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ABSTRACT

Reliability assessment is critical to ensure the performance,
availability, and safety of heat pump systems. This requires
modeling strategies that reflect both component-level
behavior and system-wide interactions. While physics-based,
data-driven, and hybrid methods each offer unique strengths,
selecting the right approach remains unsolved. This is
especially evident in modern heat pump systems with tightly
coupled components, fragmented supply chains, and
heterogeneous levels of physical insight. Although loT
adoption enables operational data collection, such data
remains often unstructured and lacks failure labeling, which
limits its value for modeling. These challenges highlight the
need for structured guidance in selecting suitable reliability
strategies. To address this, a structured and scalable decision
framework is proposed to support transparent, context-aware
reliability modeling. The approach begins with system-level
risk prioritization and applies five Key Decision Indicators
(KDIs) to assign appropriate modeling or estimation
strategies for each component. This includes both in-depth
modeling for risk components and simplified estimation for
passive ones. Applied to a real-world air-to-water heat pump
system, the framework enables traceable modeling decisions
adapted to data availability, physical knowledge, forecasting
needs, and cost-efficiency. It offers practitioners a systematic
pathway to tailor reliability modeling across complex
systems and constrained development environments.

1. INTRODUCTION

Ensuring stable and reliable operation is essential for the
success of heat pump systems in everyday use (International
Energy Agency, 2022). These systems are expected to
perform reliably year-round, avoiding failures that cause
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discomfort, costly repairs, or downtime. Long-term
functionality supports user satisfaction, operational safety,
and high energy efficiency across the system’s lifetime
(Brudermueller et al., 2025). Reliability is also key to
achieving broader goals — lowering CO: emissions,
advancing the energy transition, and enabling climate-neutral
heating (IEA, 2022). However, realizing these goals at scale
is challenged by limited resources and the wide variety of
system configurations, which demand increasingly cost-
conscious and selective approaches to reliability assessment.

Reliability assessment is the systematic process of evaluating
how well a system performs its intended function over time
without failure (O’Connor & Kleyner, 2012). In engineering
domains such as heat pumps, it supports performance
prediction, maintenance planning, and long-term operational
safety (IEA, 2025). Various modeling strategies are used for
reliability assessment, typically categorized as physical, data-
based, or hybrid approaches. Physical models are based on
system equations and known failure mechanisms, offering
transparency when detailed physical knowledge is available.
Data-based models rely on historical records, such as
maintenance logs or performance reports, together with
sensor measurements of operational variables. These
approaches often do not require deep insight into the system’s
internal structure. Hybrid approaches combine physical and
data-based elements, allowing for flexibility in complex
systems with partial knowledge (Lei et al., 2018).

Despite their individual strengths, physical, data-based, and
hybrid modeling approaches face notable limitations in
complex engineering systems. Physical models struggle with
scalability when interactions, control layers, or failure
mechanisms become difficult to fully represent — particularly
in large systems where detailed physics for all components is
impractical (Khan et al., 2024). Data-based models rely on
high-quality datasets and often lack interpretability, which
limits their trustworthiness in safety-critical contexts (Doshi-
Velez & Kim, 2017). Hybrid approaches, though increasingly
explored by researchers, inherit the challenges of both —
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demanding extensive domain knowledge, careful integration
design, and thorough validation. Moreover, they lack
standardized procedures for systematically combining
physical insights with data-driven components, which limits
their broader applicability (Lee et al., 2015; Lei et al., 2018).

Selecting an appropriate reliability modeling approach
remains a core challenge in the context of complex technical
systems (Khan et al., 2024). Heat pumps involve numerous
interacting components and dynamic operating conditions
(Fischer & Madani, 2017). In parallel, sensors and smart
controls enable the collection of large volumes of operational
data, often heterogeneous in structure and quality (IEA,
2022). The interplay between data variability and system
complexity further complicates the selection of appropriate
reliability modeling approaches (Lazarova-Molnar et al.,
2017).

Recent research has addressed system complexity through
hybrid modeling approaches and integrated reliability
assessment frameworks (Lei et al., 2018; Khan et al., 2024).
While these efforts enhance modeling capabilities, they often
lack structured guidance for selecting appropriate modeling
strategies. In most cases, model selection still depends on
fixed criteria — such as physical insight or data availability —
without a systematic evaluation process (Ma et al., 2024). As
detailed in related work (Section 2), existing literature lacks
a structured and adaptable framework for guiding the
selection of reliability modeling strategies. Current methods
offer limited support for aligning modeling choices with
specific system characteristics, data constraints, and practical
evaluation needs. This gap becomes increasingly critical as
engineering systems grow in complexity and data-driven
techniques become more prevalent. Simultaneously,
practitioners are under increasing pressure to allocate limited
resources efficiently across large and heterogeneous system
landscapes.

