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ABSTRACT

Vibration-Based Structural Health Monitoring (SHM) sys-
tems offer significant potential for damage detection due to
their non-destructive nature and real-time capabilities, while
reducing maintenance costs for aerospace and automotive ap-
plications. This study investigates the effect of damage on
the modal parameters of a Carbon Fiber Reinforced Polymer
(CFRP) fixed-free beam, with the goal of identifying dam-
age location and severity. The lamina material properties of
the CFRP were evaluated using composite lamination theory
(CLT). By altering the location and depth of the damage, nu-
merical analyses were conducted on the CFRP beam, and
discrepancies between the intact and damaged models were
examined. Modal frequency shifts were quantified using Rel-
ative Natural Frequency Change (RNFC), and RNFC-based
mapping surfaces dependent on damage location and sever-
ity were generated for first four transverse vibrational modes
of the beam. The model was validated through experiments
on the intact and damaged CFRP specimens. The beam was
excited with an impact hammer near the fixed-end, and re-
sponses were collected by piezoelectric sensors placed along
the beam and laser vibrometer focused at the free end of the
beam. The modal parameters were extracted using Eigen-
system Realization Algortihm (ERA), a reduced-order system
identification method, and the experimental RNFC results of
damaged samples were calculated. Finally, Nearest Neigh-
bor search algorithm was employed to estimate the damage
location and severity by comparing experimental results to
generated RNFC-based mapping surfaces.
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1. INTRODUCTION

Structural Health Monitoring systems are employed to assess
the integrity and performance of structures throughout their
service life. Accurate assessment of a structure’s current con-
dition is critical, as it enables early detection of potential is-
sues and helps prevent premature failure, ensuring safety and
reducing maintenance costs.

Non-destructive assessment of a structure’s condition can
be performed using various techniques, including ultrasonic
methods, acoustic methods, and strain- or vibration-based ap-
proaches. Among these, vibration-based methods are widely
studied due to their ability to provide global information
about structural integrity. These methods can be further clas-
sified based on the specific modal parameters they evalu-
ate, such as natural frequencies, mode shapes, modal slopes,
modal curvatures, strain energy, and damping characteristics.
Among these parameters, natural frequencies are particularly
attractive due to their ease of extraction from measured re-
sponse data and their sensitivity to global stiffness changes as
pointed out by (Sause & Jasitiniené, 2021).

Relative Natural Frequency Change (RNFC) is one of the
methods commonly used to quantify shifts in natural frequen-
cies due to structural damage. The characteristics of RNFC
curves with respect to damage location and severity have been
investigated in previous studies, such as those by (Gillich &
Praisach, 2014) and (Sha, Radzienski, Cao, & Ostachow-
icz, 2019), under various boundary conditions. These studies
also highlight the correlation between RNFC curves and the
curvature of mode shapes, emphasizing the physical basis of
RNFC as a damage-sensitive metric. (Zhang, Shankar, Ray,
Morozov, & Tahtali, 2013) numerically investigated the effect
of delamination in composite beam, while (Dahak, Touat, &
Kharoubi, 2019) used undamaged curvature mode shapes to
relate damage parameters to the frequency shifts.
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Various data-driven approaches such as pattern recognition,
neural networks, and genetic algorithms have been summa-
rized by (Yan, Cheng, Wu, & Yam, 2007) for structural dam-
age identification. (Abasi, Harsij, & Soraghi, 2021) explored
the use of the Nearest Neighbor (NN) algorithm to predict
damage characteristics in three-dimensional frame structures.

In this study, a fixed-free Carbon Fiber Reinforced Polymer
(CFRP) beam is investigated using RNFC surfaces, with ex-
perimental validation performed through NN algorithm.

