would happen with 

macroscopic cracks or shading, their presence decreases the 

cell’s ability to generate photocurrent. Thus, the combined 

effect of the parallel resistor and the adjusted irradiance 

models both the electrical leakage due to microcracks and the 

consequent reduction in current generation capacity. For the 

battery, the internal short circuit is simulated by introducing 

a parallel resistor across the terminals of the battery block. 

This resistor represents the low resistance pathway that forms 

inside the battery cell when the separator between the two 

electrodes is compromised. A lower short-circuit resistance 

results in a larger fraction of the current bypassing the 

external load, amplifying the effect of ISC. The loss of 

lithium inventory is modeled by reducing the nominal 

capacity parameter of the battery block. The reduction in 

nominal capacity is assumed to be directly proportional to the 

lithium loss (Gantenbein, Schönleber, Weiss, & Ivers-Tiffée, 

2019). In particular, the rated capacity of the battery Q is 

evaluated as shown in Eq. (9): 

𝑄 = 𝑄𝑛𝑜𝑚 ⋅ (1 − 𝐿𝐿𝐼) (9) 

where 𝑄𝑛𝑜𝑚 is the nominal capacity while 𝐿𝐿𝐼 is expressed 

as the fraction of lost lithium relative to the total lithium 

originally present in the battery. Referring to the fuel cell, the 

variations in hydrogen and air inlet pressures can be caused 

by several factors including clogging in the piping, air filter 

blockage, damage to the tubing, aging of seals and joints 
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between supply system components, leaks and 

malfunctioning parts. Regardless of the cause, a partial 

reduction in the inlet pressures can be directly modeled by 

modifying the corresponding input variables of the hydrogen 

and air feeding pressure for the fuel cell block. With regard 

to flooding and drying, these phenomena act directly on the 

electrochemical processes within the fuel cell. Flooding 

occurs when water obstructs the transport of oxygen to the 

active catalytic sites, impairing the oxygen reduction 

reaction. Conversely, under drying conditions, the membrane 

lacks sufficient water to support effective proton ( H+ ) 

conduction. From a modeling perspective, both phenomena 

are equivalently represented by a series resistor to the fuel 

cell block. In fact, the damaged membrane and obstructed 

catalytic sites effectively behave as an increased resistance 

compared to the nominal state. Finally, CO poisoning, caused 

by the presence of CO in the hydrogen stream, is represented 

by a diode-resistor pair added in series to the fuel cell block. 

The diode simulates activation losses due to the slow kinetics 

of the electrochemical reactions on the reduced active area of 

the catalyst. The resistor, on the other hand, represents ohmic 

losses due to the presence of CO, which impedes the transport 

of reactants to, and removal of products from, the catalytic 

sites.   

2.3. Simulations results 

The Simulink model was adopted to simulate and analyze the 

behavior of the HPS during a representative mission scenario. 

The simulations were first performed under nominal 

operating conditions and subsequently repeated under faulty 

conditions. The mission profile was defined to replicate the 

basic sequence of operations of a typical UAV flight and 

consists of four phases: (i) warm-up and take-off, (ii) climb, 

with a duration corresponding to 15 minutes in real flight 

conditions and a maximum power demand of 1 kW, (iii) 

cruise, the longest mission phase, characterized by a nominal 

power demand of 200 W with additional power peaks of 20% 

of this value to mimic the temporary use of onboard systems, 

and (iv) descent, characterized by a reduced power demand 

of 160 W. The complete mission profile, together with the 

simulated phases, is shown in Figure 3. 

 

Figure 3. Schematic representation of the UAV mission 

profile. 

