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ABSTRACT 

Reliability assessment is critical to ensure the performance, 

availability, and safety of heat pump systems. This requires 

modeling strategies that reflect both component-level 

behavior and system-wide interactions. While physics-based, 

data-driven, and hybrid methods each offer unique strengths, 

selecting the right approach remains unsolved. This is 

especially evident in modern heat pump systems with tightly 

coupled components, fragmented supply chains, and 

heterogeneous levels of physical insight. Although IoT 

adoption enables operational data collection, such data 

remains often unstructured and lacks failure labeling, which 

limits its value for modeling. These challenges highlight the 

need for structured guidance in selecting suitable reliability 

strategies. To address this, a structured and scalable decision 

framework is proposed to support transparent, context-aware 

reliability modeling. The approach begins with system-level 

risk prioritization and applies five Key Decision Indicators 

(KDIs) to assign appropriate modeling or estimation 

strategies for each component. This includes both in-depth 

modeling for risk components and simplified estimation for 

passive ones. Applied to a real-world air-to-water heat pump 

system, the framework enables traceable modeling decisions 

adapted to data availability, physical knowledge, forecasting 

needs, and cost-efficiency. It offers practitioners a systematic 

pathway to tailor reliability modeling across complex 

systems and constrained development environments. 

1.  INTRODUCTION 

Ensuring stable and reliable operation is essential for the 

success of heat pump systems in everyday use (International 

Energy Agency, 2022). These systems are expected to 

perform reliably year-round, avoiding failures that cause 

discomfort, costly repairs, or downtime. Long-term 

functionality supports user satisfaction, operational safety, 

and high energy efficiency across the system’s lifetime 

(Brudermueller et al., 2025). Reliability is also key to 

achieving broader goals – lowering CO₂ emissions, 

advancing the energy transition, and enabling climate-neutral 

heating (IEA, 2022). However, realizing these goals at scale 

is challenged by limited resources and the wide variety of 

system configurations, which demand increasingly cost-

conscious and selective approaches to reliability assessment. 

Reliability assessment is the systematic process of evaluating 

how well a system performs its intended function over time 

without failure (O’Connor & Kleyner, 2012). In engineering 

domains such as heat pumps, it supports performance 

prediction, maintenance planning, and long-term operational 

safety (IEA, 2025). Various modeling strategies are used for 

reliability assessment, typically categorized as physical, data-

based, or hybrid approaches. Physical models are based on 

system equations and known failure mechanisms, offering 

transparency when detailed physical knowledge is available. 

Data-based models rely on historical records, such as 

maintenance logs or performance reports, together with 

sensor measurements of operational variables. These 

approaches often do not require deep insight into the system’s 

internal structure. Hybrid approaches combine physical and 

data-based elements, allowing for flexibility in complex 

systems with partial knowledge (Lei et al., 2018). 

Despite their individual strengths, physical, data-based, and 

hybrid modeling approaches face notable limitations in 

complex engineering systems. Physical models struggle with 

scalability when interactions, control layers, or failure 

mechanisms become difficult to fully represent – particularly 

in large systems where detailed physics for all components is 

impractical (Khan et al., 2024). Data-based models rely on 

high-quality datasets and often lack interpretability, which 

limits their trustworthiness in safety-critical contexts (Doshi-

Velez & Kim, 2017). Hybrid approaches, though increasingly 

explored by researchers, inherit the challenges of both – 
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demanding extensive domain knowledge, careful integration 

design, and thorough validation. Moreover, they lack 

standardized procedures for systematically combining 

physical insights with data-driven components, which limits 

their broader applicability (Lee et al., 2015; Lei et al., 2018). 

Selecting an appropriate reliability modeling approach 

remains a core challenge in the context of complex technical 

systems (Khan et al., 2024). Heat pumps involve numerous 

interacting components and dynamic operating conditions 

(Fischer & Madani, 2017). In parallel, sensors and smart 

controls enable the collection of large volumes of operational 

data, often heterogeneous in structure and quality (IEA, 

2022). The interplay between data variability and system 

complexity further complicates the selection of appropriate 

reliability modeling approaches (Lazarova-Molnar et al., 

2017). 

Recent research has addressed system complexity through 

hybrid modeling approaches and integrated reliability 

assessment frameworks (Lei et al., 2018; Khan et al., 2024). 

While these efforts enhance modeling capabilities, they often 

lack structured guidance for selecting appropriate modeling 

strategies. In most cases, model selection still depends on 

fixed criteria – such as physical insight or data availability – 

without a systematic evaluation process (Ma et al., 2024). As 

detailed in related work (Section 2), existing literature lacks 

a structured and adaptable framework for guiding the 

selection of reliability modeling strategies. Current methods 

offer limited support for aligning modeling choices with 

specific system characteristics, data constraints, and practical 

evaluation needs. This gap becomes increasingly critical as 

engineering systems grow in complexity and data-driven 

techniques become more prevalent. Simultaneously, 

practitioners are under increasing pressure to allocate limited 

resources efficiently across large and heterogeneous system 

landscapes. 

This paper introduces a multi-criteria decision framework 

that combines technical system understanding, data 

characteristics, and practitioner needs to guide the structured 

selection of reliability modeling approaches. It defines a set 

of evaluation criteria – such as the criticality of system 

components, availability of physical knowledge and 

operational data, forecast requirements, and cost efficiency. 