2. METHODOLOGY

The influence of damage parameters (location and severity)
on the first four natural frequencies of a fixed-free beam is
investigated through numerical simulations. Finite element
analyses are conducted in ABAQUS for various damage sce-
narios. By comparing the natural frequencies of intact and
damaged models, the RNFC is computed for each case to
quantify the effect of damage. Based on the results, RNFC
surfaces corresponding to the first four vibration modes are
constructed to represent the relationship between damage pa-
rameters and frequency shifts. Experimental validation is car-
ried out by testing intact and damaged CFRP beam speci-
mens. An impact hammer is used as the excitation source,
while responses are measured using piezoelectric sensors and
a laser vibrometer. The resulting signals are analyzed us-
ing ERA to extract modal parameters. The frequency shifts
observed in the experimental data are quantified using the
RNFC formulation. These RNFC values are compared with
the numerically generated RNFC surfaces using the NN algo-
rithm to estimate the most likely damage parameters.

2.1. Numerical models

The numerical analyses are performed using the ABAQUS fi-
nite element software. The composite lay-up feature of the
software is utilized to define the material properties, as pre-
sented in Table 1. In the table, Ey, F>, and E5 represent the
longitudinal and transverse Young’s moduli, respectively. Di-
rection 1 corresponds to the fiber direction, direction 2 is per-
pendicular to the fiber direction within the lamina plane, and
direction 3 is perpendicular to both the fiber direction and the
lamina plane. The parameters v12, 113, and vo3 denote Pois-
son’s ratios in the orthogonal directions of the lamina, while
G12, G13, and Gag are the corresponding shear moduli. p,
represents the density of the composite.

Table 1. CFRP material properties.

Material Properties
[0/90/0/90]s

Fiber Orientation:

E1 GPa 141.333 G12=Gl3 GPa 4.743
Pec kg/m3 1508.3 V12=V13=123 0.3

The CFRP specimens are manufactured using the vacuum in-
fusion method, and the amount of material used is recorded
during production. Assuming a void-free composite, the fiber
volume fraction of 0.58 is obtained, and the the material prop-
erties are derived using Classical Laminate Theory (CLT).
For the estimation of the transverse modulus (F5) and the in-
plane shear modulus (G12), the Halpin—Tsai semi-empirical
model is employed (Kaw, 2005).

In the experiments, damage is introduced by removing ma-
terial from the beam. To ensure consistency between exper-
imental and numerical models, the finite element models are
constructed as illustrated in Figure 1, where I, w, and ¢ rep-
resent the length, width, and thickness of the beam, respec-
tively. x denotes the damage location, d; the damage depth,
and d, the damage thickness. The geometrical dimensions
used in the analyses are provided in Table 2. A total of 312
damage scenarios are investigated by varying the damage pa-
rameters: 39 different damage locations and 8 different dam-
age depths.

The first four natural frequencies of the intact model are cal-
culated as 19.981, 124.86, 348.01, and 677.47 Hz, as pre-
sented in Table 3. For each of the 312 damage cases, the
first four natural frequencies are also computed, and the fre-
quency shifts relative to the intact model are quantified using
the RNFC, as defined in Eq. (1). In the equation, k£ denotes
the k*" vibration mode of the beam.

RNFCk _ fk?Damaged - fk[ntact 100% (1)
fklntact

The calculated RNFC values are expressed as functions of
twice of damage depth (dp)-since damage is applied on
both side of the beam- and normalized damage location
(Znormalized), Where O corresponds to the fixed end and 1
to the free end of the beam. These results are illustrated in
Figure 2 for the first four modes. As shown in the figure,
the effect of damage location, varies across different modes.
For example, at Z,ormatized = 0.2, the second mode is al-
most unaffected. This is because that location corresponds to
anodal point of the second mode’s curvature shape, where the
curvature is nearly zero. As a result, no significant dynami-
cal bending moment related to the second mode is induced,
and the natural frequency remains largely unchanged for that
mode. Since the locations where the curvature is zero vary

Table 2. Dimensions.

Beam dimensions H Damage dimensions

l 40 cm X [1:39, 1] cm
w | Scm 2dy | [0:2,0.25] cm
t 2.4 cm do 0.2 cm
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Table 3. Natural frequencies of the intact beam

First four natural frequencies of the beam

Mode 1 | f1 =19.981 Hz Mode 3 | f3=348.01 Hz
Mode 2 | f2=124.86 Hz Mode 4 | f,=677.47 Hz
X
—
; L
u .
7 d, T ¢ w
/ -+
/] i
/

l

Figure 1. Top view representation of the fixed-free beam.

for each mode, the resulting RNFC surfaces can be used to
identify both the location and depth of the damage.