 

The overall duration of the flight mission was set to 24 h to 

simulate the operation of all three power sources. Moreover, 

to reduce computational time, one day of real-world 

operation was condensed into a 3 h time window. For the sake 

of simplicity, the effects of latitude and weather conditions 

were neglected. The only environmental parameters 

considered were: (i) ambient temperature, fixed at 25 ℃, and 

(ii) solar irradiance whose variations were determined based 

on a model of the sun’s trajectory as a function of time of day 

and seasonal variations. In relation to the results presented in 

this work, equinox conditions were assumed, corresponding 

to 12 hours of daylight and 12 hours of darkness, with a 

maximum irradiance of 1000 W/m2. Furthermore, the take-

off time was set to 12 pm. The results of the simulations are 

summarized in Figures 4, 5, 6 and 7. Specifically, Figures 4 

and 5 illustrate the power distribution among the three 

sources along with the power demand under nominal and 

faulty conditions, respectively. The main findings from 

Figure 4 can are as follows: (i) during take-off, both the 

battery and the PV panel contribute to supplying power to the 

load, with the battery largely compensating for the 

insufficient contribution of the PV panel, (ii) during the 

daytime cruise phase, the PV panel acts as the primary energy 

source and, whenever its output exceeds the load demand, the 

surplus power is used to recharge the battery, resulting in a 

negative battery power, (iii) as irradiance decreases towards 

zero, the PV panel power decreases as well and the fuel cell 

begins to supply the load, and (iv) during the night, the fuel 

cell operates as the main power source, with the battery 

assisting particularly during peak demands associated with 

the activation of auxiliary onboard systems. Figure 5 reports 

similar results, with some differences arising from the 

simulated presence of a glass crack in the PV panel, modeled 

as a 20% reduction of the incident solar irradiance and 10 

damaged cells per string. This condition is considered as a 

representative example of anomaly in the HPS. The presence 

of the glass crack primarily affects the power generated by 

the PV panel. As shown in Figure 5, during the initial phases 

of the mission, the maximum PV power reaches only 400 W, 

which is lower than the value observed under nominal 

conditions. As a result, the battery is more heavily utilized, 

reaching a peak power of 600 W. Furthermore, due to the 

reduced PV output, the battery remains less charged 

throughout the day, which in turn leads to increased use of 

the fuel cell during nighttime operation. These differences 

can be further analyzed by examining Figures 6 and 7, which 

present the power profiles of each source, along with a 

characteristic parameter, under both nominal and faulty 

conditions. In general, the power delivered by the PV panel 

follows the solar irradiance trend, reaching its peak when 

irradiance is at its maximum and dropping to zero when 

irradiance is absent. However, under faulty conditions, it is 

evident that the PV panel produces less power even though 

solar irradiance remains unchanged. Regarding the battery, it 

can be observed that after the climb phase, the SOC remains 

around 60% under nominal conditions, while it drops to 

approximately 40% under faulty conditions. As previously 

mentioned, this results in a higher reliance on the fuel cell 

during the night, which is further confirmed by the hydrogen 

warm up and

ta e off

climb descent

cruise

landing

simulated scenario
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consumption profile: in the faulty case, hydrogen 

consumption shows a steeper trend compared to the nominal 

case. Overall, the presented results also confirm the correct 

operation of the EMS, which effectively distributes power 

generation among the sources to continuously meet the power 

demand and successfully maintain the battery SOC within its 

operational limits, ranging from a lower threshold of 20% to 

an upper limit of approximately 90%. 

 

Figure 4. Power profiles of the load and the three power 

sources during the UAV mission under nominal conditions. 

 

 

Figure 5. Power profiles of the load and the three power 

sources during the UAV mission under faulty conditions. 

 

Figure 6. Power profiles and corresponding characteristic 

parameters of the PV panel, battery, and fuel cell during the 

UAV mission under nominal conditions. 
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Figure 7. Power profiles and corresponding characteristic 

parameters of the PV panel, battery, and fuel cell during the 

UAV mission under faulty conditions. 

3. METHODOLOGY 

The numerical model of the HPS was employed to generate a 

comprehensive dataset of simulation signals used to train the 

diagnostic algorithms. This dataset was constructed by 

running multiple simulations under various operating 

scenarios, including both nominal and faulty conditions. In 

the case of faulty scenarios, only single fault conditions were 

considered, that is, each simulation involved a fault affecting 

only one power source at a time.  This approach is based on 

the assumption that the simultaneous occurrence of multiple 

failures, either within the same source or across different 

sources, is less likely in realistic scenarios.  The resulting 

signals were then used as input data for diagnostic algorithms 

based on deep neural networks (DNNs). Two main DNN 

architectures were adopted in this study: Multi-Layer 

Perceptrons (MLPs) and Convolutional Neural Networks 

(CNNs). An MLP is a type of feedforward artificial neural 

network consisting of an input layer, one or more hidden 

layers, and an output layer. Each layer is fully connected to 

the next, and nonlinear activation functions are applied at 

each hidden layer to enable the learning of complex 

relationships. MLPs are widely used in classification and 

regression tasks, and when composed of multiple hidden 

layers, represent one of the basic architectures in deep 

learning. A CNN, on the other hand, is a deep neural network 

architecture particularly suited for processing data with 

spatial or temporal structure, such as images or time series. 

