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ABSTRACT

This paper investigates the diagnostic capabilities of rotary
encoders for condition monitoring of commercial gearboxes,
focusing on early detection of gear pitting. Within a multi-
sensor framework, rotary encoder data were collected along-
side accelerometer signals, both mounted on a multi-stage
commercial gearbox subjected to gear pitting. Encoder-based
health indicators were developed from the synchronously av-
eraged (SA) transmission error (TE) and its square envelope
(SE). By automatically capturing images of a gear during an
accelerated life test, these indicators were evaluated for their
ability to detect the onset of gear pitting and compared against
conventional vibration-based indicators. Results show that
encoder-based indicators can provide earlier and more consis-
tent detection of gear pitting. These findings highlight the po-
tential of rotary encoders as a complementary or standalone
sensing solution in advanced diagnostic frameworks for com-
mercial gearboxes.

1. INTRODUCTION

Gearboxes are critical components in a wide range of indus-
trial applications, including manufacturing, transportation,
energy, and heavy machinery. Their reliable operation is es-
sential for minimizing downtime and maintaining overall sys-
tem efficiency. Among the various failure modes that affect
gearboxes, gear pitting—a surface fatigue phenomenon char-
acterized by the formation of small pits on gear tooth sur-
faces—is one of the most common (Sheng, 2014). Left un-
detected, pitting can progress rapidly, eventually leading to
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gear tooth fracture, excessive vibration, and ultimately catas-
trophic system failure.

Condition monitoring, and in particular fault detection, tech-
niques have been widely studied to detect such faults early
and enable predictive maintenance. Among these, vibration
analysis using accelerometers has become the de facto stan-
dard in industrial gearbox health monitoring. Accelerometer-
based approaches typically involve time-domain, frequency-
domain, and time-frequency domain signal processing tech-
niques (Lee, Shim, & Cho, 2006; Elasha et al., 2014; Bech-
hoefer & Butterworth, 2019).

Alongside vibration measurements, signals from other sen-
sors used in machine control and performance monitoring -
such as rotary encoders - have been increasingly explored for
fault detection (Zhao & Lin, 2018). Besides their function
in position and speed control of industrial machinery, these
sensors offer several advantages over vibration sensors (e.g,
accelerometers). First, being directly connected to a rotating
component, they provide a shorter and simpler transfer path
compared to vibration signals transmitted through bearings
and casings. Second, they capture torsional behavior and may
be more sensitive to stiffness losses caused by defects. Third,
since many rotating machines (e.g., wind turbines) operate
under variable speeds, direct or indirect speed measurements
help avoid the smearing of characteristic frequencies tied to
rotation. Finally, the angle-time relationship is naturally sam-
pled in the angle domain, where gear and bearing faults man-
ifest at specific angles, facilitating defect localization.

Over the past years, numerous studies have explored differ-
ent quantities (e.g., transmission error, instantaneous angu-
lar speed, instantaneous angular acceleration) derived from
rotary encoder signals for fault detection and diagnosis for
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bearings (Renaudin, Bonnardot, Musy, Doray, & Rémond,
2010; Bourdon, Chesné, André, & Rémond, 2019), gears
(Zhao, Jia, Lin, Lei, & Lee, 2018; Liang, Liu, Kong, Li,
& Xu, 2019), or even motors and pumps (Yang, Pu, Wang,
Zhou, & Yan, 2001; Verwimp, Mousmoulis, Gryllias, & Haj-
nayeb, 2023). For gears in particular, transmission error (TE)
has been originally studied in gear transmission modelling to
improve transmission performance (Harris, 1958; Palermo,
Britte, Janssens, Mundo, & Desmet, 2018). Nowadays, it is
also widely studied for gear fault detection and wear assess-
ment (Koch, Sendlbeck, Otto, Stahl, & Kirchner, 2025; Mah-
foudh & Rémond, 2009; Randall, Chin, Smith, & Borghesani,
2019; Chin, Smith, Borghesani, Randall, & Peng, 2021; Chin,
Borghesani, Mao, Smith, & Randall, 2022; Chin, Borghesani,
Smith, Randall, & Peng, 2023; Mao, Tong, Chin, Borghesani,
& Peng, 2023; Liu et al., 2023).