This paper introduces a multi-criteria decision framework
that combines technical system understanding, data
characteristics, and practitioner needs to guide the structured
selection of reliability modeling approaches. It defines a set
of evaluation criteria — such as the criticality of system
components, availability of physical knowledge and
operational data, forecast requirements, and cost efficiency.
The framework aims to increase transparency, reduce
decision uncertainty, align modeling depth with reliability
objectives, and support consistent model selection across
diverse applications. Its applicability is demonstrated through
a real-world air-to-water heat pump system.

2. RELATED WORK TOWARDS RELIABILITY MODELING

Modern heat pump systems pose growing challenges for
reliability modeling. Technically, they feature multiple
interacting components, advanced control logic, and diverse
configurations (Fischer & Madani, 2017). From a data
perspective, they generate large volumes of operational data

via smart sensors, yet this data is often heterogeneous,
unevenly distributed, or context-specific (IEA, 2022). These
combined factors complicate the selection of suitable
modeling approaches — especially under limited resources
and time constraints common in practical settings.

Beyond the heating sector, valuable insights can be drawn
from reliability strategies developed for other complex
engineered systems. While these domains operate under
different constraints, examining their adaptability to heat
pump systems can reveal transferable principles. For
instance, health management architectures in industrial
systems and aerospace support system-level analysis by
integrating diagnostic and prognostic models to monitor
critical components (Khan et al., 2024). However, these
architectures are tailored for high-assurance environments
with extensive expert modeling and validation resources,
limiting their transferability to more resource-limited sectors
like residential heating. Diagnostics-driven prognostics
frameworks provide formal procedures for condition
assessment by leveraging detailed failure mode libraries and
diagnostic tests to infer system health (Lei et al., 2018). Yet,
their dependence on comprehensive diagnostic models and
domain-specific knowledge constrains their adaptability to
systems with less mature diagnostic ecosystems. In the
heating sector, recent research on sensor-driven classification
logic shows that statistical feature extraction enables state
estimation without requiring full physical modeling (Qarqour
et al., 2024). However, this approach lacks methodology to
inform decisions between alternative modeling strategies
based on system complexity or data availability. Across
domains, many of these frameworks rely on fixed modeling
paradigms and struggle to adapt dynamically to
heterogeneous data sources or evolving system complexities.

In response to these challenges, several studies — including
Ikwan, Sanders, and Haddad (2020) — have explored multi-
criteria decision-making (MCDM) approaches to prioritize
system components or failure modes, helping reduce
complexity and support structured resource allocation.
Common MCDM approaches, such as the Analytic Hierarchy
Process (AHP) (Saaty, Vargas, & St, 2022) and the
Preference Ranking Organization METHod for Enrichment
Evaluations (PROMETHEE) (Brans & Vincke, 1985), focus
on ranking technical importance and risk, but lack
recommending modeling strategies tailored to these rankings.
For example, AHP quantifies expert judgments to generate
hierarchical importance scores but does not extend to guiding
model selection, due to limitations such as ranking
inconsistencies, rank reversals, and its emphasis on
preference rather than prescriptive modeling (Khan & Ali,
2020). Arora and Rabe (2023) applied MCDM to assess
predictive maintenance readiness in residential heating
systems, integrating user requirements and technical
readiness factors to rank component priorities. While their
approach captures relevant dimensions, it does not link
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prioritization to the choice or adaptation of specific reliability
modeling approaches.

Therefore, existing MCDM approaches support prioritization
but provide limited guidance for matching reliability
modeling strategies to component characteristics, available
insights, or practitioner constraints. To address this gap, this
paper introduces a structured decision-making framework
that explicitly links component prioritization with the
selection of appropriate reliability modeling strategies —
while accounting for system-specific constraints, data
availability, and practical requirements.

3. FRAMEWORK FOR SELECTING RELIABILITY MODELING
APPROACHES

To support structured reliability modeling in heat pump
systems, a systematic approach is required to translate
domain complexity and diverse system conditions into
justifiable modeling decisions. The core idea of the proposed
framework is to establish and apply a set of key decision
indicators (KDI) that transparently and consistently guide this
process. Although heat pump configurations differ in their
heat source or circuit design (e.g., air-to-water, air-to-air, or
ground-source), the underlying reliability mechanisms and
decision needs remain comparable. The core KDIs — such as
forecast requirement, data availability, and cost-efficiency —
capture generic decision-making dimensions and are
therefore system-agnostic within the heat-pump domain. This
consistency allows the same framework logic to be applied
across different heat-pump types without modification of the
indicator definitions. This also demonstrates the framework’s
potential applicability to other industrial appliances.
However, system complexity remains the key distinguishing
factor. To ensure practical consistency in applying the
framework, the assessment of each component followed a
predefined KDI-based logic to ensure traceable outcomes.
Expert inputs were aligned through brief calibration
discussions, providing a consistent interpretation basis
without disclosing proprietary scoring details.
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Without such structured criteria, modeling choices risk being
misaligned with practical needs. They may overfit theoretical
assumptions, overlook key system constraints, or fail to
deliver actionable insights. For example, selecting a data-
driven approach without addressing forecasting needs may
miss essential requirements for anticipating failures.
Likewise, relying solely on available measurements while
ignoring physical knowledge can hinder diagnostic
transparency — often a critical factor in engineering practice
(Muhammad et al., 2025). The proposed indicators mitigate
these risks by grounding modeling decisions in both the
operational context and application goals — rather than
defaulting to assumptions, preferences, or convenience.