2.2. Eigensystem realization algorithm

Eigensystem Realization Algorithm (ERA) is a realization
method used to identify a state-space model by analyz-
ing the system’s response to an impulse excitation, devel-
oped by (Juang & Pappa, 1985). In the Eq. (2), dis-
crete state-space representation of the system is given, where
x € R™*! denotes the state vector, and r is the number of
states; y € RP x1 is the output vector with p outputs; and
u € R™*! represents the input vector with m inputs. A, B,
C, and D are state, input, output, and feedthrough matrices,
respectively.

x(t+1) = Az(t) + Bul(t) @
y(t) = Cxz(t) + Du(t)
In a discrete-time representation, impulse excitation to a sta-
tionary system can be modelled using Dirac’s delta function,
where the input is zero at all times except at =0, as shown in
Eq. (3).

(©))

By applying impulse excitation defined in Eq. (3), in Eq. (2)
the response of the system can be obtained in terms of state
matrices as given in Eq. (4). In the equation G, is Markov
Parameters.
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Figure 2. RNFC surfaces for the first four modes, (a)-Mode
1, (b)-Mode 2, (c)-Mode 3, and (d)-Mode 4.
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Du(0), t=0

CABu©), t£0

y (t) = Giu(0) = {

By dividing the system’s response by the magnitude of the
impulse, the Markov parameters can be obtained and sub-
sequently used to construct the Hankel matrix, as shown in
Eq. (5). It should be noted that the excitation generated by
an impact hammer closely resembles, but is not exactly, an
ideal impulse. The nonzero duration of the force depends
on the stiffness of the structure under investigation and the
tip material of the impact hammer. To accurately derive the
Markov parameters, the time integral of the measured excita-
tion must be computed. Considering that a discrete impulse
with u(t = 0) = 1 has a time integral equal to the sampling
interval At, an appropriate normalization should be applied
to ensure the correct estimation of the Markov parameters.

Gl G2 .« e Gn
G2 G3 Gn+1

Hi=|. . . )
Gk Gk+1 Gn+k71

The Hankel matrix can also be explicitly defined using the
Eq. (4) as shown in the Eq. (6), in terms of state matrices.

CB CAB CA" !B
CAB CA®’B CA"B
Hy = (6)
CA*='B CA*B CAntk=2p

The explicitly defined Hankel matrix is the product of the ex-
tended observability matrix -Op- ,and the extended control-
lability matrix -C,,- as given in the Eq. (7). Therefore, by
decomposing Hankel matrix, both observability and control-
lability matrices can be obtained.

C

CA

H) = [B AB A"*lB} NN

CA.k71

Decomposition can be performed using Singular Value De-
composition (SVD) by retaining only the most important sin-
gular values and their corresponding singular left and right
vectors as shown in the Eq. (8). In the equation, ¥ is a di-
agonal matrix containing singular values, while U and V' are
the matrices containing the left and right singular vectors, re-

spectively. This truncation, denoted with subscript 1, enables
the identification of a reduced-order system that captures the
dominant dynamics of the system. Since only the first four
modes are investigated in the study, the first eight singular
values and their associated vectors have been used.

‘/IT
‘/ZT

1 0

=it (8
0 0 121Vt (8)

H =UsvT = [Ul U2]

Considering two decomposed Hankel matrix provided in the
Eq. (7) and Eq. (8), the relationship between SVD results and
observability and controllability matrices can be established,
as shown the Eq. (9).

Hy = OxCp, = Ui /Z1v/ 21 Vi T 9)

Since the singular vectors obtained from SVD are unitary, a
balanced realization can be achieved by further decomposing
>’ through its square root as given in the Eq. (10).

Or=Ui1vVX1
Co= V1A

By using the appropriate sections of the observability and
controllability matrices -specifically, the first four rows of the
observability matrix corresponding to the four piezoelectric
sensors, and the first column of the controllability matrix cor-
responding to the single impact hammer input— as shown in
Eq. (7), the state-space matrices B, and C can be obtained. To
compute the A matrix, a time shifted Hankel Matrix denoted
as H; should be constructed as given in Eq. (11).

