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ABSTRACT

Satellites and space systems play a vital role in space explo-
ration, where reliability is critical due to the high cost of mis-
sions and the inability to intervene directly in case of faults.
Operating in harsh and remote environments, these systems
are prone to unexpected anomalies that can jeopardize mis-
sion objectives. Detecting such anomalies through telemetry
data is essential but complicated by the data’s complexity and
the limited options for corrective action. Traditional anomaly
detection methods often rely heavily on hyperparameter tun-
ing and require large volumes of training data, making them
less adaptable, data-dependent, and slower to deploy. To ad-
dress these challenges, we propose a novel, plug-and-play
time-series anomaly detection (TSAD) framework. Designed
for robustness and fast integration, it minimizes number of
hyperparameters and tuning requirements, leverages an adap-
tive and robust thresholding mechanism, and operates effec-
tively with only a statistically significant volume of unlabeled
data—enabling accurate, scalable anomaly detection across
diverse mission scenarios.

1. INTRODUCTION

Prognostics and Health Management (PHM) is a monitor-
ing paradigm that seeks to maximize availability and safety
by rapidly detecting incipient faults, tracing their underly-
ing causes, and forecasting the remaining useful life (RUL)
of systems and components—ranging from power plants to
aircraft (Lee et al., 2014; Hu, Xu, Lin, & Pecht, 2020). In
typical deployments, permanently installed sensor networks
stream measurements to algorithms that process data online
to inform maintenance actions and operational decisions. The
recent surge in data-driven approaches has been propelled by
the proliferation of Internet of Things (IoT) sensors and ad-
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vances in artificial intelligence (AI), enabling richer models
and faster inference.

Within this landscape, machine-learning (ML)–enabled PHM
is especially compelling for space missions. ML methods
can digest large, heterogeneous data streams and surface ac-
tionable insights quickly—key advantages in an environment
where repair is infeasible and mission costs are high. Prior
work has investigated PHM for reusable liquid rocket en-
gines (J. Wu, 2005; Tsutsumi et al., 2021) and for satellite
subsystems (Fuertes et al., 2016; Ruszczak, Kotowski, Evans,
& Nalepa, 2025), demonstrating the potential to extend mis-
sion lifetimes and mitigate catastrophic failures.

Satellite telemetry forms a demanding class of multivariate
time series. Its distinctive properties include: (i) very high
dimensionality and volume, often encompassing multi-year
records across thousands of channels per spacecraft (Lakey
& Schlippe, 2024); (ii) complex interdependencies among
channels; (iii) heterogeneous data characteristics—such as
nonuniform sampling across time and channels, gaps from
idle modes or communications outages, slow degradation
trends, and concept drift caused by evolving operations and
mission phases; (iv) diverse variable types, spanning phys-
ical measurements, categorical states, counters, and binary
telecommands; and (v) noise and measurement artifacts in-
duced by the harsh space environment.

In routine flight operations, spacecraft operations engineers
(SOEs) monitor telemetry to detect anomalies and main-
tain safe, continuous service for science, communications,
Earth-observation, and navigation missions. Current auto-
mated support systems are often limited to thresholding or
pattern matching against known signatures (Martinez, 2012;
Hundman, Constantinou, Laporte, Colwell, & Soderstrom,
2018). As a result, subtle or novel anomalies frequently re-
quire manual discovery—an expensive, time-consuming pro-
cess that is vulnerable to human error (Lutz & Mikulski,
2004). Consequently, major space organizations—including
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the European Space Agency (ESA) (Evans et al., 2017;
Martinez & Donati, 2018), the National Aeronautics and
Space Administration (NASA) (Hundman et al., 2018), Cen-
tre National d’Études Spatiales (CNES) (Fuertes, Pilas-
tre, & D’Escrivan, 2018), the German Aerospace Center
(DLR) (OMeara, Schlag, Faltenbacher, & Wickler, 2016),
and the Japan Aerospace Exploration Agency (JAXA) (Yairi
et al., 2017)—together with industry partners such as Air-
bus, have intensified efforts to research, build, and validate
advanced automated anomaly-detection capabilities (Pilastre,
Boussouf, d’Escrivan, & Tourneret, 2020; Ruszczak et al.,
2023; Tariq et al., 2019; C. Zhang et al., 2019).