The proposed framework consists of three main steps — (1)
risk-based prioritization of components at the system level,
(2) structured selection of suitable reliability modeling
approaches at the component level, and (3) a reassessment
mechanism that enables trigger-based updates of modeling
decisions under evolving system conditions. Throughout this
paper, KDI refers to the general concept of Key Decision
Indicators, whereas specific indicators (KDI 1 — KDI 5) are
italicized to distinguish them in the text. Figure 1 illustrates
the three-step decision flow of the proposed framework,
which combines system-level prioritization, structured
model-selection logic, and a reassessment mechanism to
maintain valid recommendations over time.

The first step identifies the components with the highest
contribution to overall system reliability using KDI 0 — Risk
Prioritization. These risk components are then selected for in-
depth modeling.

For each risk component, a suitable modeling strategy is
selected using four indicators (KDI 1 to KDI 4):

e Forecast Requirement (KDI 1): Captures the specific
output expected from the reliability model based on
practical application needs.

e Physical Knowledge (KDI 2): Assesses the availability
of domain or physics-based understanding relevant to the
component.

Step 3 Reassessment
: Mechanism :

O Feedback loop
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Components

Modeling

Approach
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Figure 1. Three-step framework with integrated feedback. Step 1 (KDI 0) prioritizes components by reliability risk. Step 2A
(KDI 1 — 4) selects suitable modeling strategies for prioritized components, and Step 2B (KDI 5) assigns estimation strategies
for the remaining ones. Step 3 enables trigger-based reassessment to keep modeling decisions valid under changing system
conditions.
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e Data Availability (KDI 3): Evaluates whether sufficient
operational or failure-related data exist to support the
modeling task.

e Cost-Efficiency (KDI 4): Prioritizes options that offer an
effective balance between model performance and
implementation effort.

Once the risk components have been addressed, the
framework applies Feasibility of Estimation (KDI 5) to all
remaining passive components. This indicator evaluates
whether a meaningful reliability estimation can be derived
based on existing test data, expert knowledge, or operational
experience. It ensures that all system elements are
systematically considered — even those that do not justify
detailed modeling — thereby reducing uncertainty and
supporting a more complete system-level reliability
assessment. After deployment, Step 3 — the reassessment
mechanism — enables trigger-based review of the KDIs to
ensure that modeling recommendations remain valid under
changing system conditions.

In the following subsections, each KDI is introduced and its
role demonstrated through a structured assessment applied to
an air-to-water heat pump system manufactured by Bosch
Home Comfort Group. The application was carried out in
collaboration with domain experts to ensure practical
relevance. However, detailed justifications cannot be
disclosed due to confidentiality and competitive constraints.
The purpose of this contribution is to present a decision
framework for selecting reliability modeling approaches.
This is illustrated by showing how each KDI contributes to
the overall decision process and how the indicators are
logically connected to support consistent and justifiable
modeling choices.

3.1. Risk-Based Prioritization (Step 1: KDI 0)

The first step of the framework applies KDI 0 to identify
components with the highest contribution to overall system
reliability risk. This prioritization focuses in-depth modeling
where it offers the greatest value, reducing complexity and
avoiding unnecessary analysis of low-impact parts. As a
result, KDI 1 to KDI 4 are applied only to a manageable
subset of prioritized components, while the remaining ones
are addressed more efficiently in later stages.

KDI 0 evaluates each component based on three key inputs.
Two of them are derived from field data: the observed field
failure rate (1) and the associated failure cost (C;). These
values are normalized and combined into a single risk score
(Ry) that quantifies each component’s potential impact on
overall system reliability. To identify components requiring
in-depth modeling, a threshold is applied to the R,. This
threshold is determined using a pareto-based approach
(O’Connor & Kleyner, 2012), which selects the top-ranking
components that collectively represent the majority of the
cumulative system risk (Step 1 in Figure 1). Components

exceeding this threshold are classified as risk; those below it
are classified as passive.