The framework aims to increase transparency, reduce 

decision uncertainty, align modeling depth with reliability 

objectives, and support consistent model selection across 

diverse applications. Its applicability is demonstrated through 

a real-world air-to-water heat pump system. 

2. RELATED WORK TOWARDS RELIABILITY MODELING 

Modern heat pump systems pose growing challenges for 

reliability modeling. Technically, they feature multiple 

interacting components, advanced control logic, and diverse 

configurations (Fischer & Madani, 2017). From a data 

perspective, they generate large volumes of operational data 

via smart sensors, yet this data is often heterogeneous, 

unevenly distributed, or context-specific (IEA, 2022). These 

combined factors complicate the selection of suitable 

modeling approaches – especially under limited resources 

and time constraints common in practical settings. 

Beyond the heating sector, valuable insights can be drawn 

from reliability strategies developed for other complex 

engineered systems. While these domains operate under 

different constraints, examining their adaptability to heat 

pump systems can reveal transferable principles. For 

instance, health management architectures in industrial 

systems and aerospace support system-level analysis by 

integrating diagnostic and prognostic models to monitor 

critical components (Khan et al., 2024). However, these 

architectures are tailored for high-assurance environments 

with extensive expert modeling and validation resources, 

limiting their transferability to more resource-limited sectors 

like residential heating. Diagnostics-driven prognostics 

frameworks provide formal procedures for condition 

assessment by leveraging detailed failure mode libraries and 

diagnostic tests to infer system health (Lei et al., 2018). Yet, 

their dependence on comprehensive diagnostic models and 

domain-specific knowledge constrains their adaptability to 

systems with less mature diagnostic ecosystems. In the 

heating sector, recent research on sensor-driven classification 

logic shows that statistical feature extraction enables state 

estimation without requiring full physical modeling (Qarqour 

et al., 2024). However, this approach lacks methodology to 

inform decisions between alternative modeling strategies 

based on system complexity or data availability. Across 

domains, many of these frameworks rely on fixed modeling 

paradigms and struggle to adapt dynamically to 

heterogeneous data sources or evolving system complexities. 

In response to these challenges, several studies – including 

Ikwan, Sanders, and Haddad (2020) – have explored multi-

criteria decision-making (MCDM) approaches to prioritize 

system components or failure modes, helping reduce 

complexity and support structured resource allocation. 

Common MCDM approaches, such as the Analytic Hierarchy 

Process (AHP) (Saaty, Vargas, & St, 2022) and the 

Preference Ranking Organization METHod for Enrichment 

Evaluations (PROMETHEE) (Brans & Vincke, 1985), focus 

on ranking technical importance and risk, but lack 

recommending modeling strategies tailored to these rankings. 

For example, AHP quantifies expert judgments to generate 

hierarchical importance scores but does not extend to guiding 

model selection, due to limitations such as ranking 

inconsistencies, rank reversals, and its emphasis on 

preference rather than prescriptive modeling (Khan & Ali, 

2020). Arora and Rabe (2023) applied MCDM to assess 

predictive maintenance readiness in residential heating 

systems, integrating user requirements and technical 

readiness factors to rank component priorities. While their 

approach captures relevant dimensions, it does not link 
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prioritization to the choice or adaptation of specific reliability 

modeling approaches.  

Therefore, existing MCDM approaches support prioritization 

but provide limited guidance for matching reliability 

modeling strategies to component characteristics, available 

insights, or practitioner constraints. To address this gap, this 

paper introduces a structured decision-making framework 

that explicitly links component prioritization with the 

selection of appropriate reliability modeling strategies – 

while accounting for system-specific constraints, data 

availability, and practical requirements. 

3. FRAMEWORK FOR SELECTING RELIABILITY MODELING 

APPROACHES 

To support structured reliability modeling in heat pump 

systems, a systematic approach is required to translate 

domain complexity and diverse system conditions into 

justifiable modeling decisions. The core idea of the proposed 

framework is to establish and apply a set of key decision 

indicators (KDI) that transparently and consistently guide this 

process. Although heat pump configurations differ in their 

heat source or circuit design (e.g., air-to-water, air-to-air, or 

ground-source), the underlying reliability mechanisms and 

decision needs remain comparable. The core KDIs – such as 

forecast requirement, data availability, and cost-efficiency – 

capture generic decision-making dimensions and are 

therefore system-agnostic within the heat-pump domain. This 

consistency allows the same framework logic to be applied 

across different heat-pump types without modification of the 

indicator definitions. This also demonstrates the framework’s 

potential applicability to other industrial appliances. 

However, system complexity remains the key distinguishing 

factor. To ensure practical consistency in applying the 

framework, the assessment of each component followed a 

predefined KDI-based logic to ensure traceable outcomes. 

Expert inputs were aligned through brief calibration 

discussions, providing a consistent interpretation basis 

without disclosing proprietary scoring details. 

Without such structured criteria, modeling choices risk being 

misaligned with practical needs. They may overfit theoretical 

assumptions, overlook key system constraints, or fail to 

deliver actionable insights. For example, selecting a data-

driven approach without addressing forecasting needs may 

miss essential requirements for anticipating failures. 