(10)

G2 G3 Gn-‘,—l
G3 G4 .. Gn+2

Hy = . ) . ) (11
Grt1 Gria Gk

The time shifted Hankel matrix can also be explicitly defined
using the same formulation provided in Eq. (4), as shown in
the Eq. (12), in terms of state matrices.

CAB CA’B CA"B
CA’B  CA3B CA™'pB

Hy = : : , . 12)
CcA*B CAF1B CAntk=1p

It can be seen that time shifted Hankel matrix is actually the
product of the observability matrix, the state matrix A, and the
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controllability matrices. By using the observability and con-
trollability matrices obtained from the original Hankel ma-
trix, the time shifted Hankel matrix can be defined as given in
Eq. (13).

Hy = OLAC, = Ui /S1 AV L T (13)

Since SVD produces orthonormal vectors, the inverse of the
right and left singular vector matrices can be represented by
their transposes. Considering this property, the state matrix A
can be formulated as shown in Eq. (14).

A=(VI) W THW(VE) ! (14)

By converting the state-space model into its modal form, the
natural frequencies of the beam can be determined. By im-
plementing RNFC formulation given in the Eq. (1), the fre-
quency shifts due to damage can be quantified from the ex-
perimental results.

2.3. Nearest neighbor algorithm

The experimental RNFC values obtained from the ERA are
compared with the RNFC surfaces derived from numerical
analyses. Using the NN algoritm, the most likely damage pa-
rameters that lead to experimentally observed frequency shift
can be predicted. For each damage scenario, the numerical
RNFC values of the first four modes are combined into a
vector, and the Euclidean distance between these vectors and
the experimental RNFC vector are calculated, as shown in
Eq. (15). The numerical model with the smallest distance to
the experimental data is selected as the closest match.

4
3 (RNFCip,, — RNFCippa)® (15)
=1

deuclidean =

3. EXPERIMENTAL SETUP

The experimental setup for the fixed-free beam is shown in
Figure 3. The fixed end of the CFRP beam is clamped to the
optical table, and the excitation is applied using an impact
hammer at a point near the fixed end, as illustrated in the
figure. The dynamic response of the beam is measured using
both a laser vibrometer and piezoelectric sensors. The laser
vibrometer is employed to validate the measurements from
the piezoelectric sensors.

3.1. Sensor locations

The sensor locations are determined based on the theoreti-
cal mode shapes and mode curvatures of the fixed-free beam.
The mode shape corresponding to the n*" vibrational mode

Laser Vibrometer Acquisition System
Laser Vibrometer Head

NI Data Acquisition System
Reflective Surface

CFRP Beam

Piezoelectric Sensor

Impact Excitation Point

Fixed-End

Impact Hammer

Figure 3. Experimental setup.

Table 4. 5, values.

Br values
Bl | 1.8751 || B3l | 7.8548
Bal | 4.6941 || B4l | 10.996

is given in Eq. (16) as described by (Rao, 2019), where W,
denotes the mode shape and n refers to the mode number. In
the equation f3,, is a constant associated with the nt" mode,
and its numerical values are provided in Table 4. For the laser
vibrometer, the measurement is performed at the free end of
the beam, as it exhibits nonzero deflection for all vibration
modes.

However, since piezoelectric sensors generate electrical
charge in response to mechanical deformation, the mode
curvatures are analyzed to identify points with nonzero cur-
vature—indicating the presence of internal moment and
strain— ensuring optimal sensor placement. The mode cur-
vature can be defined by taking second derivative of the
Eq. (16) with respect to x, and the result can be seen in the
Eq. (17).

A graphical representation of the mode shapes and corre-
sponding mode curvatures is provided in Figure 4, where
x = 0 denotes the fixed end. In the figure, zones where the
curvature magnitude is below 10 % of the maximum are indi-
cated and avoided when placing piezoelectric sensors. The
final sensor locations, as well as the excitation points, are
also illustrated in the figure, details of the sensor locations
are given in Table (5).

Table 5. Sensor placements.