In addition to the quantitative Rg-based selection, the third
key input serve as corrective input and is included to ensure
operational relevance. The Early Degradation Alert (ag;)
promotes components to the risk group if they were flagged
early in the system’s lifecycle due to confirmed degradation
or urgent service interventions — even if they fall below the
R;. threshold.

Components that either exceed the R, threshold or are
marked with an a4 flag proceed to in-depth modeling
approach selection using KDI 1 to KDI 4. All remaining
passive components are addressed in later stages using
KDI 5.

3.1.1. KDI 0 in Practice

In this contribution, the air-to-water heat pump system use
case assesses 28 components — each directly influencing
overall system reliability — using the logic of KDI 0.

The procedure begins by normalizing A and Cy for each
component. These inputs are then combined into a single R,
using equal weighting, as shown in Eq. (1). This weighting
reflects expert judgment and ensures a balanced emphasis on
both likelihood of failure and potential economic impact.

Ryi= 05— 105 —Ld 1
T max () T max () M

To classify components, they are ranked in descending order
based on their R;. A pareto-inspired threshold is applied,
selecting the top 20% of components with the highest
individual R, values. Rather than targeting a fixed
cumulative percentage, this approach served primarily as a
practical dimensionality-reduction heuristic to narrow the
modeling focus. Independently of their R¢ rank, components
marked with an a, are flagged for risk relevance.

As shown in Figure 1, the outcome of Step 1 is the
classification of components into two groups. Any
component that either exceeds the R, threshold or are flagged
with a, are classified as risk and proceed to the next
modeling stage KDI 1 to KDI 4. All other components are
classified as passive and are later addressed using KDI 5.

3.1.2. Interpreting KDI 0 Results

The application of KDIO to the air-to-water heat pump
system resulted in a clear classification of components into
two groups. Out of 28 assessed components, Six were
identified as risk — either by exceeding the R, threshold or
being flagged with an a;. The remaining 22 components
were classified as passive.

The prioritization outcome was reviewed and validated with
domain experts, who confirmed that the selected components
reflect key service drivers and critical operational risks
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observed in the field. While this risk-based reduction enables
focused modeling and supports efficient resource allocation,
it also implies that components with lower immediate risk are
treated with simplified methods. This trade-off is accepted to
preserve scalability and practical applicability but may
introduce residual uncertainty that must be acknowledged in
system-level interpretations.

With this subset of risk-relevant components defined, the
framework proceeds to determine suitable reliability
modeling strategies at the component level, as described in
the following sections.

3.2. In-Depth Modeling Decision Logic (STEP 2A: KDI 1
to KDl 4)

Following the system-level prioritization in Section 3.1, SiX
components were classified as risk component and selected
for in-depth reliability modeling (Step 1 in Figure 1). To
determine a suitable modeling approach for each, the
framework applies four structured decision indicators — KDI
1 to KDI 4 — which assess forecast requirements, physical
knowledge, data availability, and cost-efficiency (Step 2A in
Figure 1). Together, these indicators provide a systematic
basis for selecting between physics-based, data-driven, or
hybrid modeling strategies.

Rather than relying on a single criterion, the decision logic
integrates all four indicators to ensure a context-sensitive
modeling choice. Figure 2 illustrates this logic, showing how
the assessment begins with evaluating practitioner needs
(KDI 1) and component characteristics — specifically domain
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Figure 2. Decision logic for selecting a modeling approach
for risk components. Practitioner needs (KDI 1) and
component characteristics — domain knowledge (KDI 2) and
data availability (KDI 3) — are first assessed. If these align,
the corresponding modeling type is chosen; otherwise,
KDI 4 resolves trade-offs.

knowledge (KDI 2) and operational data availability (KDI 3).
If these three indicators align in pointing to the same
modeling type, the corresponding strategy is adopted. In
cases of divergence, KDI 4 is used to resolve trade-offs by
considering modeling performance and implementation
effort.

The following subsections (3.2.1 to 3.2.5) present each
indicator in detail, outlining its purpose, role in the decision
process, and how it was applied in the current use case.

3.2.1. Forecast Requirements (KDI 1)

KDI 1 determines the forecast depth required for each risk-
relevant component, ensuring that the selected modeling
strategy delivers outputs aligned with practitioner needs.
Domain experts were consulted using a predefined and
standardized assessment logic. The three assessment
questions (Q, to Q,) and their mapping to forecast levels are
shown in Table 1. In the table, Q; denotes that Question i is
answered “Yes” (True), and —Q; denotes that it is answered
“No” (False).