To situate our work among recent advances, we group ML
time-series anomaly detection (TSAD) methods into three
prevalent families. (1) Recurrent/prediction–reconstruction
models (e.g., LSTM/GRU, sequence-to-sequence and au-
toencoder variants) detect departures from learned dynam-
ics or reconstruction fidelity; contemporary studies refine
encoder–decoder capacity and frequency-aware modules for
improved sensitivity in multivariate settings (Iqbal & Amin,
2024; Neloy & Turgeon, 2024). (2) Transformer-based ar-
chitectures leverage self-attention to model long-range tem-
poral and cross-channel dependencies, with variants tai-
lored for multivariate telemetry (e.g., channel-wise atten-
tion, variable-temporal attention, stacked/forecasting Trans-
formers) demonstrating state-of-the-art performance and im-
proved anomaly localization (Wen et al., 2023; Kang &
Kang, 2024; Kim, Kang, & Kang, 2023; Shimillas, Malialis,
Fokianos, & Polycarpou, 2025). (3) Probabilistic genera-
tive approaches (e.g., VAEs, normalizing flows, diffusion-
style models) aim to learn calibrated distributions of nor-
mal behavior for principled scoring; recent work advances
autoregressive and Koopman-inspired VAEs, and broader
surveys emphasize their role in uncertainty-aware detec-
tion (Zamanzadeh Darban, Webb, Pan, Aggarwal, & Salehi,
2024; Leushuis, Matthijsse, Ophelders, Aarts, & Pechenizkiy,
2025; Koochali, Bauer, Giglio, Kugler, & Görner, 2025;
X. Wu et al., 2025). Comprehensive 2024–2025 surveys syn-
thesize these trends and propose taxonomies spanning learn-
ing paradigms, architectures, and evaluation practices, un-
derscoring the need for domain-specific benchmarks for fair
comparison (Zamanzadeh Darban et al., 2024; Wang et al.,
2025; Correia, Goos, Klein, Bäck, & Kononova, 2024; Kim,
Park, Lee, & Cho, 2025).

Despite a vast design space for TSAD—for instance, 158 al-
gorithms are cataloged in (Schmidl, Wenig, & Papenbrock,
2022)—the space sector faces a persistent challenge: ro-
bust, objective evaluation. Operational missions rarely of-
fer large numbers of labeled anomalies, and comprehensive
multi-source datasets remain scarce, complicating fair perfor-
mance assessment. Moreover, recent analyses have exposed
critical shortcomings in public datasets, benchmarks, metrics,
and evaluation protocols, highlighting the need for improved,

bias-resistant methodologies to assess emerging ML tech-
niques (El Amine Sehili & Zhang, 2023; Wagner et al., 2023;
R. Wu & Keogh, 2021; Herrmann, Bieber, Verhagen, Cos-
son, & Santos, 2024). Addressing this gap, ESA has released
an open-source repository of diverse, anonymized satellite
telemetry together with a standardized benchmark intended
to enable fair comparison of TSAD methods on telemetry
data (Kotowski et al., 2024; KP Labs, 2024).

Although interest in data-driven PHM for spacecraft teleme-
try is accelerating (Fuertes et al., 2016; Ruszczak et al.,
2025), most existing ML solutions are tailored to specific
components or subsystems and do not readily scale to the full
breadth of telemetry. In addition, many approaches require
substantial supervised or self-supervised training, which can
be impractical for new missions, changing configurations, or
drifting telemetry. These constraints motivate the pursuit of
generalized anomaly-detection approaches that efficiently an-
alyze large telemetry archives while remaining agnostic to in-
dividual satellite subsystems (Kotowski et al., 2024).

In this work, we respond to these challenges by introducing a
generalized, efficient, simple, and robust anomaly-detection
framework. The proposed algorithm features clearly inter-
pretable hyperparameters that are straightforward to tune,
does not require a training phase, and—owing to its compu-
tational efficiency—enables rapid processing of large-scale
telemetry. Initial evaluations on the ESA Anomaly Detec-
tion Benchmark (ESA-ADB) show promising performance,
pointing toward safer and more reliable anomaly-detection
practices in spacecraft operations (Kotowski et al., 2024).

2. METHODOLOGY

In this section, we define the necessary terms and concepts to
describe the TSAD algorithm used in Section 3.