Despite the growing interest in encoder-based diagnostics,
most existing studies cover artificial faults in single-stage
custom-made gearboxes (Koch et al., 2025). Literature lacks
systematic investigations on the performance of encoder-
based health indicators applied to long-term tests, which al-
low going beyond a simple comparison between healthy and
faulty gears by including the full fault progression (Koch
et al., 2025). Furthermore, encoder-based diagnostics are
still underexplored, especially in commercial multi-stage he-
lical gearboxes. Last but not least, systematic comparisons
between encoder-based health indicators and conventional
vibration-based metrics remain limited, even not published
(Koch et al., 2025), especially under controlled fault progres-
sion scenarios.

This paper addresses these gaps by presenting a novel frame-
work for early detection of gear pitting using rotary encoder
signals. Within a multi-sensor experimental setup, both high-
resolution rotary encoders and accelerometers are installed
on a commercial multi-stage gearbox subjected to an accel-
erated life test. Encoder-based health indicators are derived
from synchronously averaged (SA) TE signals, isolating the
contribution of the targeted gear, and their square envelope
(SE). The progression of gear pitting is automatically docu-
mented using high-resolution imaging, allowing for the com-
parison of the health indicators against the actual fault pro-
gression. Performance of the proposed indicators is bench-
marked against traditional vibration-based metrics to assess
their relative effectiveness and robustness in detecting early-
stage pitting.

More specifically, the paper continues with an explanation of
the TE measurement principle and the proposed methodol-
ogy in Section 2. Section 3 describes the experimental setup
and the dataset used for validation. The application of the
methodology and analysis of the results are presented in Sec-
tion 4. Finally, conclusions are drawn in Section 5.

2. METHODOLOGY

2.1. Transmission Error Measurement

Gear TE is defined as the difference between the actual gear-
wheel’s angular position with respect to the pinion and the
position it would have if the gear transmission were per-
fect (i.e., perfectly rigid bodies and conjugated teeth profiles)
(Rémond, 1998). The angle θin of the input shaft (with pin-
ion) and the angle θout of the output shaft (with gear) can be
measured using high-resolution rotary encoders mounted on
the respective shafts and the pulse timing method: every time
the encoder (with R angle increments per revolution) gen-
erates a pulse, the time is recorded using a high-frequency
clock (Li et al., 2005; André, Girardin, Bourdon, Antoni,
& Rémond, 2014). This results in the time-angle relations
t(θin) and t(θout). Using time as the common variable for
synchronous measurements, the angle-time relations θin(t)
and θout(t) are obtained by interpolation to one of the time
series t(θin) or t(θout) (Rémond & Mahfoudh, 2005). The
TE [rad] is calculated as (here with the input shaft as refer-
ence):

TE(θin) = θin(t)− iθout(t) (1)
= θin(t)− iθout(t(θin)) (2)

where i is the gear ratio of the gear pair. Figure 1 shows as a
function of time t the voltages Vin and Vout generated by the
encoders on the input and output shaft respectively, the high-
frequency clock signal Vclock, and the time-angle relations.

Figure 1. Schematic of the transmission error measurement
principle: the voltages Vin and Vout generated by the en-
coders on the input and output shaft respectively, the high-
frequency clock signal Vclock, and the time-angle relations
t(θin) and t(θout). The solid dots represent the sampled time
stamps for each encoder independently, while the hollow dots
represent the interpolated time stamps to obtain θout(t(θin)).
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2.2. Proposed Indicators

Above TE measurement principle is typically applied to a
single gear pair, having an encoder on each shaft. In this
work, the TE measurement principle is applied to a commer-
cial multi-stage gearbox, in which not all shafts are accessible
to mount encoders, but only the input and output shaft. In this
case, the measured TE is a combination of the TE of all gear
pairs in the gearbox. An attempt to isolate the contribution of
a specific gear pair is made by synchronously averaging (SA)
the TE signal with respect to the shaft on which the gear of
interest is located. Similar to vibration signals, the TE signals
are expected to contain amplitude and frequency-modulated
components (Feki, Cavoret, Ville, & Velex, 2013).