In the current use case, all six risk-relevant components
showed different levels of forecast depth required by
practitioners. These requirements were derived from expert
discussions considering factors such as maintenance planning
needs, the criticality of early failure detection, and
compliance with safety or regulatory standards. Based on the
defined mapping logic, each component was classified into a
high, medium, or low forecast depth and then linked to a
suitable modeling strategy. Components with high forecast
requirements — such as those demanding predictive alerts,
behavioral insights, and a physical understanding of failure
mechanisms — were matched to physics-based models.
Medium-level components required predictive alerts and
behavioral insights but did not demand a physical
understanding of failure causes, while low-level components
required only predictive alerts for maintenance planning.

While KDI 1 defines the forecast requirements, it does not
assess whether sufficient physical understanding (KDI 2) or
adequate data availability (KDI 3) exist to enable the required
modeling strategy. The following subsections address these
two aspects in sequence, beginning with KDI 2.

3.2.2. Physical Knowledge (KDI 2)

While KDI 1 defines the required forecast output based on
practitioner needs, KDI 2 evaluates the level of physical
understanding available for each component, ensuring that
the selected modeling strategy is grounded in what can
realistically be explained rather than only predicted. To
operationalize this indicator, domain experts were consulted
using a predefined and standardized assessment logic. The
four assessment questions (Q; to Q,) and their mapping to
knowledge levels are shown in Table 2.
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Table 1. Mapping of assessment questions (Q4 to Q) to forecast requirement levels and corresponding modeling
strategies (KDI 1)

Assessment Questions Modeling Implication
Level Mapping (L) Physics- Hvbrid Data-
based YONal griven
Q. Is a predictive alert required (e.g.,
remaining useful life)? Lyorcase = High = N}21 Q; X
Q, . Are behavioral insights needed
(e.g., degradation patterns, trends)?
Q5. Is a physical understanding of Leorcast = Medium & Q; A Q2 A Q3 X X
failure mechanisms essential (e.qg., for
interpretability or compliance)?
Leorcase = low & Q1 A =Q; A =Q3 X X X
In the current use case, the KDI 2 assessment revealed high knowledge can be supported by empirical evidence.

diversity of system knowledge among the six risk-relevant
components. Based on the defined mapping logic, each
component was classified into a high, medium, or low
knowledge level and then linked to a suitable modeling
strategy. This ensured that components with comprehensive
knowledge were matched to physics-based diagnostics, those
with partial understanding to hybrid models, and those with
limited knowledge to data-driven methods.

While KDI 2 addresses the availability of physical
understanding, it does not account for the availability of
operational data required for model development. This aspect
is covered by the next indicator, KDI 3.

3.2.3. Data Availability (KDI 3)

While KDI 2 evaluates the level of physical knowledge for
each component, KDI 3 assesses the extent to which this

Specifically, it determines whether sufficient data are
available to enable the development and validation of the
selected modeling approach. The assessment follows the
same structured logic as KDI 2 directly integrated into Table
3.

The mapping logic in Table 3 classifies each component into
one of three data availability levels. A high level (Lygiq =
High) is assigned when all four conditions are met (e.g., a
component is monitored in the field, covers diverse lifecycle
scenarios, includes failure cases, and is validated in
laboratory settings). Medium availability (L;4tq = Medium
applies when most conditions are fulfilled — specifically Q,,
Q,,and Q, are “Yes” but Q5 is “No” (e.g., a component with
broad operational coverage and lab validation, but lacking
failure case representation). Low availability is assigned to

Table 2. Mapping of assessment questions (Q4 to Q4)) to physical knowledge levels and corresponding modeling
strategies (KDI 2)

Assessment Questions Modeling Implication
Level Mapping (L) Physics- Hvbrid Data-
based y driven
Q, . Is a validated physical model
available for the component? Linowteage = High & AL, Q; X X X
Q.. Are the main failure causes clearly
understood and documented?
Q3. Are key influencing factors (e.9.,| Linowieage = Medium & Q; A Q4 A (—Qy V =0Q3) X X
operational/environmental) identified
and documented? <
Q,. Are _design or o_perating conditions Linowteage = low & () [Qi] <2)V (=Q; A =Q,) X
clearly linked to failure modes? =~
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Table 3. Mapping of assessment questions (Q4 to Q,)) to data availability levels and corresponding modeling strategies

(KDI 3)
Assessment Questions Modeling Implication
Level Mapping (L) ics- -
Physics Hybrid D_ata
based driven
Q, . Is the component regularly
monlt(_)red during real-world Laata = High © A¥,; Q; X X X
operation?
Q,. Does the available data cover a
range of lifecycle scenarios and usage _ .
conditions? Lgata = Medium < Q; A Q; A Q4 A =05 X X
Qs . Are relevant failure scenario
captured in the operational dataset? o
) _ data = low &Any other combination of answers X
Q4. Are degradation patterns replicated not covered by the High or Medium conditions
and validated in lab environments?

any other combination of responses, such as sparse field
monitoring or incomplete coverage of operational conditions.