2.1. Distance profile

We define a time series T of length n as an ordered sequence
of real numbers, T [i], in which T = (T [1], T [2], ..., T [n]). A
subsequence, Ti,L, is a continuous segment of length L from
a time series T starting from position i. Ti,L = (T [i], T [i +
1], ..., T [i+ L− 1]), where 1 ≤ i ≤ n− L+ 1. A query, Q,
is a time series of length m, which is searched within a time
series T of length n >> m.

Given a time series T and a query Q, the distance pro-
file is another sequence D of length n − m + 1 such that
D[i] = dist(Q,Ti,m). Here, dist is a generic distance func-
tion that defines the distance between two equally length time
series. Typical distance functions include Euclidean distance,
Pearson’s correlation coefficient, cosine similarity, and angu-
lar distance. Some more advanced distance functions can
compare two unequal-length time series, such as dynamic
time warping (DTW) (Sakoe & Chiba, 2003; Z. Zhang et al.,
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Algorithm 1: Brute-Force Distance Profile
Input: Time series T [1 . . . n], query Q[1 . . .m] with m ≤ n
Output: Distance profile D[1 . . . n−m+ 1]
// Initialize distance profile array
D[1 . . . n−m+ 1]← 0
// Compute Euclidean distances between Q

and each subsequence of T
for j ← 1 to n−m+ 1 do

s← 0
for i← 1 to m do

d← Q[i]− T [i+ j − 1]
s← s+ d2

D[j]←
√
s

return D

2017), longest common subsequence (LCSS) (Vlachos, Kol-
lios, & Gunopulos, 2002; Vlachos, Hadjieleftheriou, Gunop-
ulos, & Keogh, 2003), and move-split-merge (MSM) (Stefan,
Athitsos, & Das, 2012). One can consider more variations
of the distance profile by allowing the distance function
more flexibility, such as by removing the end-point constraint
(Silva, Yeh, Batista, & Keogh, 2016). However, the definition
of distance profile is not limited to how the distance function
operates on the pair of time series.

In this paper, we consider the Euclidean distance as our dis-
tance measure without any discontinuity. The Euclidean dis-
tance between two time series Q and Ti,m of length m is de-
fined in Eq. (1).

dist(Q,Ti,m) =
√∑m

i=1(Q[i]− Ti,m[i])2 (1)

The Algorithm 1 describes the brute-force way to compute
the distance profile, considering the Euclidean distance as the
metric. The algorithm scans the time series T once. At each
position, the algorithm computes the distance to the query, Q.
The algorithm saves all distances in the array D.

The brute-force approach for computing each element of D
would involve explicitly evaluating Eq. (1) for every sliding
position j. This computation has computational complexity
of order O((n − m + 1)m) ∼ O(nm), which quickly be-
comes impractical for large n and m. Therefore, in the next
section, we describe the O(n log n) algorithm to compute the
distance profile under Euclidean distance. This approach is
faster than the baseline approach (Algorithm 1) that has time
complexity of O(nm) since m > log n holds for most real-
world applications.

2.2. MASS: Mueen’s algorithm for similarity search

To achieve higher computational efficiency, it is beneficial to
expand Eq. (1) when applied in Algorithm 1 as follows:

m∑
i=1

√
(Q[i]− T [i+ j − 1])2 = (2)√√√√ m∑

i=1

Q[i]2 +

m∑
i=1

T [i+ j − 1]2 − 2

m∑
i=1

Q[i]T [i+ j − 1]

In this expanded form, we can identify three distinct terms:

• The first term,
∑m

i=1 Q[i]2, depends only on the query
sequence Q and remains constant across all sliding win-
dows. Hence, its computational complexity is O(m).

• The second term,
∑m

i=1 T [i + j − 1]2, is the sum of
squares of a sliding subsequence of the time series T .
This sum can be efficiently computed for all the sliding
subsequences of T in a single pass through the reference
time series T , using a prefix sum (or cumulative sum)
approach. Computing this term for all windows thus re-
quires only O(n) time.

• The third term,
∑m

i=1 Q[i]T [i + j − 1], is the dot prod-
uct between the query sequence Q and each subsequence
of the reference time series T . Clearly, computing this
term for all windows would again have a time complex-
ity O(nm). However, as we will show next, this is ex-
actly the step where we can achieve a significant compu-
tational improvement.