A first set of indicators is derived from the order spectrum of
this SA TE signal: the sideband index (SI), and the sideband
energy ratio (SER), both using one gear mesh order (GMO)
and one pair of sidebands (Antolick, Branning, Wade, &
Dempsey, 2010; Hanna, Hatch, Kalb, Weiss, & Luo, 2012):

Sk = F{TEk(θin)} (3)

SIk =
Sk,GMO−SO + Sk,GMO+SO

2
(4)

SERk =
Sk,GMO−SO + Sk,GMO+SO

Sk,GMO
(5)

with TEk(θin) the SA TE signal with respect to shaft
k, Sk,GMO the amplitude of the GMO, Sk,GMO−SO and
Sk,GMO+SO the amplitudes of the lower and upper sideband
respectively in the order spectrum Sk of the SA TE signal,
and SO the shaft order corresponding to the shaft on which
the gear of interest is located.

Then, to demodulate the SA TE signal, the square envelope is
computed using the Hilbert transform (HT) in Eq. (7), result-
ing in a second set of indicators. The Gini index (GI) of the
square envelope is applied to the SA TE signal (of which the
mean is subtracted) in order to emphasize impulsive bursts
related to local defects such as pitting, while being also ro-
bust against random outliers (Fan, Guo, & Yin, 2025; Miao,
Wang, Zhang, & Li, 2022; Wang, 2018):

zk(θin) = TEk(θin)− jH[TEk(θin)], j =
√
−1 (6)

SEk(θin) = |zk(θin)|2 = TE2
k(θin) +H(TEk(θin))

2 (7)

GIk = 1− 2

N − 1

N∑
n=1

SEk(n)

∥SEk∥1

(
N − n+ 0.5

N

)
(8)

H[·] represents the HT. The sample index n ranges from 1 to
N , the number of samples in the SA TE signal, and ∥SEk∥1
is the L1 norm of the square envelope signal. The GI ranges
from 0 to 1, where 0 indicates a perfectly uniform distribu-
tion (no impulsiveness) and 1 indicates maximum inequality
(highly impulsive).

Finally, the square envelope spectrum (SES) of the SA TE
signal is computed (i.e., the order spectrum of the square en-
velope), and different (sum of) amplitudes are extracted as
indicators (Zhu, Van Maele, Poletto, De Baets, & Gryllias,
2024):

SESk = F{SEk(θin)} (9)
ASO (SESk) = SESk(SO) (10)

SSO (SESk) =

5∑
p=1

SESk(p SO) (11)

AGMO (SESk) = SESk(GMO) (12)

SGMO (SESk) =

3∑
q=1

SESk(q GMO) (13)

The above steps are also shown in Fig. 2.

2.3. Evaluating Indicators

Besides visual inspection of the indicators over a full test,
their performance needs to be evaluated quantitatively. In
this work, their fault detection performance is evaluated as
follows.

Similar to the approach in (Zhu et al., 2024), a set of acquisi-
tions during the healthy operation of the gearbox is selected to
compute a threshold for each indicator, based on the median
absolute deviation (MAD). Then, it is checked when an indi-
cator exceeds this threshold. To avoid false alarms, a moving
window is used and an alarm is only raised when the follow-
ing two conditions are met: (1) the indicator continuously
exceeds the threshold for 50 % (or more) of the acquisitions
in the moving window, and (2) the average indicator value
in the moving window is equal or greater than the threshold.
The delay between the fault onset (i.e., the first observation
of a pit on the gear tooth surface) and the first alarm is used
to evaluate and compare the detection performance of the dif-
ferent indicators.

As some indicators might seem to perform well, their success
might be due to the selected healthy period. Therefore, a sen-
sitivity analysis is performed using a Monte Carlo approach:
the healthy period is randomly selected multiple times (typ-

TEk

SE TEk

SES TEk

SA

ASO, SSO,
AGMO, SGMO

GI

SI, SERFFT

For k = 1:nShafts

Figure 2. Schematic of the proposed methodology.
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ically a thousand iterations), while considering a minimum
number of acquisitions and ensuring the selected acquisitions
are not too close to the fault onset. For each randomly se-
lected healthy period, the above detection procedure is ap-
plied and the delay between fault onset and first alarm is
stored. The distribution of these delays is used to evaluate
the robustness of the detection performance of the different
indicators, by comparing their box plots.