CNNs apply learnable convolutional filters to local regions 

of the input, automatically extracting meaningful features. 

These layers are typically followed by pooling and fully 

connected layers. CNNs are especially effective in pattern 

recognition tasks and have seen broad application in a variety 

of areas including fault detection in time-series data. Further 

details regarding the generation of the training dataset and the 

design and implementation of the diagnostic algorithms are 

provided as follows. 

3.1. Training database generation  

The training database was constructed from signals obtained 

through multiple simulations of the HPS. All simulations 

were based on the same mission scenario described in Section 

2.3, with the only varying parameter being the takeoff time, 

which was randomly assigned for each run. Considering the 

possible damage mechanisms affecting the three power 

sources, a total of eight faulty cases were modeled. To enrich 

the database and to better reflect realistic operating 

conditions in which damage may manifest at different 

severities, two severity levels were defined for each case: a 

partially damaged condition and a fully damaged condition. 

Accordingly, one simulation was performed for each damage 

mechanism at each severity level, resulting in a total of 16 

faulty condition simulations. In addition, a further simulation 

was carried out to represent the healthy state of the HPS. The 

outcome of these simulations is a set of .csv files, each 

containing the time histories of key electrical and 

environmental signals recorded during an individual mission. 

Specifically, for the PV panel the selected signals include the 

output voltage and current, together with the irradiance 

applied as input to the panel block. In addition, the voltage 

and current at the terminals of the bypass diodes are recorded 

to enable discrimination among different damage types. For 

the fuel cell, the stac ’s electrical outputs are considered, 

namely the terminal voltage and the output current. For the 

battery, the monitored signals are the terminal voltage, 

current, and the SOC. Beyond the time histories of these 

signals,  each .csv file also includes metadata fields reporting: 

(i) the model parameters used to simulate the specific 

damage, (ii) the mission take-off, (iii) the type of damage 

applied, and (iv) the severity level considered for the applied 
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damage. Subsequently, the signals collected into the .csv file 

were preprocessed before being fed into the diagnostic 

algorithms. Different preprocessing strategies were adopted 

depending on the specific power source. In particular, for the 

PV panel and fuel cell, a 10-second moving average sliding 

window was applied to each signal to attenuate high-

frequency components introduced by the DC–DC converters. 

The mean value computed within each window was then used 

as the input to the DNNs, as the dynamic behavior of these 

sources is less critical for diagnostic purposes. A different 

approach was adopted for the battery, where voltage, current, 

and SOC were recorded as time series over 100-second 

intervals and then processed using a 1-second moving 

average sliding window on each time series. This different 

strategy is necessary because battery faults are primarily 

linked to capacity fade and altered charge–discharge 

dynamics, which only become evident when analysing the 

temporal evolution of its electrical behaviour.   

3.2. DNNs based diagnostic framework 

The developed diagnostic algorithms consist of deep neural 

networks (DNNs) designed to independently monitor the 

health status of each power source. Specifically, two separate 

neural networks (NNs) are employed for each source: (i) a 

regression network used for damage detection, which also 

accounts for varying damage severity levels, and (ii) a 

classification network used for damage identification, i.e., to 

distinguish between the different damage types considered 

for that source. The regression network is trained to predict a 

quantitative health indicator (HI) that reflects the fault 

severity on a continuous scale from 0 to 2, where 0 indicates 

a healthy state (HI = 0) and 2 represents a fully damaged state 

(HI = 2). Based on the predicted HI, the classification 

network assigns the current state to one of three predefined 

fault classes, represented by discrete labels ranging from 0 to 

1 and associated with the different damage types. A 

schematic representation of this diagnostic framework, 

combining the two NNs, is shown in Figure 8. 