Likewise, relying solely on available measurements while 

ignoring physical knowledge can hinder diagnostic 

transparency – often a critical factor in engineering practice 

(Muhammad et al., 2025). The proposed indicators mitigate 

these risks by grounding modeling decisions in both the 

operational context and application goals – rather than 

defaulting to assumptions, preferences, or convenience. 

The proposed framework consists of three main steps – (1) 

risk-based prioritization of components at the system level, 

(2) structured selection of suitable reliability modeling 

approaches at the component level, and (3) a reassessment 

mechanism that enables trigger-based updates of modeling 

decisions under evolving system conditions. Throughout this 

paper, KDI refers to the general concept of Key Decision 

Indicators, whereas specific indicators (KDI 1 – KDI 5) are 

italicized to distinguish them in the text. Figure 1 illustrates 

the three-step decision flow of the proposed framework, 

which combines system-level prioritization, structured 

model-selection logic, and a reassessment mechanism to 

maintain valid recommendations over time. 

The first step identifies the components with the highest 

contribution to overall system reliability using KDI 0 – Risk 

Prioritization. These risk components are then selected for in-

depth modeling. 

For each risk component, a suitable modeling strategy is 

selected using four indicators (KDI 1 to KDI 4): 

• Forecast Requirement (KDI 1): Captures the specific 

output expected from the reliability model based on 

practical application needs. 

• Physical Knowledge (KDI 2): Assesses the availability 

of domain or physics-based understanding relevant to the 

component. 

Figure 1. Three-step framework with integrated feedback. Step 1 (KDI 0) prioritizes components by reliability risk. Step 2A 

(KDI 1 – 4) selects suitable modeling strategies for prioritized components, and Step 2B (KDI 5) assigns estimation strategies 

for the remaining ones. Step 3 enables trigger-based reassessment to keep modeling decisions valid under changing system 

conditions. 
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• Data Availability (KDI 3): Evaluates whether sufficient 

operational or failure-related data exist to support the 

modeling task. 

• Cost-Efficiency (KDI 4): Prioritizes options that offer an 

effective balance between model performance and 

implementation effort. 

Once the risk components have been addressed, the 

framework applies Feasibility of Estimation (KDI 5) to all 

remaining passive components. This indicator evaluates 

whether a meaningful reliability estimation can be derived 

based on existing test data, expert knowledge, or operational 

experience. It ensures that all system elements are 

systematically considered – even those that do not justify 

detailed modeling – thereby reducing uncertainty and 

supporting a more complete system-level reliability 

assessment. After deployment, Step 3 – the reassessment 

mechanism – enables trigger-based review of the KDIs to 

ensure that modeling recommendations remain valid under 

changing system conditions. 

In the following subsections, each KDI is introduced and its 

role demonstrated through a structured assessment applied to 

an air-to-water heat pump system manufactured by Bosch 

Home Comfort Group. The application was carried out in 

collaboration with domain experts to ensure practical 

relevance. However, detailed justifications cannot be 

disclosed due to confidentiality and competitive constraints. 

The purpose of this contribution is to present a decision 

framework for selecting reliability modeling approaches. 

This is illustrated by showing how each KDI contributes to 

the overall decision process and how the indicators are 

logically connected to support consistent and justifiable 

modeling choices. 

3.1. Risk-Based Prioritization (Step 1: KDI 0) 

The first step of the framework applies KDI 0 to identify 

components with the highest contribution to overall system 

reliability risk. This prioritization focuses in-depth modeling 

where it offers the greatest value, reducing complexity and 

avoiding unnecessary analysis of low-impact parts. As a 

result, KDI 1 to KDI 4 are applied only to a manageable 

subset of prioritized components, while the remaining ones 

are addressed more efficiently in later stages.  

KDI 0 evaluates each component based on three key inputs. 

Two of them are derived from field data: the observed field 

failure rate (𝜆) and the associated failure cost (𝐶𝑓). These 

values are normalized and combined into a single risk score 

(𝑅𝑠 ) that quantifies each component’s potential impact on 

overall system reliability. To identify components requiring 

in-depth modeling, a threshold is applied to the 𝑅𝑠 . This 

threshold is determined using a pareto-based approach 

(O’Connor & Kleyner, 2012), which selects the top-ranking 

components that collectively represent the majority of the 

cumulative system risk (Step 1 in Figure 1). Components 

exceeding this threshold are classified as risk; those below it 

are classified as passive. 

In addition to the quantitative 𝑅𝑠-based selection, the third 

key input serve as corrective input and is included to ensure 

operational relevance. The Early Degradation Alert ( 𝛼𝑑 ) 

promotes components to the risk group if they were flagged 

early in the system’s lifecycle due to confirmed degradation 

or urgent service interventions – even if they fall below the 

𝑅𝑠. threshold. 

Components that either exceed the 𝑅𝑠  threshold or are 

marked with an 𝛼𝑑  flag proceed to in-depth modeling 

approach selection using KDI 1 to KDI 4. All remaining 

passive components are addressed in later stages using 

KDI 5. 

3.1.1. KDI 0 in Practice 

In this contribution, the air-to-water heat pump system use 

case assesses 28 components – each directly influencing 

overall system reliability – using the logic of KDI 0. 