Sensor and Excitation Points
Piezoelect. Sens. 1 | 0.075L
Piezoelect. Sens. 2 | 0.3L
Excitation point 0.0375L

Piezoelect. Sens. 3 | 0.55L
Piezoelect. Sens. 4 | 0.7L
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Figure 4. Mode shapes and Mode Curvature for the first four modes, and avoided zones.

cos(Bnl) + cosh(B,1)

Wi (z) = (cos(Bnx) — cosh(Bnz)) —

d*W, ()

sin(B,1) + sinh(8,1)
~ co8(Bnl) + cosh(Bnl)

(sin(Bnx) — sinh(B,x)) (16)

= B2( — cos(Bnzx) — cosh(Bnz))

dx?

3.2. Experimental cases

To validate the model, three damage scenarios were experi-
mentally investigated. In the first case, a single damage was
introduced 8 cm from the fixed end of the beam, with a depth
of 1 cm. In the second case, the damage depth at the same
location was increased to 2 cm. Finally, in the third case, an
additional damage was introduced 14 cm from the fixed end
with a depth of 1 cm. These scenarios are summarized in Ta-

Table 6. Damage cases.

[ Damage Position [ Damage Depth (2d;)

Case 1 | 8 cm (0.2L) 1cm
Case2 | 8 cm (0.2L) 2 cm

8 cm (0.2L) 2cm
Case3 | 1) em©035L) | 1em

sin(8,1) + sinh(8,1)

B2 ( — sin(B,z) — sinh(B,z)) (17)

ble (6), and the pictures of the corresponding damage cases
are provided in Figure (5). Subfigures (a), (b), and (c) corre-
spond to Case 1, Case 2, and Case 3, respectively.

4. RESULTS AND DISCUSSION

For the intact specimen and each of the three damage cases,
nine measurements were performed per case. The corre-
sponding average results are summarized in Table (7), where
the notation =+ indicates the sample standard deviation as-
sociated with each measurement set. In the table, the ex-
tracted modal parameters- specifically, natural frequencies
and damping ratios- corresponding to the first four vibration
modes are provided. It should be noted that the measured nat-
ural frequencies of the intact specimen differ from the numer-
ical results by approximately 10%. This discrepancy may be
attributed to challenges in achieving a perfectly fixed bound-
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Figure 5. Photographs of the damages, (a)-Case 1, (b)-Case 2, and (c)-Case 3.

Table 7. ERA results.

Mode 1 \ Mode 2 \ Mode 3 \ Mode 4

fi (Hz) | 2 (Hz) | s (Hz) | /1 (H)
Intact 17.9629 £+ 0.0067 114.231 £0.019 320.826 +0.034 628.298 £+ 0.028
Casel 17.784540.0068 114.38040.045 319.262 4+ 0.058 622.423 £ 0.067
Case2 17.2351 £0.0154 114.032£0.038 314.888 £0.101  609.887 £ 0.090
Case3 17.1131 £0.0032 113.253+£0.031 312.964 +0.123 609.648 + 0.079

G (x1077) [ & (x107°) [ ¢ (+x107°) | G (x1077)
Intact 3.873 & 0.158 5.019 4 0.387 3.307 4+ 0.050 3.777 £ 0.033
Case 1 3.684 + 0.106 12.841 + 0.964 4.336 + 0.564 4.108 £+ 0.091
Case 2 4.359 + 0.414 9.437 £ 0.678 4.184 +£0.371 3.663 4+ 0.030
Case 3 3.852 +0.185 5.715 4+ 0.195 4.494 + 0.167 3.674 +0.072

ary condition in the experimental setup, as well as the poten-
tial presence of voids within the matrix of the composite.

The results indicate that the percentage of the standard devi-
ation relative to the mean of the measurements, for natural
frequencies does not exceed 0.09%, suggesting that both the
experimental procedure and the ERA formulation yield con-
sistent and reliable results.

Using the mean value of the measured natural frequencies,
the experimental frequency shifts are quantified based on the
RNFC formulation presented in the Eq. (1). The correspond-
ing RNFC results are summarized in Table (8). It should be
noted that for Case 3, the objective is to identify the addi-
tional damage located at 14 cm from the fixed end, given that
a damage is already known at 8 cm away from the fixed end.
Assuming linear superposition of damage effects, the RNFC
values for Case 3 are calculated relative to the Case 2.