 

Figure 8. Schematic representation of the adopted diagnostic 

framework. 

 

For the PV module, the regression neural network is 

implemented as a MLP trained using three input signals: PV 

panel current, voltage, and incident irradiance. Accordingly, 

the input layer of the MLP consists of three neurons, one for 

each signal, while the output layer consists of a single neuron 

providing the predicted HI, normalized on a scale from 0 to 

2. A similar MLP architecture is used for the classification 

network. However, in this case, the input set is extended to 

include the voltage and current of the bypass diode, resulting 

in a larger input layer. The output layer is also expanded to 

include three neurons, each corresponding to one of the 

predefined damage classes. Each output neuron returns the 

predicted probability that the input corresponds to a given 

damage type. These probabilities are normalized to sum to 

one, and the final classification result is assigned to the class 

with the highest probability. For the fuel cell, the NNs 

architectures closely mirrors those adopted for the PV panel. 

Specifically, an MLP regressor maps the stack voltage and 

current to a continuous HI, while a second MLP classifier 

uses the same signals to identify the fault mode. An overview 

of the MLP architectures adopted for the PV panel and the 

fuel cell is shown in  Figure 9. 

 

Figure 9. PV panel and fuel cell MLPs architectures.  

 

The battery diagnostic framework follows the same two-

stage approach, with one NN estimating a continuous HI and 

a second NN identifying the specific damage mechanism. 

However, unlike the PV panel and fuel cell modules, the 

battery networks must process sequential data to capture the 

temporal dynamics associated with capacity fade and charge–

discharge behavior. For this reason, one-dimensional CNNs 

were adopted instead of MLPs. The first CNN, tasked with 

damage severity estimation, has an input layer that accepts a 

pre-processed 100×3 matrix of battery signals, where the 

rows represent 100 time samples within the interval and the 

columns correspond to voltage, current, and SOC. This input 

is followed by multiple consecutive convolutional layers 

designed to automatically learn features from the time series, 

and a max pooling layer that progressively reduces the 

temporal dimension while preserving the most relevant 

featurest.  fully connected layers that map them into a single 
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continuous output. The resulting feature representation is 

then passed to fully connected layers that map it into a single 

continuous output. The final layer consists of a single neuron 

producing the HI. For damage mechanism identification, the 

same CNN architecture is employed; however, the regression 

output is replaced by a fully connected layer with as many 

neurons as fault classes, followed by a SoftMax activation to 

generate a probability distribution over the possible fault 

types. The CNN architectures described so far are illustrated 

in  Figure 10. 

 
Figure 10. Battery CNN architectures.  

3.3. DNNs training 

The developed diagnostic algorithms were trained within a 

MATLAB environment, where each of the six neural 

networks, two per power source, was independently trained 

from the other. To this end, the input database was split to use 

the 70%, 20% and 10% of the input signal for training, 

validation and test, respectively. All the DNNs were trained 

adopting the Adam optimizer and an initial learning rate of 

1e−3 . During training, the learning rate was gradually 

reduced following a piecewise decay schedule, where it was 

multiplied by a factor of 0.9 every 25 epochs. Regarding the 

total number of epochs, a distinction was made based on the 

power source. The networks associated with the PV panel and 

fuel cell, which operate on lower-dimensional inputs, were 

trained for 200 epochs. Conversely, the battery networks 

required longer training, up to 500 epochs, to achieve 

accurate results on higher-dimensional inputs. Furthermore, 

to enhance training performance, a Bayesian optimization 

strategy was employed to identify the optimal set of 

hyperparameters. The hyperparameters considered include 

the number of hidden layers, the number of neurons per 

hidden layer, the activation function, and the mini-batch size 

for the MLPs of the PV panel and fuel cell. For the battery 

CNNs, the number of filters per convolutional layer was also 

included in the optimization process. Table 1 summarizes the 

optimized hyperparameters for all six neural networks, while 

Table 2 presents the corresponding loss functions. In these 

tables, regression NNs are denoted by the number 1, while 

classification NNs are denoted by the number 2.  