The procedure begins by normalizing 𝜆  and 𝐶𝑓  for each 

component. These inputs are then combined into a single 𝑅𝑠 

using equal weighting, as shown in Eq. (1). This weighting 

reflects expert judgment and ensures a balanced emphasis on 

both likelihood of failure and potential economic impact. 

To classify components, they are ranked in descending order 

based on their 𝑅𝑠 . A pareto-inspired threshold is applied, 

selecting the top 20% of components with the highest 

individual 𝑅𝑠  values. Rather than targeting a fixed 

cumulative percentage, this approach served primarily as a 

practical dimensionality-reduction heuristic to narrow the 

modeling focus. Independently of their 𝑅𝑠 rank, components 

marked with an 𝛼𝑑 are flagged for risk relevance. 

As shown in Figure 1, the outcome of Step 1 is the 

classification of components into two groups. Any 

component that either exceeds the 𝑅𝑠 threshold or are flagged 

with 𝛼𝑑  are classified as risk and proceed to the next 

modeling stage KDI 1 to KDI 4. All other components are 

classified as passive and are later addressed using KDI 5. 

3.1.2. Interpreting KDI 0 Results 

The application of KDI 0 to the air-to-water heat pump 

system resulted in a clear classification of components into 

two groups. Out of 28 assessed components, six were 

identified as risk – either by exceeding the 𝑅𝑠 threshold or 

being flagged with an 𝛼𝑑 . The remaining 22 components 

were classified as passive. 

The prioritization outcome was reviewed and validated with 

domain experts, who confirmed that the selected components 

reflect key service drivers and critical operational risks 

 𝑅𝑠,𝑖 = 0.5 
𝜆𝑖

𝑚𝑎𝑥 (𝜆)
+ 0.5 

𝐶𝑓,𝑖

𝑚𝑎𝑥 (𝐶𝑓)
 (1) 
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observed in the field. While this risk-based reduction enables 

focused modeling and supports efficient resource allocation, 

it also implies that components with lower immediate risk are 

treated with simplified methods. This trade-off is accepted to 

preserve scalability and practical applicability but may 

introduce residual uncertainty that must be acknowledged in 

system-level interpretations. 

With this subset of risk-relevant components defined, the 

framework proceeds to determine suitable reliability 

modeling strategies at the component level, as described in 

the following sections. 

3.2. In-Depth Modeling Decision Logic (STEP 2A: KDI 1 

to KDI 4) 

Following the system-level prioritization in Section 3.1, six 

components were classified as risk component and selected 

for in-depth reliability modeling (Step 1 in Figure 1). To 

determine a suitable modeling approach for each, the 

framework applies four structured decision indicators – KDI 

1 to KDI 4 – which assess forecast requirements, physical 

knowledge, data availability, and cost-efficiency (Step 2A in 

Figure 1). Together, these indicators provide a systematic 

basis for selecting between physics-based, data-driven, or 

hybrid modeling strategies. 

Rather than relying on a single criterion, the decision logic 

integrates all four indicators to ensure a context-sensitive 

modeling choice. Figure 2 illustrates this logic, showing how 

the assessment begins with evaluating practitioner needs 

(KDI 1) and component characteristics – specifically domain 

knowledge (KDI 2) and operational data availability (KDI 3). 

If these three indicators align in pointing to the same 

modeling type, the corresponding strategy is adopted. In 

cases of divergence, KDI 4 is used to resolve trade-offs by 

considering modeling performance and implementation 

effort. 

The following subsections (3.2.1 to 3.2.5) present each 

indicator in detail, outlining its purpose, role in the decision 

process, and how it was applied in the current use case.  

3.2.1. Forecast Requirements (KDI 1)  

KDI 1 determines the forecast depth required for each risk-

relevant component, ensuring that the selected modeling 

strategy delivers outputs aligned with practitioner needs. 

Domain experts were consulted using a predefined and 

standardized assessment logic. The three assessment 

questions (𝑄1 to 𝑄4) and their mapping to forecast levels are 

shown in Table 1. In the table, 𝑄𝑖  denotes that Question 𝑖 is 

answered “Yes” (True), and ¬𝑄𝑖  denotes that it is answered 

“No” (False). 

In the current use case, all six risk-relevant components 

showed different levels of forecast depth required by 

practitioners. These requirements were derived from expert 

discussions considering factors such as maintenance planning 

needs, the criticality of early failure detection, and 

compliance with safety or regulatory standards. Based on the 

defined mapping logic, each component was classified into a 

high, medium, or low forecast depth and then linked to a 

suitable modeling strategy. Components with high forecast 

requirements – such as those demanding predictive alerts, 

behavioral insights, and a physical understanding of failure 

mechanisms – were matched to physics-based models. 

Medium-level components required predictive alerts and 

behavioral insights but did not demand a physical 

understanding of failure causes, while low-level components 

required only predictive alerts for maintenance planning. 

While KDI 1 defines the forecast requirements, it does not 

assess whether sufficient physical understanding (KDI 2) or 

adequate data availability (KDI 3) exist to enable the required 

modeling strategy. The following subsections address these 

two aspects in sequence, beginning with KDI 2. 