In the current use case, the KDI 3 evaluation revealed a high
diversity of data availability across the six risk-prioritized
components. Some components qualified for the high
category, supporting data-driven, hybrid, or physics-based
modeling. Others fell into the medium or low categories,
where missing operational failure data or fragmented
monitoring limited the suitability of empirical model training.

Together with KDI 1 and KDI 2, this indicator ensures that
the final modeling strategy is not only aligned with forecast
requirements and grounded in physical understanding, but
also feasible given the system’s operational observability.

3.2.4. Observed Consistency Across KDI 1 to KDI 3

Figure 3 visualizes how the six risk components were
assessed based on indicators KDI1 to KDI3. Each
component is positioned according to its system knowledge
(KDI 2, x-axis) and data availability (KDI3, y-axis). The
required forecast depth (KDI 1) is shown by a color scale
from light grey (low) to dark grey (high), and unique marker
shapes distinguish components. Components requiring
further evaluation through KDI 4 are outlined with a circle.
For clarity, the six risk components are labeled C1 to C6
throughout this section and in the figure.

For instance, C1 shows high data availability but low
physical knowledge, and a low forecast depth — favoring a
data-driven modeling approach. C2 combines medium data
availability and physical knowledge with a medium forecast
depth, making a hybrid approach suitable. C3 has high
physical knowledge but low data availability and a high
forecast requirement, favoring a physics-based approach. C6

scores high across all indicators, aligning well with physics-
based modeling

Ambiguities occur in cases like C4, where high data
availability and medium physical knowledge, combined with
a low forecast depth, support both data-driven and hybrid
approaches; here, KDI 4 was applied to resolve the choice.

C5 represents a more constrained case: despite a medium
forecast requirement, both system knowledge and data
availability were insufficient to support robust modeling
approach. This highlights a critical reliability knowledge gap
and signals a need for targeted improvements at the system
level before modeling can proceed.

Synthesizing the KDI 1 to KDI 3 results, four components
were directly linked to a single strategy: two followed a

®  High A o o o

a

=3 Forecast Depth
E’ c2 Low

% Medium - o Medium

<>: -0- Needs KDI 4
8 C5 C3

8 Low-{ © ()

Low Medium  High
Physical Knowledge (KDI 2)

Figure 3. Mapping of six risk components (C1-C6) based
on KDI 1 to KDI 3. Axes show system knowledge (KDI 2)
and data availability (KDI 3). Dot shading encodes forecast
depth; outlined dots indicate components requiring KDI 4

evaluation.
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physics-based approach, one a data-driven approach, and one
a hybrid approach. One component was suitable for both
data-driven and hybrid approaches, and one lacked sufficient
knowledge and data for any robust modeling. This combined
evaluation identified components with aligned forecast
requirements and technical feasibility, while also revealing
those where modeling remains infeasible or uncertain. The
latter warrant prioritization in future reliability research and
system development. For components with multiple viable
strategies, the final choice is determined through KDI 4,
described in the next subsection.

3.2.5. Cost-Efficiency (KDI 4)

KDI 4 evaluates the cost-efficiency of implementing a given
reliability modeling strategy. It becomes particularly relevant
when earlier indicators (KDI1 to KDI 3) suggest multiple
technically feasible options. In such cases, KDI 4 ensures that
the final decision also considers resource constraints and
development effort, supporting a balanced trade-off between
modeling performance and practical implementability.

In the absence of formal cost metrics, the evaluation of KDI 4
was guided by expert input and supported by a heuristic
commonly observed in industrial practice: modeling effort
typically increases from data-driven, through hybrid, to
physics-based approaches (Wang et al., 2019). Data-driven
models often build on available operational data and existing
infrastructure (Zhao et al., 2019), while physics-based
models demand substantial domain knowledge, parameter
calibration, and validation efforts (Hoang & Kang, 2018).
Hybrid models integrate both operational data and physical
principles, resulting in a moderate development effort
between the generally lower demands of data-driven
approaches and the higher demands of physics-based
approaches. Accordingly, KDI 4 ranks the three strategies
from lowest to highest typical modeling effort as follows: (1)
data-driven, (2) hybrid, (3) physics-based. This ranking
served as the operational setup for KDI 4 in the present
analysis. While individual cases may vary, this relative
ranking provided a practical and reproducible basis for
strategy selection when resource constraints are relevant and
technical options are still open.

In the current use case, KDI4 was applied only to
Component C4. This component had been previously
assessed (through KDI 1 to KDI 3) as eligible for both data-
driven and hybrid modeling strategies. Applying the cost-
efficiency logic, the data-driven approach was preferred, as it
satisfied the forecast requirement with minimal development
overhead. By integrating this step, the framework ensured
that modeling recommendations not only reflect technical
validity but are also realistically implementable under real-
world constraints.