3. DESCRIPTION OF THE TEST RIG AND DATASET

3.1. Test Rig Description

An accelerated life test was conducted on an electric power
circulated back-to-back gearbox setup at KU Leuven. As
shown from left to right in Fig. 3a, the test rig consists of
an induction motor A, a test gearbox, a torque transducer, a
drive gearbox, and an induction motor B, connected to each
other through flexible couplings. Motor A rotates the setup
while motor B is used to apply load. Two variable frequency
drives (VFD) are used to closed-loop control the speed of
motor A using a rotary encoder mounted on its shaft, and
the torque applied by motor B using the torque transducer
(Kistler 4503B). This back-to-back configuration allows for
using a relatively small motor B to apply a large load on the
output shaft of the test gearbox. The test and drive gearboxes
have two helical gear stages and have a gear ratio of 49.12
and 48.76, respectively. The number of gear teeth in the test
gearbox is 10, 103, 13, and 62 for the input pinion, input
gear, output pinion, and output gear, respectively, as shown in
Fig. 3b. The bearings in the different components are omitted
to keep the drawing clear.

3.2. Sensors and Data Acquisition

The test gearbox is equipped with PT100 oil temperature sen-
sors (SICK TSP) and two triaxial piezo-electric accelerome-
ters (PCB Piezotronics J356A45). An optical rotary incre-
mental encoder (Hengxiang PN58) with 4096 pulses per rev-
olution (ppr) is installed on the input shaft and another one
(Hengxiang K66) with 10000 ppr is installed on the output
shaft. The position of the accelerometers and encoders is
shown in Fig. 3b. Measurements from the accelerometers and
the torque transducer were acquired at a sampling frequency
of 51.2 kHz using a Simcenter SCADAS Mobile data acquisi-
tion system. Simultaneously with the former, the encoder sig-
nals were sampled in the angle domain (with the ET method)
using a counter frequency of 820 MHz of the same system.
Every 10 minutes, signals from the above sensors (accelerom-
eters, encoders, and temperature sensors) were recorded for
12 s.

Additionally, images of the second stage pinion were cap-
tured every hour using a vision system mounted above the
test gearbox, in order to monitor the surface condition of the
gear. In this way it is possible to have a ground-truth for

the surface condition of the gear, which is used to evaluate
the performance of the developed health indicators. The vi-
sion system consists of a camera (Teledyne DALSA Falcon 4
CLHS and accessories), a lens (ZEISS Interlock 2/50), and a
light source (CCS LNLP). Furthermore, to have visual access
to the second stage pinion, the gearbox lid was replaced with
a mechanism that allows for opening and closing the gearbox
and some air nozzles were installed to clean the gear teeth be-
fore capturing images (but after meshing) and to protect the
lens from upcoming oil droplets through an air curtain.

3.3. Accelerated Life Test

An accelerated life test was conducted on the test gearbox,
where the input shaft was rotated at a constant speed of about
2600 rpm while the output shaft was loaded with a gradually
increasing torque throughout the full test. In this paper we
only focus on the last load stage, which was the application
of a torque of about 300 Nm for about 7.5 days. During this
last period the gearbox experienced gear pitting on the second
stage pinion. At the end of the last load stage, the intermedi-
ate shaft fractured, causing the test to stop.

Fig. 4 shows the operating conditions as a function of the
number of revolutions (cycles) of the input shaft during this
last load stage of the accelerated life test. Furthermore, the
test was stopped a couple of times to do some checks (black
dotted lines), and sometimes no images were captured (gray
shaded areas). For the analysis in Section 4, the six acquisi-
tions after a restart of the test are not considered, as the result-
ing indicators might be affected by the increasing temperature
during this hour. Additionally, Fig. 4 shows two important
moments during the test (indicated by pink dotted lines): at
about 12.5 million cycles in this load stage the first symp-
toms of contact fatigue were observed on the second stage
pinion with a small pit on one tooth flank. At about 23 mil-
lion cycles, small pits were observed on three tooth flanks,
indicating the progression of the pitting fault. For the latter
moment, this is observed once reactivating the vision system
after it was off since about 20 million cycles. Therefore the
progression of the pitting to three tooth flanks happened be-
tween 20 and 23 million cycles. Finally, in Fig. 4 and all sub-
sequent figures showing the evolution of a quantity/indicator
over the test, the final 1.1 million cycles are not displayed,
as the indicator values increase sharply just before the inter-
mediate shaft fracture and would compress the earlier trends
associated with the smaller pitting damages.