3.2.2. Physical Knowledge (KDI 2) 

While KDI 1 defines the required forecast output based on 

practitioner needs, KDI 2 evaluates the level of physical 

understanding available for each component, ensuring that 

the selected modeling strategy is grounded in what can 

realistically be explained rather than only predicted. To 

operationalize this indicator, domain experts were consulted 

using a predefined and standardized assessment logic. The 

four assessment questions (𝑄1  to 𝑄4) and their mapping to 

knowledge levels are shown in Table 2. 

Figure 2. Decision logic for selecting a modeling approach 

for risk components. Practitioner needs (KDI 1) and 

component characteristics – domain knowledge (KDI 2) and 

data availability (KDI 3) – are first assessed. If these align, 

the corresponding modeling type is chosen; otherwise, 

KDI 4 resolves trade-offs. 
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In the current use case, the KDI 2 assessment revealed high 

diversity of system knowledge among the six risk-relevant 

components. Based on the defined mapping logic, each 

component was classified into a high, medium, or low 

knowledge level and then linked to a suitable modeling 

strategy. This ensured that components with comprehensive 

knowledge were matched to physics-based diagnostics, those 

with partial understanding to hybrid models, and those with 

limited knowledge to data-driven methods. 

While KDI 2 addresses the availability of physical 

understanding, it does not account for the availability of 

operational data required for model development. This aspect 

is covered by the next indicator, KDI 3. 

3.2.3. Data Availability (KDI 3) 

While KDI 2 evaluates the level of physical knowledge for 

each component, KDI 3 assesses the extent to which this 

knowledge can be supported by empirical evidence. 

Specifically, it determines whether sufficient data are 

available to enable the development and validation of the 

selected modeling approach. The assessment follows the 

same structured logic as KDI 2 directly integrated into Table 

3. 

The mapping logic in Table 3 classifies each component into 

one of three data availability levels. A high level (𝐿𝑑𝑎𝑡𝑎 =
𝐻𝑖𝑔ℎ) is assigned when all four conditions are met (e.g., a 

component is monitored in the field, covers diverse lifecycle 

scenarios, includes failure cases, and is validated in 

laboratory settings). Medium availability (𝐿𝑑𝑎𝑡𝑎 = 𝑀𝑒𝑑𝑖𝑢𝑚 

applies when most conditions are fulfilled – specifically 𝑄1, 

𝑄2, and 𝑄4 are “Yes” but 𝑄3 is “No” (e.g., a component with 

broad operational coverage and lab validation, but lacking 

failure case representation). Low availability is assigned to 

Table 2. Mapping of assessment questions (𝑸𝟏 to 𝑸𝟒)) to physical knowledge levels and corresponding modeling 

strategies (KDI 2) 

 

Assessment Questions 

Level Mapping (L)  

Modeling Implication 

Physics-

based 
Hybrid 

Data-

driven 

𝑄1 . Is a validated physical model 

available for the component? 

𝑄2. Are the main failure causes clearly 

understood and documented? 

𝑄3. Are key influencing factors (e.g., 

operational/environmental) identified 

and documented? 

𝑄4. Are design or operating conditions 

clearly linked to failure modes? 

𝐿𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 = 𝐻𝑖𝑔ℎ ⟺ ⋀ 𝑄𝑖
4
𝑖=1    x x x 

𝐿𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 = 𝑀𝑒𝑑𝑖𝑢𝑚 ⟺ 𝑄2 ∧  𝑄4 ∧ (¬𝑄1 ∨ ¬𝑄3)  x x 

𝐿𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 = 𝑙𝑜𝑤 ⟺ (∑[𝑄𝑖] < 𝟐)

𝟒

𝒊=𝟏

∨ (¬𝑄1 ∧ ¬𝑄4)   x 

 

 

Table 1. Mapping of assessment questions (𝑸𝟏 to 𝑸𝟒) to forecast requirement levels and corresponding modeling 

strategies (KDI 1) 

 

Assessment Questions 

Level Mapping (L)  

Modeling Implication 

Physics-

based 
Hybrid 

Data-

driven 

𝑄1. Is a predictive alert required (e.g., 

remaining useful life)? 

𝑄2 . Are behavioral insights needed 

(e.g., degradation patterns, trends)? 

𝑄3 . Is a physical understanding of 

failure mechanisms essential (e.g., for 

interpretability or compliance)? 

𝐿𝑓𝑜𝑟𝑐𝑎𝑠𝑡 = 𝐻𝑖𝑔ℎ ⟺ ⋀ 𝑄𝑖
3
𝑖=1    x   

𝐿𝑓𝑜𝑟𝑐𝑎𝑠𝑡 = 𝑀𝑒𝑑𝑖𝑢𝑚 ⟺ 𝑄1 ∧ 𝑄2 ∧ ¬𝑄3 x x  

𝐿𝑓𝑜𝑟𝑐𝑎𝑠𝑡 = 𝑙𝑜𝑤 ⟺ 𝑄1 ∧ ¬𝑄2 ∧ ¬𝑄3 x x x 
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any other combination of responses, such as sparse field 

monitoring or incomplete coverage of operational conditions. 