3.3. Feasibility of Estimating Reliability (Step 2B: KDI 5)

Following the in-depth modeling decisions for risk-relevant
components, the framework addresses the remaining
components classified as passive (Step 1 in Figure 1). These
components, while not major drivers of overall system
reliability risk, must still be considered to ensure a complete
reliability assessment at the system level. This is achieved
through estimation-based strategies, which offer lower
modeling precision but maintain coverage across the full
component landscape (Azam et al., 2014).

KDI5 guides the selection of appropriate estimation
strategies for passive components (Step 2B in Figure 1). In
contrast to the earlier indicators that focused on modeling
depth and feasibility, KDI5 addresses the residual set of
components and matches them with a lightweight, context-
appropriate estimation method. The selection is informed by
three practical system-level criteria: the availability of test
infrastructure, expert knowledge from related systems, and
historical field data on failure occurrences. The mapping
logic for KDI'5 is summarized in Table 4. It translates the
availability of resources into appropriate estimation types.

In the current use case, all 22 passive components were
assessed using this logic. Most were selected to simplified
data-based estimation, supported by operational data on
failure behavior. Components lacking sufficient data but with
expert familiarity were selected to expert-based estimation. A
smaller subset, for which structured test procedures exist, was
mapped to test-based estimation. Unlike in the in-depth
modeling strategy selection, these estimation strategies are
not ranked in terms of preference; their selection depends
solely on the applicable boundary conditions for each passive
component.

By applying KDI 5, the framework maintains a consistent and
traceable reliability representation across all components.
While these estimations do not carry the same predictive
power as full models, they enable system engineers to
maintain  awareness of potential failure behavior.
Furthermore, components relying on simplified estimates can
be flagged for future data collection or modeling

Table 4. Mapping of available resources (KDI 5) to
suitable estimation strategies for passive components

Available Resources Proposed Estimation

Strategy

Test procedures and Test-based estimation

measurement equipment

Expert knowledge of
similar components

Expert-based estimation

Historical field failure Simplified data-based
data estimation
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enhancement efforts. This ensures that system-level
reliability remains quantifiable and improvable, even in the
presence of limited resources.

3.4. Reassessment Mechanism (Step 3)

The framework includes a reassessment mechanism to keep
modeling decisions aligned with evolving system conditions
(Step 3 in Figure 1). After deployment, selected approaches
are trigger-based reassessed when relevant changes occur in
model behavior, operational performance, or available data.
In practice, this does not imply continuous recalculation but
rather a manual or periodic review when such changes
become apparent. If deviations are detected, the
corresponding KDlIs are revisited: component-level updates
feed into Step 2A/2B (KDI 1 - 5), while system-level changes
can prompt an update of Step 1 (KDI 0). This mechanism
enables periodic adaptation of modeling strategies under real
operating conditions  without disclosing proprietary
performance details.

4., DISCUSSION AND FUTURE WORK

The revised framework demonstrates how complex reliability
modeling decisions can be operationalized in a more
transparent, structured, and context-aware manner by
applying a three-step logic complemented by a reassessment
mechanism. The first step — system-level risk-based
prioritization (KDI 0) — enables engineers to identify
components that most critically affect overall system
reliability. These risk components are prioritized for in-depth
modeling, while components with lower impact — referred to
as passive components — are addressed through estimation-
based strategies. The second step applies KDI 1 — 5 to guide
the assignment of appropriate modeling strategies for each
component. For risk components, the decision logic ensures
that selected approaches align with forecasting needs,
physical knowledge, data availability, and cost-efficiency.
This supports assigning data-driven, physics-based, or hybrid
modeling approaches. For passive components, the fifth KDI
guides the assignment of simplified estimation strategies —
based on available failure statistics, component test
procedures, or expert judgment. This inclusive design avoids
overlooking components that do not warrant detailed
modeling but still require reliability estimates, thereby
enabling a comprehensive system-level assessment. The third
step — reassessment mechanism — enables trigger-based
updates of modeling decisions when system conditions
change over time. By clearly separating prioritization from
modeling logic and maintaining a dedicated reassessment
mechanism, the framework supports traceable modeling
decisions that reflect practical engineering goals and real-
world constraints — without relying on fixed rules or single-
method assumptions.

The applicability of the decision framework was further
demonstrated by reviewing an earlier case study (Qarqour et

al., 2024), in which a Random-Forest-based, data-driven
model was used to predict control faults in the inverter of an
air-to-water heat pump. Although this study preceded the
formalization of the framework, a retrospective KDI-based
assessment led to the same reliability-approach selection,
confirming the logic of the decision process. Notably, the
model successfully identified the inverter — later confirmed
as a reliability-critical component in field data — illustrating
the  framework’s  applicability — while  preserving
confidentiality regarding proprietary parameters.