4. APPLICATION OF THE METHODOLOGY AND ANAL-
YSIS OF THE RESULTS

4.1. Application to a Healthy and Faulty Case

Before applying the proposed methodology to the full test de-
scribed above, it is first applied to a healthy and a faulty case.
The healthy case corresponds to an acquisition at the begin-
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Motor A Test gearbox Drive gearbox Motor BTorque transducer

(a)

Motor A Motor B

10

103 13

62
64

14 96

9

Drive gearboxTest gearbox Torque
transducer

Z tooth number Flexible coupling Rotary encoder Accelerometer

(b)

Figure 3. (a) Picture and (b) kinematic diagram (including sensor positions) of the back-to-back gearbox test rig at KU Leuven.

Figure 4. Operating conditions during the last load stage of
the accelerated life test: speed and torque measured at the
input and output shaft, respectively.

ning of the last load stage (at about 10 million cycles), while
the faulty case corresponds to an acquisition after the pitting
initiation (at about 15 million cycles).

The angle, TE, and SA TE signals for both cases are shown
in Fig. 5, in the left and right column respectively. During
the acquisition, the input shaft completes about 517 revolu-
tions, while the output shaft completes about 10.5 revolu-
tions, which corresponds to the gear ratio of 49.12. Figures 5e
and 5f are zoomed in to two rotations of the low-speed (out-
put) shaft. The SA TE signals for each shaft are dominated

by the shaft order, caused by eccentricity or misalignment,
even present in healthy conditions. Furthermore, the TE and
SA TE signals have almost the same shape and amplitude for
both cases, making fault detection based on these signals very
challenging.

Therefore, the SE and SES of the SA TE signals for the inter-
mediate shaft (i.e., shaft 2, with the targeted gear) are com-
puted, and are shown in Fig. 6. The SE signals are plotted
for one revolution of the intermediate shaft (i.e., 10.3 revo-
lutions of the input shaft), and the corresponding order spec-
trum (SES) is shown up to order 5, but goes up to order 2048
(i.e., half the angular sampling frequency of 4096 ppr). The
SE signals have a similar shape, but for the faulty case the
amplitude is higher than for the healthy case. This is due to
the presence of the pit, which causes an increase in the num-
ber and amplitude of the SO sidebands around the GMO in
the order spectrum of the SA TE signal. This is reflected as
an increase in the shaft order (i.e., 0.097 with respect to the
input shaft) in the SE, which is also observed in the SES in
Fig. 6d with respect to Fig. 6c. The GMO (i.e., 1.26 with re-
spect to the input shaft) is not affected by the presence of the
pit.
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Figure 5. Application of the proposed methodology to a healthy case (left column) and a faulty case (right column): (a,b)
Angle-TE signals, (c,d) TE signals, and (e,f) SA TE signals of the SA TE signals.

4.2. Application to the Full Test

After showing the results for a healthy and a faulty case, the
proposed methodology is applied to all acquisitions of the last
load stage of the accelerated life test, described in Section 3.3.

The indicators derived from the SA TE signal (SI and SER),
the SE-based indicator (GI), and the SES-based indicators
(ASO, SSO, AGMO, and SGMO) are shown in Fig. 7 as a
function of the number of cycles of the input shaft. Most in-
dicators show a trend related to the progression of the pit-
ting fault, with a change in behavior around the moments
where the first pit and later three pits were observed on the
second stage pinion (indicated by pink dotted lines). The SE-
based GI (Fig. 7c), and SES-based ASO (Fig. 7d) and SSO
(Fig. 7e) show an increase after the first pit was observed and
another increase is observed when three pitted teeth occur in
the interval between 20 and 23 million cycles, which indi-
cates that these indicators are sensitive to the initiation and

progression of the pitting fault. The SI (Fig. 7a) and SER
(Fig. 7b) indicators also show an increasing trend, but mostly
after three pitted teeth were observed. Therefore, these indi-
cators seem less sensitive to the initiation of small pits, but
they can still capture the fault once more pits are present. The
SES-based AGMO (Fig. 7f) and SGMO (Fig. 7g) show a sta-
ble or slightly decreasing trend. Only when the three pitted
teeth occur, their trend is going upwards.