In the current use case, the KDI 3 evaluation revealed a high 

diversity of data availability across the six risk-prioritized 

components. Some components qualified for the high 

category, supporting data-driven, hybrid, or physics-based 

modeling. Others fell into the medium or low categories, 

where missing operational failure data or fragmented 

monitoring limited the suitability of empirical model training. 

Together with KDI 1 and KDI 2, this indicator ensures that 

the final modeling strategy is not only aligned with forecast 

requirements and grounded in physical understanding, but 

also feasible given the system’s operational observability. 

3.2.4. Observed Consistency Across KDI 1 to KDI 3 

Figure 3 visualizes how the six risk components were 

assessed based on indicators KDI 1 to KDI 3. Each 

component is positioned according to its system knowledge 

(KDI 2, x-axis) and data availability (KDI 3, y-axis). The 

required forecast depth (KDI 1) is shown by a color scale 

from light grey (low) to dark grey (high), and unique marker 

shapes distinguish components. Components requiring 

further evaluation through KDI 4 are outlined with a circle. 

For clarity, the six risk components are labeled C1 to C6 

throughout this section and in the figure. 

For instance, C1 shows high data availability but low 

physical knowledge, and a low forecast depth – favoring a 

data-driven modeling approach. C2 combines medium data 

availability and physical knowledge with a medium forecast 

depth, making a hybrid approach suitable. C3 has high 

physical knowledge but low data availability and a high 

forecast requirement, favoring a physics-based approach. C6 

scores high across all indicators, aligning well with physics-

based modeling 

Ambiguities occur in cases like C4, where high data 

availability and medium physical knowledge, combined with 

a low forecast depth, support both data-driven and hybrid 

approaches; here, KDI 4 was applied to resolve the choice.  

C5 represents a more constrained case: despite a medium 

forecast requirement, both system knowledge and data 

availability were insufficient to support robust modeling 

approach. This highlights a critical reliability knowledge gap 

and signals a need for targeted improvements at the system 

level before modeling can proceed. 

Synthesizing the KDI 1 to KDI 3 results, four components 

were directly linked to a single strategy: two followed a 

Table 3. Mapping of assessment questions (𝑸𝟏 to 𝑸𝟒)) to data availability levels and corresponding modeling strategies 

(KDI 3) 

 

Assessment Questions 

Level Mapping (L)  

Modeling Implication 

Physics-

based 
Hybrid 

Data-

driven 

𝑄1 . Is the component regularly 

monitored during real-world 

operation? 

𝑄2 . Does the available data cover a 

range of lifecycle scenarios and usage 

conditions? 

𝑄3 . Are relevant failure scenarios 

captured in the operational dataset? 

𝑄4. Are degradation patterns replicated 

and validated in lab environments? 

𝐿𝑑𝑎𝑡𝑎 = 𝐻𝑖𝑔ℎ ⟺ ⋀ 𝑄𝑖
4
𝑖=1    x x x 

𝐿𝑑𝑎𝑡𝑎 = 𝑀𝑒𝑑𝑖𝑢𝑚 ⟺ 𝑄1 ∧ 𝑄2 ∧  𝑄4 ∧ ¬𝑄3 x x  

𝐿𝑑𝑎𝑡𝑎 = 𝑙𝑜𝑤 ⟺Any other combination of answers 
not covered by the High or Medium conditions 

x   

 

Figure 3. Mapping of six risk components (C1–C6) based 

on KDI 1 to KDI 3. Axes show system knowledge (KDI 2) 

and data availability (KDI 3). Dot shading encodes forecast 

depth; outlined dots indicate components requiring KDI 4 

evaluation. 
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physics-based approach, one a data-driven approach, and one 

a hybrid approach. One component was suitable for both 

data-driven and hybrid approaches, and one lacked sufficient 

knowledge and data for any robust modeling. This combined 

evaluation identified components with aligned forecast 

requirements and technical feasibility, while also revealing 

those where modeling remains infeasible or uncertain. The 

latter warrant prioritization in future reliability research and 

system development. For components with multiple viable 

strategies, the final choice is determined through KDI 4, 

described in the next subsection. 

3.2.5. Cost-Efficiency (KDI 4) 

KDI 4 evaluates the cost-efficiency of implementing a given 

reliability modeling strategy. It becomes particularly relevant 

when earlier indicators (KDI 1 to KDI 3) suggest multiple 

technically feasible options. In such cases, KDI 4 ensures that 

the final decision also considers resource constraints and 

development effort, supporting a balanced trade-off between 

modeling performance and practical implementability. 

In the absence of formal cost metrics, the evaluation of KDI 4 

was guided by expert input and supported by a heuristic 

commonly observed in industrial practice: modeling effort 

typically increases from data-driven, through hybrid, to 

physics-based approaches (Wang et al., 2019). Data-driven 

models often build on available operational data and existing 

infrastructure (Zhao et al., 2019), while physics-based 

models demand substantial domain knowledge, parameter 

calibration, and validation efforts (Hoang & Kang, 2018). 

Hybrid models integrate both operational data and physical 

principles, resulting in a moderate development effort 

between the generally lower demands of data-driven 

approaches and the higher demands of physics-based 

approaches. Accordingly, KDI 4 ranks the three strategies 

from lowest to highest typical modeling effort as follows: (1) 

data-driven, (2) hybrid, (3) physics-based. This ranking 

served as the operational setup for KDI 4 in the present 

analysis. While individual cases may vary, this relative 

ranking provided a practical and reproducible basis for 

strategy selection when resource constraints are relevant and 

technical options are still open. 