The core idea of the MASS algorithm is to use a convolu-
tion operation between the query Q, reversed in time, and the
reference time series T :

m∑
i=1

Q[i]T [i+ j − 1] = (T ∗Qrev) (3)

where Qrev = (Q[m], Q[m − 1], ..., Q[1]), and ∗ denotes
the linear convolution operator. Linear convolution can be
computed efficiently using the Fast Fourier Transform (FFT)
according to the convolution theorem, which states that con-
volution in the time domain equals multiplication in the fre-
quency domain:

y ∗ xrev = F−1 (F(y) · F(xrev)) (4)

Here, F(·) denotes the FFT operation, and F−1(·) de-
notes the inverse FFT. The computational complexity of
computing this convolution using the fast FFT algorithm
is O(L logL) (Cormen, Leiserson, Rivest, & Stein, 2001),
where L is the length of the sequences after appropriate zero-
padding

(
typically L = 2⌈log2(n+m−1)⌉ ≈ O(n)

)
, to ensure

the element-wise product operation yields only the necessary
cross-product terms. Thus, the complexity for computing the
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third term using FFT-based convolution reduces dramatically
to O(n log n).

The total computational complexity of this FFT-based ap-
proach, known in the literature as the MASS (Mueen’s Al-
gorithm for Similarity Search) algorithm (Zhong & Mueen,
2024), is dominated by the FFT-based convolution step, giv-
ing an overall complexity of O(n log n). The Algorithm 2
describes the FFT-based way to compute the distance profile,
considering the Euclidean distance as the distance metric.

Algorithm 2: MASS: Distance Profile via FFT
Input: Time series T [1 . . . n], query Q[1 . . .m] with m ≤ n
Output: Distance profile D[1 . . . n−m+ 1]
// Initialize distance profile array
D[1 : n−m+ 1]← 0
// Precompute constant term from Q

SQQ ←
∑m

i=1 Q[i]2

// Compute prefix sum of T 2

ΣT2 [1]← 0;
for i← 1 to n do

ΣT2 [i+ 1]← ΣT2 [i] + T [i]2

// Compute sliding sums of T 2

for j ← 1 to n−m+ 1 do
STT [j + 1]← ΣT2 [j +m− 1]− ΣT2 [j]

// Reverse Q and zero-pad to length n
for i← 1 to n do

if i ≤ m then
Qrev[i]← Q[m+ 1− i]

else
Qrev[i]← 0

// Compute sliding dot products using
FFT-based convolution (Eq.(4))

SQT ← FFTConv(Qrev, T )
// Compute distance profile (Eq.(2))
for j ← 1 to n−m+ 1 do

D[j]←
√

SQQ + STT [j]− 2SQT [j +m− 1]

return D
Function FFTConv(x, y):

X ← F(x)
Y ← F(y)
P ← X ⊙ Y ; // element-wise product
C ← F−1(P )
return C

2.3. Sliding Minimum Euclidean Distance (SMED)

Given a time series T of length n, we define WR and WQ as
the size of two consecutive windows of fixed length belong-
ing to T , namely the reference window and the query window,
such that, at a given iteration step i, we have:

Tref = Ti,WR

Tque = TWR,WR+WQ

The SMED algorithm computes a similarity score by finding
the best match between the query and the reference at each it-
eration, then advances both windows in time. When working
with sliding windows, it would, in principle, be possible to

slide forward every time a new sample is available in the time
series; in that case, the sliding occurs every time step. In our
framework, we introduce an additional parameter, the stride
LW, which represents the fixed number of samples stored in
local memory before sliding forward both the reference win-
dow and the current window. In other words, introducing this
parameter allows the time series dynamics to be decoupled
from the algorithm dynamics. The Sliding Minimum Eu-
clidean Distance (SMED) algorithm that we introduce in this
work is described in Algorithm 3.

Algorithm 3: SMED: Sliding Minimum Euclidean Dis-
tance
Input: Time series T [1 . . . n]
Output: ST [1 . . .K] the anomaly scores of T
// Initialize S array
ST ← 0
// Max allowable number of steps

K = ⌊n−(WR+WQ)

LW
⌋+ 1

// Compute minimum Euclidean distances
for i = 1; i ≤ K; i← i+ Lw do

// Update reference and query
Tref ← Ti,WR

Tque ← TWR,WR+WQ

// Compute distance profile
D ← MASS(Tque, Tref)
ST ← append

(
min (D)

)
; // best match

return ST

The idea behind this algorithm is to leverage the MASS al-
gorithm to compute at each algorithm step k the minimum
Euclidean distance value between the query window and the
reference window, aiming at finding the best similarity match
between the latest time series values and the past time series
values. Intuitively, when this value is high it means that an un-
seen pattern, given the most recent history, is being scanned.
A visual representation of the SMED algorithm is also pro-
vided in Figure 1 for clarity.