To quantitatively evaluate the fault detection performance
of the different indicators, the procedure described in Sec-
tion 2.3 is applied. An example of the thresholding and de-
tection procedure is shown in Fig. 8 for the SE-based GI in-
dicator of Fig. 7c. The selected healthy period consists of the
first 100 acquisitions (i.e. up to about 2.7 million cycles). The
threshold (horizontal dashed line) is computed based on the
MAD of the GI values in this healthy period. Then, a moving
window of 10 acquisitions is used to check when the two con-
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Figure 6. Application of the proposed methodology to a healthy case (left column) and a faulty case (right column) (cont.):
(a,b) square envelope (SE) of the SA TE signals, and (c,d) square envelope spectrum (SES) of the SA TE signals.

ditions for raising an alarm are met (vertical red dashed line).
In this case, the alarm is raised at about 13.8 million cycles,
resulting in a delay of about 1.4 million cycles after the fault
onset (first observation of a pit on the gear tooth surface).

The sensitivity analysis using a Monte Carlo approach is per-
formed by randomly selecting a healthy period 10000 times.
The minimum number of acquisitions in the healthy period
is set to 20, and the last acquisition to be considered is ac-
quisition number 400 (i.e., about 10.7 million cycles). The
results of this sensitivity analysis are summarized using box
plots in Fig. 9. The median is indicated by the red line and
the blue box represents the interquartile range (IQR). The
whiskers extend to the minimum and maximum, so they rep-
resent the whole range of alarm delays. The results show
that the SE-based GI and SES-based ASO and SSO indica-
tors have the best fault detection performance, with a median
delay of about 1.4, 0.7, and 0.9 million cycles, respectively.
Furthermore, the IQR for SES ASO shows that this delay is
the same for 50 % of the random selections of the healthy pe-
riod. Together with a limited range, this indicator has a quite
robust fault detection performance. The SI and SER indica-
tors have a quite large median delay of about 10.7 and 8.5 mil-
lion cycles, respectively. The SES-based AGMO and SGMO
indicators have a median delay of about 12.5 and 12.3 million
cycles, respectively, which is even larger.

4.3. Comparison with Vibration-based Indicators

To benchmark the performance of the proposed TE-based in-
dicators, the same detection procedure is applied to vibration-
based indicators derived from the axial channel of the triaxial
accelerometer mounted on the gearbox housing close to the
second stage (see Fig. 3b).

The considered vibration-based indicators are: (a) traditional
indicators like the root mean square (RMS) value, the kur-
tosis, the sideband index (SI), and the sideband energy ratio
(SER), (b) indicators proposed by NASA like the fourth order
figure of merit (FM4), the sixth order normalized statistical
moment (M6A), the fourth order normalized statistical mo-
ment (NA4), and the eighth order normalized statistical mo-
ment (M8A) (Sharma & Parey, 2016), and (c) the SES-based
indicators like the amplitude at the shaft frequency (ASF), the
sum of the first five harmonics of the shaft frequency (SSF),
the amplitude at the gear mesh frequency (AGMF), and the
sum of the first three harmonics of the gear mesh frequency
(SGMF) (Zhu et al., 2024). The latter indicators are similar
to the SES-based indicators derived from the TE signal, but
they are computed based on the frequency spectrum of the
raw vibration signal instead of the order spectrum of the SA
TE signal.

The evolution of these groups of vibration-based indicators
are shown in Figs. 11, 12, and 13 in the appendix, while their
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Figure 7. Evolution of the TE-based indicators: (a) SI, (b) SER, (c) GI, (d) ASO, (e) SSO, (f) AGMO, and (g) SGMO.

fault detection performance is summarized using box plots
in Fig. 10. For some vibration-based indicators, the detection

procedure did not result in an alarm for some selections of the
healthy period. In that case, the alarm is set to the maximum
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Figure 9. Box plots of the delay between fault onset and alarm
for the different TE-based indicators, using a Monte Carlo
approach with 10000 random selections of the healthy period.

number of cycles in the last load stage (i.e., about 26.6 million
cycles or about 14.2 million cycles after the fault onset).