In the current use case, KDI 4 was applied only to 

Component C4. This component had been previously 

assessed (through KDI 1 to KDI 3) as eligible for both data-

driven and hybrid modeling strategies. Applying the cost-

efficiency logic, the data-driven approach was preferred, as it 

satisfied the forecast requirement with minimal development 

overhead. By integrating this step, the framework ensured 

that modeling recommendations not only reflect technical 

validity but are also realistically implementable under real-

world constraints. 

3.3. Feasibility of Estimating Reliability (Step 2B: KDI 5) 

Following the in-depth modeling decisions for risk-relevant 

components, the framework addresses the remaining 

components classified as passive (Step 1 in Figure 1). These 

components, while not major drivers of overall system 

reliability risk, must still be considered to ensure a complete 

reliability assessment at the system level. This is achieved 

through estimation-based strategies, which offer lower 

modeling precision but maintain coverage across the full 

component landscape (Azam et al., 2014). 

KDI 5 guides the selection of appropriate estimation 

strategies for passive components (Step 2B in Figure 1). In 

contrast to the earlier indicators that focused on modeling 

depth and feasibility, KDI 5 addresses the residual set of 

components and matches them with a lightweight, context-

appropriate estimation method. The selection is informed by 

three practical system-level criteria: the availability of test 

infrastructure, expert knowledge from related systems, and 

historical field data on failure occurrences. The mapping 

logic for KDI 5 is summarized in Table 4. It translates the 

availability of resources into appropriate estimation types. 

In the current use case, all 22 passive components were 

assessed using this logic. Most were selected to simplified 

data-based estimation, supported by operational data on 

failure behavior. Components lacking sufficient data but with 

expert familiarity were selected to expert-based estimation. A 

smaller subset, for which structured test procedures exist, was 

mapped to test-based estimation. Unlike in the in-depth 

modeling strategy selection, these estimation strategies are 

not ranked in terms of preference; their selection depends 

solely on the applicable boundary conditions for each passive 

component. 

By applying KDI 5, the framework maintains a consistent and 

traceable reliability representation across all components. 

While these estimations do not carry the same predictive 

power as full models, they enable system engineers to 

maintain awareness of potential failure behavior. 

Furthermore, components relying on simplified estimates can 

be flagged for future data collection or modeling 

Table 4. Mapping of available resources (KDI 5) to 

suitable estimation strategies for passive components 

 

Available Resources Proposed Estimation 

Strategy 

Test procedures and 

measurement equipment 

Test-based estimation 

Expert knowledge of 

similar components 

Expert-based estimation 

Historical field failure 

data 

Simplified data-based 

estimation 
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enhancement efforts. This ensures that system-level 

reliability remains quantifiable and improvable, even in the 

presence of limited resources. 

3.4. Reassessment Mechanism (Step 3) 

The framework includes a reassessment mechanism to keep 

modeling decisions aligned with evolving system conditions 

(Step 3 in Figure 1). After deployment, selected approaches 

are trigger-based reassessed when relevant changes occur in 

model behavior, operational performance, or available data. 

In practice, this does not imply continuous recalculation but 

rather a manual or periodic review when such changes 

become apparent. If deviations are detected, the 

corresponding KDIs are revisited: component-level updates 

feed into Step 2A/2B (KDI 1 – 5), while system-level changes 

can prompt an update of Step 1 (KDI 0). This mechanism 

enables periodic adaptation of modeling strategies under real 

operating conditions without disclosing proprietary 

performance details. 

4. DISCUSSION AND FUTURE WORK 

The revised framework demonstrates how complex reliability 

modeling decisions can be operationalized in a more 

transparent, structured, and context-aware manner by 

applying a three-step logic complemented by a reassessment 

mechanism. The first step – system-level risk-based 

prioritization (KDI 0) – enables engineers to identify 

components that most critically affect overall system 

reliability. These risk components are prioritized for in-depth 

modeling, while components with lower impact – referred to 

as passive components – are addressed through estimation-

based strategies. The second step applies KDI 1 – 5 to guide 

the assignment of appropriate modeling strategies for each 

component. For risk components, the decision logic ensures 

that selected approaches align with forecasting needs, 

physical knowledge, data availability, and cost-efficiency. 

This supports assigning data-driven, physics-based, or hybrid 

modeling approaches. For passive components, the fifth KDI 

guides the assignment of simplified estimation strategies – 

based on available failure statistics, component test 

procedures, or expert judgment. This inclusive design avoids 

overlooking components that do not warrant detailed 

modeling but still require reliability estimates, thereby 

enabling a comprehensive system-level assessment. The third 

step – reassessment mechanism – enables trigger-based 

updates of modeling decisions when system conditions 

change over time. By clearly separating prioritization from 

modeling logic and maintaining a dedicated reassessment 

mechanism, the framework supports traceable modeling 

decisions that reflect practical engineering goals and real-

world constraints – without relying on fixed rules or single-

method assumptions. 