Suppose that:

T = m+ ε

where m is a slow-varying trend and ε is a (zero-mean) sta-
tionary noise. Consider two subsegments of T , and denote
those windows as the reference window Tref and the query
window Tque:

Tref = Ti,WR = mi,WR + εi,WR

Tque = TWR,WR+WQ = mWR,WR+WQ + εWR,WR+WQ

When computing the distance profile of Tque in Tref , the j-th
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Figure 1. (a) Illustration of the reference window (light-
gray area) and the consecutive query window (light-blue area)
overlapped on a segment of time series T (black line). (b)
Reference series (in light-gray) with outlined best match (in
red) and query window (in blue). (c) Zoom on the overlapped
match and the query window.

Euclidean distance value is:

D[j] =

WQ∑
i=1

(
Tque[i]− Tref [i+ j − 1]

)2
=

WQ∑
i=1

(
mWR,WR+WQ + εWR,WR+WQ −mj

i,WR
− εji,WR

)2

Let

∆mj
i =

(
mWR,WR+WQ

−mj
i,WR

)
∆εji =

(
εWR,WR+WQ

− εji,WR

)
Then

D[j] =

WQ∑
i=1

(
∆mj

i +∆εji

)2

Expanding the square:

D[j] =

WQ∑
i=1

(
∆2mj

i + 2∆mj
i∆εji +∆2εji

)
= WQ(∆

2mj + 2∆mj∆εj +∆2εj)

and taking expectation on D with respect to noise, yields:

E
[
D
]
= WQ(∆

2m+ 2σ2)

being E[∆ε] = 0 and E[∆2ε] = 2σ2.

Therefore, the distance profile is roughly proportional to:

WQ(∆
2m) + noise

With the SMED algorithm, we minimize the quantity above
over j within the reference window, and hence pick the ref-
erence window slice whose trend is the closest to the query
window’s trend. If the drift across the span of the reference
window is small relative to noise variance, the added trend-
difference penalty is minor. Therefore, the anomaly score,
ST , computed on T using Algorithm 3 behave almost as if
the process were stationary, even though T is not. Only when
abrupt changes are observed in T , ST will not behave so. This
allows the SMED algorithm to adapt to slow time-varying
trend time series, and to highlight the occurrence of sudden
changes in the time series, which are likely due to the pres-
ence of anomalies.

2.4. Thresholding

In every anomaly detection task, establishing a proper thresh-
old is a critical step. In this subsection, we introduce the logic
behind the threshold definition in our TSAD algorithm. In
statistics, given a generic distribution, the so-called measure
of statistical dispersion, also known as the measure of spread,
of the distribution is typically performed using the InterQuar-
tile Range (IQR), which is defined as the difference between
the 75th and 25th percentiles of the data. A more general def-
inition in this sense, is the InterPercentile Range (IPR). Given
a general percentile value, p, the latter is defined as:

IPRp = Q1−p −Qp, 0 ≤ p ≤ 0.5 (5)

Note that, when p = 0.25 IPRp = IQR. The above quanti-
ties are usually employed in statistics to define the so-called
box-plot, which is a method for demonstrating graphically the
locality, spread, and skewness of groups of numerical data
through their percentiles. In this representation (Figure 2),
there can be lines (which are called whiskers) extending from
the box indicating variability outside the upper and lower per-
centiles. A popular choice for the whiskers’ boundaries is
based on the value of 1.5 IPRp. From above the upper per-
centile (Q1−p), a distance of 1.5 times the IPRp is measured
out, and a whisker is drawn up to the largest observed data
point from the dataset that falls within this distance. Simi-
larly, a distance of 1.5 times the IPRp is measured out below
the lower percentile (Qp), and a whisker is drawn down to the
lowest observed data point from the dataset that falls within
this distance. Outliers that differ significantly from the rest
of the data may be plotted as individual points beyond the
whiskers on the box-plot. Box plots are non-parametric: they
display variation in samples of a statistical population without
making any assumptions of the underlying statistical distribu-
tion.