Figure 10 shows that the kurtosis, SI, SER, SES AGMF, and
SES SGMF indicators have the worst fault detection perfor-
mance: they detect the fault very late (or not at all). The
SES ASF and SSF indicators have a median delay of about
6.2 and 5.3 million cycles, respectively, which is still quite
large, compared to their TE-based counterparts. The RMS,
FM4, M6A, NA4, and M8A indicators have the best fault
detection performance among the vibration-based indicators,
with a median delay between 1.6 and 2.5 million cycles.
However, for the RMS, and NA4, the IQR is very large, in-
dicating that their fault detection performance is not robust.
The FM4, M6A, and M8A indicators have a more robust
fault detection performance, but they still lag behind the best-
performing TE-based indicators (SE GI, SES ASO, and SES
SSO).

Even more, the range of most vibration-based indicators is
very large compared to the TE-based indicators, and most
of them also have false alarms (i.e., negative delay), while
the TE-based indicators do not have any false alarms. This
is due to the observation that the encoder-based indicators
have a more stable behavior than the vibration-based indi-
cators during healthy operation, as can be seen by comparing

the healthy periods in Fig. 7 with the ones in Figs. 11, 12,
and 13 in the appendix. For a stable indicator during healthy
operation, the selection of the healthy period has less influ-
ence on the computed threshold, resulting in a more robust
fault detection performance.

4.4. Discussion

The above comparison highlights the advantages of TE-based
indicators over vibration-based indicators in terms of early
and robust fault detection. To further contextualize these find-
ings, this section discusses the underlying reasons for these
advantages, compares the proposed TE-based indicators with
other encoder-based approaches, and reflects on practical im-
plementation aspects.

The main reason for the more stable behavior of the TE-
based indicators compared to the vibration-based indicators
is that the vibration signals are acquired via an accelerometer
mounted on the gearbox housing, which suffers from long and
complex transmission paths between the source (i.e., the gear
mesh) and the sensor. These transmission paths are affected
by various factors, such as mounting conditions, structural
resonances, and environmental noise, which can introduce
variability and instability in the measured vibration signals.
On the other hand, the TE signals are derived directly from
the incremental encoders mounted on the gearbox shafts, pro-
viding a more direct measurement of the gear meshing be-
havior with less influence from external factors. This direct
measurement leads to more consistent and reliable indicators
for condition monitoring.

Although this work focuses on early and robust gear pitting
detection, it has to be noted that some SES-based indicators
are decreasing from 25 to 26.6 million cycles. This is prob-
ably related to the intermediate shaft being partially cracked,
which influences the investigated dynamics. The combina-
tion of this phenomenon with gear pitting needs to be further
investigated.

Besides the vibration-based approaches, there are also other
encoder-based approaches for condition monitoring of gear-
boxes in the literature. For instance, some studies focus on
analyzing the instantaneous angular speed or instantaneous
angular acceleration derived from a single encoder signal. Al-
though these approaches have been shown to be effective for
fault detection in rotating machinery, especially gearboxes,
they are less sensitive for small cracks or initial pitting faults
compared to TE-based approaches. The measurements from
a single encoder are affected by manufacturing or installa-
tion errors, making fault detection more challenging. In con-
trast, the computation of the TE signal from dual-shaft en-
coder measurements allows for canceling common excita-
tion sources, leading to a more accurate representation of the
gear meshing behavior and improved fault detection sensitiv-
ity (Liang et al., 2019).
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Figure 10. Box plots of the delay between fault onset and
alarm for the different vibration-based indicators, using a
Monte Carlo approach with 10000 random selections of the
healthy period.

Although the encoder-based indicators show a better fault de-
tection performance compared to the vibration-based indica-
tors in this accelerated life test, it is important to reflect on
the practical aspects of using encoders for condition moni-
toring of gearboxes. First of all, the high-resolution incre-
mental encoders used in this study were selected to fit the
small available space on the input and output shaft of the
gearbox, but in existing industrial applications, encoders are
typically mounted on the motor shafts (for speed control pur-
poses) rather than on the gearbox shafts, and these existing
applications typically do not allow retrofitting encoders on the
gearbox shafts, as this typically requires disassembling the
drivetrain. Nevertheless, retrofittable angle sensors (e.g., ze-
bra tapes with optical sensors or magnetic encoders) could be
an alternative to install encoders on the gearbox shafts with-
out disassembling the drivetrain. In contrast to typical rotary
encoders, accelerometers are more commonly used for con-
dition monitoring of gearboxes in industrial applications, as
they can be easily mounted on the gearbox housing without
disassembling the drivetrain. Regarding cost, high-resolution
incremental encoders can be more expensive than accelerom-
eters, especially when considering the total cost of installa-
tion, but nowadays, the cost difference is not as significant as
it used to be, due to advancements in encoder technology.