 

 

Table 1. Summary of optimized hyperparameters. 

   NN architecture Activation 

function 

Mini-

batch size 

PV 1 6 hidden layers, 

16 neurons 

Sigmoid 1028 

PV 2 6 hidden layers, 

16 neurons 

Sigmoid/Sof

tMax 

1028 

FC 1 4 hidden layers, 

50 neurons 

ReLU 1028 

FC 2 4 hidden layers, 

50 neurons 

ReLU/ 

SoftMax 

1028 

Batt 1 3 Convolutional 

layers (24/48/48 

filters) + 6 fully 

connected layers 

(6 neurons) 

ReLU 128 

Batt 2 3 Convolutional 

layers (24/48/48 

filters) + 6 fully 

connected layers 

(6 neurons) 

ReLU/ 

SoftMax 

128 

 

Table 2. Training loss functions. 

  Loss function  

PV 1 Mean squared error (MSE) 

PV 2 Categorical cross entropy loss (CCE) 

FC 1 Mean squared error (MSE) 

FC 2 Categorical cross entropy loss (CCE) 

Batt 1 Mean squared error (MSE) 

Batt 2 Categorical cross entropy loss (CCE) 

 

4. RESULTS AND DISCUSSION 

4.1. Offline diagnostic algorithms testing 

The performance of the trained DNNs were evaluated on the 

test dataset comprising simulation signals that were not used 

during training or validation. For the regression networks, 

two standard evaluation metrics were adopted: Root Mean 

Square Error (RMSE) and the coefficient of determination 

( R2 ). The RMSE provides a measure of the average 

magnitude of the prediction error by computing the square 

root of the mean squared difference between the predicted HI 

and the corresponding ground-truth values. A lower RMSE 

indicates higher prediction accuracy. The coefficient of 

determination quantifies how well the predicted HI values 

capture the variance of the true values. An R2of 1 indicates 

perfect agreement between prediction and ground truth, 
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whereas an R² of 0 implies that the model performs no better 

than simply predicting the mean of the dataset. The RMSE 

and R2  scores obtained for each of the three regression 

networks are reported in Table 3.  

Table 3. Performance metrics for the regression networks. 

 RMSE 𝐑𝟐 

PV 0.049 0.996 

FC 0.034 0.998 

Batt 0.039 0.998 

 

As shown in Table 3, all three regression networks achieved 

accurate performance on the test set. However, the PV panel 

model exhibited slightly lower accuracy compared to those 

for the fuel cell and the battery. For the classification 

networks, the performance of the trained DNNs were 

evaluated using the confusion matrices. In these matrices, 

each row represents the true class and each column the 

predicted class. An ideal classifier would produce a matrix 

with all values concentrated along the diagonal, indicating 

perfect classification. Off-diagonal entries represent 

misclassifications and help identify which fault modes are 

more frequently confused with others. The confusion 

matrices obtained for the classification models associated 

with the PV panel, the fuel cell, and the battery are shown in 

Figures 11, 12, and 13, respectively. 

 

Figure 11. Confusion matrix for the PV panel classification 

network. 

 

 
Figure 12. Confusion matrix for the fuel cell classification 

network. 

 

 
Figure 13. Confusion matrix for the battery classification 

network. 

 

The confusion matrices show that the classification networks 

correctly identify the fault type in most cases, with only a few 

misclassifications observed for the fuel cell and the battery. 

4.2. Real-time diagnostic algorithms testing 

To further evaluate the performance of the diagnostic 

algorithms and assess their generalization capability, the 

developed DNNs were integrated into the HPS modeling 

environment and executed in parallel with the system 

simulations. This setup emulates the real-time operation of 

the diagnostic framework as it would occur onboard the UAV 

and enables the assessment of: (i) the predictive accuracy of 

the DNNs under realistic operating conditions, and (ii) the 

functionality of the entire diagnostic workflow, including the 

conditional activation of the DNNs and their interaction with 

the EMS. The latter aspect is particularly relevant for the 

monitoring of the PV panel and the fuel cell, which is enabled 

only during specific mission phases. At night, for instance, 

the PV panel is inactive due to the absence of sunlight, and 

its health monitoring is therefore suspended. Likewise, when 

the PV panel does not operate at its maximum power point 

(MPP), the characteristic curves of healthy and degraded cells 

tend to overlap, making it difficult to reliably discriminate 
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between the two conditions. For this reason, PV monitoring 

is activated exclusively when the panel operates at MPP and 

when the irradiance level exceeds 250 W/ m2 . The first 

condition is directly obtained from the EMS control signal, 

while the second is retrieved from the irradiance signal. 