Given that, by definition of Euclidean distance, the computed
anomaly score values result in a distribution of strictly posi-
tive numbers, i.e., ST ∈ [0,+∞). Here we set the threshold
using scores computed on the nominal behavior of the time
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Figure 2. Visual representation of the interpercentile range.

series T . Let ST denote the anomaly-score distribution ob-
tained from a baseline nominal segment of T , we define the
initial threshold τ as the upper whisker of the box-plot for
ST :

τ = Q1−p(ST ) + 1.5 · IPRp(ST ) (6)

2.5. Anomaly detection

In this subsection, we describe the TSAD algorithm estab-
lished in this work for the task of effectively detecting anoma-
lous events in satellite telemetry data. First, we define a set
of time series T =

{
T 1, T 2, ..., TN

}
, an array of N time

series of length n. The TSAD algorithms consists of two
main phases: (i) the warm-up phase where we take the first
nwu samples of T and we apply Algorithm 3 to compute the
anomaly score distribution for each time series in the set, next
we compute the N initial threshold values for each time se-
ries using Eq. (6) ; (ii) the deployment phase, where Algo-
rithm 3 is applied online on the remaining samples of T to
determine the anomaly score values at each step k. In every
iteration, the latter values are compared against their corre-
sponding thresholds to assess whether an anomalous pattern
is encountered or not. The corresponding predictions are col-
lected. Optionally, it is possible to update the threshold value
employing a calendar strategy, where we update the threshold
values based on the newly computed anomaly scores. These
steps are summarized in Algorithm 4. For the sake of clarity,
a visual representation showing how SMED and the thresh-
olding mechanism interact is illustrated in Figure 3.

3. RESULTS

In this section, we report the results obtained by applying the
TSAD algorithm presented above on a time series set that
is extracted from the ESA-ADB datasets. The ESA-ADB
datasets includes 76 channels from Mission 1 and 100 chan-
nels from Mission 2; however, only 58 and 47 channels, re-
spectively, can be monitored for anomalies (target channels),
while the rest are meant to support the detection process (non-
target channels). Channels are grouped into 6 subsystems – 4
in Mission 1 and 5 in Mission 2, with 3 matching subsystems
between missions. The anomaly density, in terms of anno-
tated data points, is between 1.80% (Mission 1) and 0.57%
(Mission 2), which addresses the flaw of unrealistic anomaly
density reported for many popular TSAD datasets, as also
stated by ESA itself. For further details on this datasets, the
interested reader should refer to (Kotowski et al., 2024). To

Algorithm 4: TSAD: Time series anomaly detection
Input: Time series set T =

{
T 1, T 2, . . . , TN

}
Output: PT the predictions computed on T
// Warm-up phase
Sold
T ← WarmUp(T, nwu)

Snew
T ← ∅

τ ← ComputeThres(Sold
T , Snew

T , p)
// Deployment phase
for k ← 1 to N do

T k ← T k[nwu + 1 : end]
// Max allowable number of steps
ntest = n− nwu

K = ⌊ntest−(WR+WQ)

LW
⌋+ 1

for i = 1; i ≤ K; i← i+ Lw do
// Update reference and query
T k
ref ← T k

i,WR

T k
que ← T k

WR,WR+WQ

// Compute distance profile
Dk ← MASS(T k

que, T
k
ref)

sTk ← min (Dk)
STk ← append(sTk )
if sTk > τk then

PTk ← append(1)

else
PTk ← append(0)

if istrue(update) then
if mod(i, frequpdate) == 0 then

Snew
Tk ← STk

τk ← computeThres(Sold
Tk , S

new
Tk , p)

ST ← append(STk )
PT ← append(PTk )

Function WarmUp(T, nwu):
for k ← 1 to N do

T k ← T k[1 : nwu]
STk ← SMED(T k)
ST ← append(STk )

return ST

Function ComputeThres(Sold
T , Snew

T , p):
for k ← 1 to N do

STk ← concatenate(Sold
Tk , S

new
Tk )

τk ← Q1−p(STk ) + 1.5 · IPRp(STk )
τ ← append(τk)

return τ
return P

evaluate the performance of our algorithm on the ESA-ADB
datasets, we have resorted to the benchmark established by
ESA, whose code is available at the link indicated in Ref.
(KP Labs, 2024). A summary of the introduced metrics and
their hierarchical evaluation is shown in Table 1. Again, for
the definition of these metrics the interested reader should re-
fer to (Kotowski et al., 2024). Anomaly detection in tens or
hundreds of channels simultaneously may be a very challeng-
ing task and it takes a lot of computing power to process such
data, so for initial experiments, simpler models, and poten-
tial on-board applications, there are also lightweight subsets
of channels proposed in ESA-ADB. These are channels 41-
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Figure 3. Conceptual diagram illustrating the overall TSAD pipeline. The diagram outlines the interaction between the simi-
larity search and the thresholding mechanism at each prediction step. Dotted lines indicate optional paths which are followed
when dynamic thresholding is enabled.