Table 8. Experimental RNFC results.

RNFC, | RNFC; | RNFCs | RNFCy
Case 1 -0.9936 | 0.1307 | -0.4875 | -0.9351
Case2 -4.0518 | -0.1742 | -1.8506 | -2.9303
Case3 -0.6789 | -0.6813 | -0.6000 | -0.0381

As shown in Table (8), introduced damages affect each vibra-
tion mode differently, as expected. For instance, the damage
located 8 cm from the fixed-end in Case I and Case 2 has a
relatively minor effect on the second mode compared to the
other three modes. This is because the damage is positioned
near a nodal point of the second mode’s curvature shape (at a
normalized position of x=0.2), as indicated in Figure (4). At
this location, the internal moment is close to zero, meaning
the removed material contributes minimally to the bending
stiffness associated with second mode.

In fact, the damage in Case I results in a slight increase in
the second natural frequency compared to the intact case—an
outcome that is not typically expected. However, for damage
parameter prediction, the frequency shifts of all four modes
are used in combination with the NN algorithm. By leverag-
ing information from multiple modes, the influence of indi-
vidual anomaly is reduced, thereby improving the robustness
and reliability of the prediction.

The results of the NN algorithm, based on FEA-generated
RNFC surfaces and experimental RNFC values, are presented
in Table (9). The algorithm predicted the damage location in
all three cases with a maximum error of 1 cm, correspond-
ing to 2.5% of the total beam length (40 cm), as defined in
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Table 9. Nearest Neighbor algorithm predictions.

Actual Prediction Percent Error (%)
Loc. [ Depth [ Loc. [ Depth [ Loc. [ Depth

Casel 8cm 1cm 9 cm 1cm 2.5 0
Case2 8cm 2cm 9cm 2 cm 2.5 0
Case3 14cm | 1cm 15cm | 1cm 2.5 0

the Eq. (18), where PE denotes the percent error. The sever-
ity of the damage was predicted without error, demonstrating
the effectiveness of the proposed approach. By considering k
closest predictions, it is possible to estimate a broader damage
zone, providing insight into the region experiencing stiffness
reduction.

PE — Lactual — -lrpredictio’n % 100% (18)

Figure (6) compares the RNFC values and prediction results
with the FEA-based RNFC surfaces. The figure confirms
the consistency between experimental and model data, sup-
porting the accuracy of the proposed damage identification
method.

5. CONCLUSION

This study aimed to identify the location and severity of dam-
age in a CFRP beam using vibration-based measurements,
supported by numerical results obtained through FEA. The
damage-induced natural frequency shifts were quantified us-
ing the RNFC formulation. Based on this, RNFC surfaces
were constructed for the first four vibrational modes, captur-
ing their dependence on both damage location and severity.

Since each mode is affected differently by the damage char-
acteristics, the RNFC surfaces were used for inverse analysis.
The experimentally measured time domain data investigated
using ERA, a reduced order subspace system identification
method. The extracted modal parameters are used to quantify
RNFC results of the experiments. NN algorithm is then em-
ployed to find the closest matching damage scenario, thereby
estimating the most likely damage parameters.

The applied method predicted the damage location within 1
cm for a 40 cm beam, corresponding to 2.5% error, and dam-
age depth predicted accurately. However, it should be noted
that the investigated damage depths (1 cm and 2 cm) are rel-
atively large compared to the beam width (5 cm). The accu-
racy of the method should be further investigated with subtle
damage cases, which may correspond delamination defects.
Additionally, for future work, the method will be investigated
for plate-like or more complex three-dimensional structures,
and its assessment capability will be evaluated.

Mode 1 - RNFC

Xnorma\‘zed

(a)
Mode 2 - RNFC

Xpormalized

(b)
Mode 3 - RNFC

Xnormalized

(©)
Mode 4 - RNFC

Xno(ma\l\Zed
(d)

Figure 6. Prediction results.
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