From the above, one can conclude that further investigation is
needed to evaluate the performance of the proposed method-
ology when using encoder signals from motor-mounted en-
coders. It is expected to have a somewhat lower perfor-
mance, as the TE signal (or any other quantity derived from
the encoder measurements) will be dampened by the drive-
train components (especially flexible couplings) between the
motor and the gearbox. The performance of retrofittable an-
gle sensors (e.g., zebra tapes with optical sensors) should also
be evaluated in future work, with the advantage of being able
to install them on the gearbox shafts without disassembling
the drivetrain, but with the disadvantage of a lower resolution
compared to typical rotary encoders.

5. CONCLUSION

In this paper, a novel methodology for condition monitoring
of multi-stage gearboxes using incremental encoders is pro-
posed. The methodology consists of computing the TE sig-
nal from the encoder signals, applying a synchronous aver-
age to isolate the contribution of a specific shaft and the gears
mounted on it, and extracting several indicators from the SA
TE signal, its SE, and its SES. The proposed methodology
is applied to an accelerated life test of a two-stage gearbox,
where gear pitting occurred on the second stage pinion. The
results show that some of the proposed TE-based indicators
are not only sensitive to the initiation, but also to the pro-
gression of the pitting fault. A quantitative evaluation of their
fault detection performance using a Monte Carlo approach
shows that the SE-based GI and SES-based ASO and SSO
indicators have the best performance. Furthermore, the SES
ASO indicator has a robust fault detection performance, with
the smallest IQR and range. The performance of the pro-
posed TE-based indicators is benchmarked against several
traditional, NASA, and SES-based vibration indicators de-
rived from an accelerometer mounted on the gearbox. The
results show that the best-performing vibration-based indica-
tors (i.e., FM4, M6A, and M8A) have a larger median delay
and range compared to the best-performing TE-based indica-
tors. Furthermore, most vibration-based indicators have false
alarms, while the TE-based indicators do not have any false
alarms. This is due to the more stable behavior of the TE-
based indicators during healthy operation, which results in a
more robust fault detection performance. Therefore, it can
be concluded that incremental encoders are a valuable addi-
tional sensor for condition monitoring of gearboxes, next to
accelerometers. Future work will focus on: (a) applying and
evaluating the proposed methodology to other datasets, in-
cluding other test rigs, (b) evaluating the fault size tracking
performance of the indicators, (c) using the encoder signals
acquired from encoders mounted on the motors, instead of on
the gearbox shafts, which is more common in industrial ap-
plications, and (d) investigating the use of retrofittable angle
sensors (e.g., zebra tapes with optical sensors) for condition
monitoring of gearboxes.
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Figure 11. Evolution of the traditional vibration-based indicators: (a) RMS, (b) kurtosis, (c) SI, and (d) SER.
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Figure 12. Evolution of the NASA vibration-based indicators: (a) FM4, (b) M6A, (c) NA4, and (d) M8A.

14



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

5 10 15 20 25

Cycles [million]

0

0.002

0.004

0.006

0.008

0.01

S
E

S
 A

S
F

 [
g

2
]

1 tooth 3 teeth

(a)

5 10 15 20 25

Cycles [million]

1

2

3

4

5

6

S
E

S
 S

S
F

 [
g

2
]

10
-3

1 tooth 3 teeth

(b)

5 10 15 20 25

Cycles [million]

0

1

2

3

4

S
E

S
 A

G
M

F
 [

g
2
]

10
-3

1 tooth 3 teeth

(c)

5 10 15 20 25

Cycles [million]

1

1.5

2

2.5

3

S
E

S
 S

G
M

F
 [

g
2
]

10
-3

1 tooth 3 teeth

(d)

Figure 13. Evolution of the SES-based vibration indicators: (a) ASF, (b) SSF, (c) AGMF, and (d) SGMF.
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