Table 1. Priority aspects and proposed metrics for assessing
algorithms in ESA-ADB.

Group Aspect with priority level and brief de-
scription Proposed metric

P
ri

m
ar

y

1a. No false alarms — minimise the number
of false detections Corrected event-wise

F0.5-score1b. Anomaly existence — maximise the num-
ber of correctly detected anomalies

2a. Subsystems identification — find a list of
affected subsystems Subsystem-aware

F0.5-score2b. Channels identification — find a list of af-
fected channels

Se
co

nd
ar

y

3. Exactly one detection per anomaly —
avoid multiple detections for the same anno-
tated segment

Event-wise alarming pre-
cision

4. Detection timing — determine the anomaly
start time as precisely as possible

Anomaly detection timing
quality curve (ADTQC)

5. Anomaly range and proximity – find the
exact duration of the anomaly and promote
detections in close proximity to the ground
truth

Modified affiliation-based
F0.5-score

46 from subsystem 5 for Mission 1 and channels 18-28 from
subsystem 1 for Mission 2.

Here, for the sake of brevity, we focus our performance
comparison against the best algorithm tested by ESA, i.e.,
the so-called Telemanon-ESA. For a more comprehensive
comparison against other state-of-the-art algorithms tested
by ESA on the same datasets, the interested reader can re-
fer to (Kotowski et al., 2024). Additionally, in this pre-
liminary study, we focus on the two lightweight subsets to
demonstrate the effectiveness of our algorithm. Notably,
the two lightweight subsets were processed in approximately
16 and 13 seconds, respectively, when running the algo-
rithm on a machine equipped with 128 GB of RAM and
an Intel Core i9-14900K CPU. ESA, on the other hand,

Table 2. Benchmarking results for detection of all events (ex-
cluding communication gaps) in lightweight subsets of chan-
nels for mission 1 and 2 in ESA-ADB (After ratio of ADTQC
which is just a helper value).

Metric
Mission 1 Mission 2

SMED Best-ESA SMED Best-ESA

Precision 0.999 0.999 0.979 0.978
Event-wise Recall 0.446 0.424 0.940 0.540

F0.5-score 0.801 0.786 0.971 0.842

Precision 0.446 0.424 0.940 0.465
Channel-aware Recall 0.438 0.275 0.277 0.384

F0.5-score 0.444 0.362 0.610 0.442

Alarming Precision 0.659 0.875 0.899 0.862

ADTQC After ratio 0.103 0.143 0.015 0.351
Score 0.160 0.197 0.075 0.757

Precision 0.716 0.711 0.933 0.759
Affiliation-based Recall 0.435 0.423 0.928 0.530

F0.5-score 0.634 0.626 0.932 0.699

reported a processing time of 1.9h and 1.3h, respectively,
for their Telemanon-ESA algorithm when the latter is run
on the lightweight subsets on a machine equipped with 32
GB RAM and an Intel i7-10870H CPU (Kotowski et al.,
2024). Despite our CPU is roughly 65% more powerful
(see https://cpu.userbenchmark.com/), our pro-
cessing times are, respectively, 433% and 359% faster.

The SMED algorithm has four main hyperparameters that
must be properly tuned in order to run it. These are the
reference length size, WR, the query length size, WQ, the
stride, LW, and the percentile value, p, for setting the thresh-
old. Since the threshold is defined considering a portion of
time series that represents its nominal behavior, it is reason-
able to assume a very small value of p (not zero, to avoid in-
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(a) (b)

(c) (d)

Figure 4. (a) Coarse order-of-magnitude sensitivity analysis of SMED to query and reference window size for Mission 1.
(b) Coarse order-of-magnitude sensitivity analysis of SMED to query and reference window size for Mission 2. (c) Refined
sensitivity analysis of SMED to query and reference window size for Mission 1. (d) Refined sensitivity analysis of SMED to
query and reference window size for Mission 2.
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Table 3. Benchmarking results for detection of anomalies
alone in lightweight subsets of channels for mission 1 and 2
in ESA-ADB (After ratio of ADTQC which is just a helper
value).