Analogously, fuel cell monitoring is enabled only when the 

device is operating at maximum power. This choice prevents 

unnecessary activation during daytime periods, when the fuel 

cell is not expected to operate. The proposed diagnostic 

framework is evaluated through two representative scenarios. 

The first considers a one-day flight with a fully degraded 

battery caused by an ISC. The second examines a two-day 

flight in which the fuel cell experiences progressive 

degradation, modeled as gradually increasing pressure drops. 

The corresponding real-time diagnostic results are reported 

in Figures 14 and 15. 

 

 
Figure 14. Results of the diagnostic algorithms for the first 

scenario. 

 
Figure 15. Results of the diagnostic algorithms for the 

second scenario. 

 

The results reported in Figure 14 indicate that the regression 

network associated with the PV panel and the fuel cell, both 

operating under nominal conditions, correctly predict a HI 

close to zero, thereby confirming their ability to recognize 

healthy states and preventing unnecessary activation of the 

corresponding classifiers. For the battery, both regression and 

classification networks demonstrate the effectiveness of the 

framework: the fault mechanism is correctly identified from 

the start of the mission. Although the regression model 

slightly underestimates the severity in the early phase of the 

flight, the HI progressively converges toward the correct 

value as more temporal data become available. The accuracy 

demonstrated by the results in Figure 14 is preserved also in 

the more complex scenario of a time-evolving degradation 

affecting the fuel cell. As shown in Figure 15, both the 

regression and classification networks for the fuel cell 

correctly capture the progression of the fault, with the 

regression model closely following the gradual increase in 

severity and the classifier identifying the correct fault type 

throughout the mission. All other networks remain highly 

accurate, except for a late-mission false positive in the battery 

networks, classified as an ISC.  
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5. CONCLUSIONS 

This study presented the development of a HUMS for a HPS 

intended for long-endurance UAV applications, integrating a 

digital twin framework with DNNs for fault detection and 

identification. The entire hybrid architecture, comprising a 

PV panel, a Li-ion battery, and a fuel cell coordinated by an 

active EMS, was modeled in the MATLAB/Simulink 

environment. The numerical framework was then employed 

to carry out multiple simulations designed to reproduce the 

behavior of the system under a range of operating conditions, 

including both nominal and faulty states of the three power 

sources, within a realistic UAV mission profile. The results 

obtained from these simulations demonstrate that the 

developed model can reliably capture the behavior of the 

hybrid power system across diverse scenarios. As such, it 

represents a reliable tool for generating synthetic datasets to 

support the training of data-driven diagnostic algorithms, 

thereby overcoming the limitations posed by experimental 

data availability. Building on this foundation, a diagnostic 

framework combining regression and classification DNNs 

was developed. The networks were trained on the synthetic 

data, and their performance was subsequently evaluated on 

an independent test dataset, both in offline and real-time 

conditions. In both testing scenarios, the DNNs correctly 

distinguished between healthy and faulty states of the three 

power sources, successfully tracked the evolution of fault 

severity, and accurately classified the underlying fault type, 

with only minor misclassifications. These results confirm the 

effectiveness of the proposed approach for monitoring UAV 

HPS and provide a solid basis for future developments of this 

work. Further studies will focus on: (i) extending the HUMS 

to include prognostic algorithms, thereby enabling the 

prediction of remaining useful life and fault progression, and 

(ii) developing an experimental setup of the HPS to interface 

the numerical model and the diagnostic/prognostic 

algorithms with a real laboratory-scale system. This activity 

is intended to validate the overall approach in a representative 

real-world application, ultimately establishing a complete 

digital twin through integration with the physical system and 

assessing the full HUMS under controlled experimental 

conditions. 
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