The applicability of the decision framework was further 

demonstrated by reviewing an earlier case study (Qarqour et 

al., 2024), in which a Random-Forest-based, data-driven 

model was used to predict control faults in the inverter of an 

air-to-water heat pump. Although this study preceded the 

formalization of the framework, a retrospective KDI-based 

assessment led to the same reliability-approach selection, 

confirming the logic of the decision process. Notably, the 

model successfully identified the inverter – later confirmed 

as a reliability-critical component in field data – illustrating 

the framework’s applicability while preserving 

confidentiality regarding proprietary parameters. 

Applying the framework to an air-to-water heat pump system 

revealed several practical insights. First, components with 

similar criticality scores required different modeling 

strategies due to variations in forecasting needs, data 

availability, and physical understanding. This highlights the 

importance of context-aware decisions beyond risk ranking 

alone. Second, some components were suitable for more than 

one modeling approach, allowing cost-efficiency to guide the 

final selection. This flexibility supports tailoring model 

complexity to available development resources. Third, in 

constrained cases, the framework exposed situations where 

modeling could not proceed due to missing data and limited 

physical insight. This points to a critical reliability knowledge 

gap and the need for targeted system improvements before 

modeling becomes viable. These observations form the basis 

for reflecting on the framework’s current limitations and 

potential directions for refinement. 

4.1. Limitations and Methodological Refinement 

While the proposed decision framework demonstrated 

promising results in the pilot use case, several limitations 

should be acknowledged to guide future refinement. The 

KDIs, while structured, still rely on expert interpretation, 

which may vary depending on individual judgment or 

organizational context. This subjectivity introduces the risk 

of inconsistent modeling decisions across applications. 

However, the prioritization methodology remains valid in the 

present study, as all assessments were conducted within the 

same company and engineering department, ensuring a 

consistent reference framework despite potential evaluator 

bias. To enhance consistency, future studies should formalize 

expert evaluation through structured calibration sessions or 

consensus-oriented methods (Okoli & Pawlowski, 2004), 

such as Delphi-style reviews, and may also integrate 

quantitative weighting schemes to reduce evaluator bias and 

make implicit trade-offs – such as cost efficiency – more 

transparent. Moreover, the current study does not yet include 

a continuous feedback mechanism to verify whether selected 

strategies remain valid once implemented. Although the 

reassessment mechanism (Step 3) has been conceptually 

integrated, its practical effectiveness remains to be validated 

through real-world implementation. Further work should 

examine how the reassessment logic performs under 

operational conditions and whether it effectively supports 

iterative improvement of modeling strategies. 
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4.2. Generalization and Future Validation 

Beyond the present air-to-water case, the framework’s 

underlying logic is domain-agnostic, as it builds on indicators 

that describe decision-making dimensions common to most 

technical systems. KDIs such as forecast requirement, data 

availability, and cost-efficiency are transferable across 

industrial domains, whereas physical knowledge may require 

contextual adaptation. Cooling and battery thermal-

management systems serve as illustrative examples, as they 

involve comparable thermodynamic processes and reliability 

trade-offs but operate under different boundary conditions. 

Transferring the framework to these domains would mainly 

require redefining reference variables and validation criteria 

while keeping the overall decision logic unchanged. 

Building on the framework’s findings, future work should 

apply the selected strategies to prioritized components and 

assess whether they produce reliable, interpretable results. 

Building on this retrospective validation, future work should 

apply the selected reliability-modeling approaches to 

prioritized components within real heat-pump systems. This 

next step will serve as a direct validation of the framework’s 

decision logic under operational conditions. This 

implementation step will not only validate individual 

modeling choices but also test the framework’s integration 

potential at the system level, for example via Reliability 

Block Diagrams or similar compositional methods (Hasan et 

al., 2015). 

Expanding the framework’s use to other system types, 

coupled with uncertainty handling through confidence 

scoring or consensus-based expert review, will further 

strengthen its robustness and generalizability. Future 

applications should also incorporate structured consensus or 

calibration steps to align expert assessments and refine the 

interpretation of each KDI over time. Together, these steps 

will support broader adoption and refinement of the 

framework in reliability-oriented modeling. 

5. CONCLUSION 

Modern heat pump systems include components with 

different levels of risk, data availability, and system 

understanding, making reliability modeling increasingly 

complex. This complexity is compounded by the absence of 

comprehensive decision-making frameworks, highlighting 

the need for structured approaches to guide model selection. 

This work introduced a structured decision framework that 

supports the transparent selection of reliability modeling 

strategies across such systems. The framework combines 

system-level risk prioritization with five KDIs to align 

modeling decisions with practitioner needs, available 

physical knowledge and data, and resource constraints. By 

separating prioritization from modeling logic, it enables 

traceable, context-aware decisions for both risk and passive 

components. Applied to an air-to-water heat pump system, 

the framework demonstrated its ability to differentiate 

suitable modeling strategies, highlight knowledge gaps, and 

support system-level reliability assessment. While the 

approach showed practical value, it remains subject to 

limitations – including reliance on expert judgment, the 

absence of a built-in validation mechanism, and an initial 

focus on a single system type. Future work should 

operationalize the assigned strategies in real systems, extend 

the framework to other domains, and incorporate uncertainty 

handling and consensus-driven validation. Together, these 

steps will support broader adoption and refinement of the 

framework in reliability-oriented modeling. 
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