Applying the framework to an air-to-water heat pump system
revealed several practical insights. First, components with
similar criticality scores required different modeling
strategies due to variations in forecasting needs, data
availability, and physical understanding. This highlights the
importance of context-aware decisions beyond risk ranking
alone. Second, some components were suitable for more than
one modeling approach, allowing cost-efficiency to guide the
final selection. This flexibility supports tailoring model
complexity to available development resources. Third, in
constrained cases, the framework exposed situations where
modeling could not proceed due to missing data and limited
physical insight. This points to a critical reliability knowledge
gap and the need for targeted system improvements before
modeling becomes viable. These observations form the basis
for reflecting on the framework’s current limitations and
potential directions for refinement.

4.1. Limitations and Methodological Refinement

While the proposed decision framework demonstrated
promising results in the pilot use case, several limitations
should be acknowledged to guide future refinement. The
KDIs, while structured, still rely on expert interpretation,
which may vary depending on individual judgment or
organizational context. This subjectivity introduces the risk
of inconsistent modeling decisions across applications.
However, the prioritization methodology remains valid in the
present study, as all assessments were conducted within the
same company and engineering department, ensuring a
consistent reference framework despite potential evaluator
bias. To enhance consistency, future studies should formalize
expert evaluation through structured calibration sessions or
consensus-oriented methods (Okoli & Pawlowski, 2004),
such as Delphi-style reviews, and may also integrate
quantitative weighting schemes to reduce evaluator bias and
make implicit trade-offs — such as cost efficiency — more
transparent. Moreover, the current study does not yet include
a continuous feedback mechanism to verify whether selected
strategies remain valid once implemented. Although the
reassessment mechanism (Step 3) has been conceptually
integrated, its practical effectiveness remains to be validated
through real-world implementation. Further work should
examine how the reassessment logic performs under
operational conditions and whether it effectively supports
iterative improvement of modeling strategies.
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4.2. Generalization and Future Validation

Beyond the present air-to-water case, the framework’s
underlying logic is domain-agnostic, as it builds on indicators
that describe decision-making dimensions common to most
technical systems. KDlIs such as forecast requirement, data
availability, and cost-efficiency are transferable across
industrial domains, whereas physical knowledge may require
contextual adaptation. Cooling and battery thermal-
management systems serve as illustrative examples, as they
involve comparable thermodynamic processes and reliability
trade-offs but operate under different boundary conditions.
Transferring the framework to these domains would mainly
require redefining reference variables and validation criteria
while keeping the overall decision logic unchanged.

Building on the framework’s findings, future work should
apply the selected strategies to prioritized components and
assess whether they produce reliable, interpretable results.
Building on this retrospective validation, future work should
apply the selected reliability-modeling approaches to
prioritized components within real heat-pump systems. This
next step will serve as a direct validation of the framework’s
decision logic under operational conditions. This
implementation step will not only validate individual
modeling choices but also test the framework’s integration
potential at the system level, for example via Reliability
Block Diagrams or similar compositional methods (Hasan et
al., 2015).

Expanding the framework’s use to other system types,
coupled with uncertainty handling through confidence
scoring or consensus-based expert review, will further
strengthen its robustness and generalizability. Future
applications should also incorporate structured consensus or
calibration steps to align expert assessments and refine the
interpretation of each KDI over time. Together, these steps
will support broader adoption and refinement of the
framework in reliability-oriented modeling.

5. CONCLUSION

Modern heat pump systems include components with
different levels of risk, data availability, and system
understanding, making reliability modeling increasingly
complex. This complexity is compounded by the absence of
comprehensive decision-making frameworks, highlighting
the need for structured approaches to guide model selection.
This work introduced a structured decision framework that
supports the transparent selection of reliability modeling
strategies across such systems. The framework combines
system-level risk prioritization with five KDIs to align
modeling decisions with practitioner needs, available
physical knowledge and data, and resource constraints. By
separating prioritization from modeling logic, it enables
traceable, context-aware decisions for both risk and passive
components. Applied to an air-to-water heat pump system,
the framework demonstrated its ability to differentiate

suitable modeling strategies, highlight knowledge gaps, and
support system-level reliability assessment. While the
approach showed practical value, it remains subject to
limitations — including reliance on expert judgment, the
absence of a built-in validation mechanism, and an initial
focus on a single system type. Future work should
operationalize the assigned strategies in real systems, extend
the framework to other domains, and incorporate uncertainty
handling and consensus-driven validation. Together, these
steps will support broader adoption and refinement of the
framework in reliability-oriented modeling.
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