Metric
Mission 1 Mission 2

SMED Best-ESA SMED Best-ESA

Precision 0.806 0.999 0.000 0.000
Event-wise Recall 0.862 0.862 0.000 0.000

F0.5-score 0.816 0.968 0.000 0.000

Precision 0.862 0.529 0.000 0.000
Channel-aware Recall 0.862 0.862 0.000 0.000

F0.5-score 0.862 0.722 0.000 0.000

Alarming Precision 0.676 0.862 0.000 0.000

ADTQC After ratio 0.000 0.040 - -
Score 0.130 0.159 - -

Precision 0.914 0.927 0.554 0.500
Affiliation-based Recall 0.853 0.859 0.771 0.000

F0.5-score 0.901 0.912 0.587 0.000

cluding possible physiological outliers in STnom due to non-
anomalous patterns to make the threshold setting more sta-
ble).Therefore, we fix p = 0.001. The stride, LW, determines
the time granularity of the algorithm, i.e., of the prediction
step. In principle, LW = 1 would allow the algorithm to
closely follow the dynamic of the time series which is being
scanned, however, here, for the sake of computational time
(given the large amount of data points and time series con-
sidered), we fix LW = 5, which is a good trade-off value,
especially when considering a small query size (note, in fact,
that it should always be satisfied by the condition LW ≥ WQ

to avoid time gaps). WR, WQ are not trivial to tune and sig-
nificantly affect the performance of the algorithm. Hence, we
perform a sensitivity analysis on these two parameters. We
use the event-wise correct Fβ score (with β = 0.5) as the
reference global performance metric, since according to the
ESA this metric summarizes the most important feature that
a TSAD should have.

Figure 4(a) and Figure 4(b) show the results of a preliminary
coarse sensitivity analysis investigating the effect on perfor-
mance of different relative orders of magnitude between the
query and the reference sizes, sweeping WQ from 101 − 103

and WR from 102 − 104. The results show that, as a rule
of thumb, a difference of one order of magnitude leads to
the best performance. Conversely, significant performance
degradation occurs when the query size is too close to or too
small compared to the reference size. Another very impor-
tant aspect, is the computational time needed to run the al-
gorithm, which rely on the MASS algorithm to compute the
minimum value of the distance profile between the reference
and the query at each prediction step, whose time-complexity
is O(n log n). Therefore, smaller reference window sizes
are recommended when yielding to similar performance re-
sults. We therefore conduct a more refined sensitivity anal-

ysis, shown in Figure 4(c) and Figure 4(d), considering the
range 10 − 102 for WQ and the range 102 − 103 for WR.
Surprisingly, considering these ranges (excluding the trivial
case WQ = WR) the algorithm global performance are not
strongly affected, showcasing a rather good robustness when
the latter parameters are properly tuned.

The detection performance results are summarized in Ta-
ble 2 (for all events), and Table 3 (for anomalies alone), and
show competitive performance compared to the baseline ap-
proaches when considering these two datasets. These results
were obtained using the following hyperparameter settings:

WR = 750
WQ = 100
LW = 5
p = 0.001

which represent a preliminary yet effective configuration for
the algorithm, obtained from the sensitivity analysis.

4. CONCLUSION

This work introduced a simple, plug-and-play framework
for unsupervised time series anomaly detection in satellite
telemetry. The core SMED method leverages a MASS-based
distance profile to compare current behavior against recent
patterns, while an adaptive IPR-based thresholding strategy
starting from a healthy baseline limits the need for hyper-
parameter tuning and labeled data while ensuring low false-
positive rates. Preliminary experiments on the ESA-ADB
lightweight subsets indicate that the proposed method obtains
event-wise performance competitive and in some cases supe-
rior to the performance obtained by the best algorithm tested
by ESA in their benchmark. These results were obtained on
the resampled data, which are those processed by the major-
ity of the algorithms tested by ESA, including the best one.
These results suggest that simple, efficient similarity search
coupled with adaptive thresholding is a strong baseline for
operational PHM pipelines in space missions. Future work
will: (i) broaden validation to the full ESA-ADB benchmark
set; and (ii) test the methodology on raw, non-resampled sig-
nals. This will allow for a full assessment of the methodol-
ogy’s superior robustness compared to state-of-the-art TSAD
algorithms for telemetry data.
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