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ABSTRACT

Most electric vehicle drivetrain fault diagnosis methods have
been validated only under constant load and rotational speed
conditions, showing limited performance in real driving
environments where load and speed continuously vary. This
study proposes a novel vibration signal generalization
method that combines order tracking with physics-based
amplitude adjustment techniques to improve diagnostic
accuracy under variable operating conditions. Order tracking
addresses the problem of the frequency variation of vibration
signals that vary with speed over time. The proposed method
converts vibration signals under variable speed conditions
into pseudo-stationary signals of equivalent levels by
adjusting amplitudes through factors that consider both
centrifugal and tangential forces acting on rotating
components in the drivetrain. To validate the effectiveness of
the proposed technique, experiments were conducted using
actual electric vehicles equipped with drivetrains at various
degradation levels. Drivetrain vibration data were collected
and evaluated across multiple operating scenarios.
Experimental results demonstrate that the proposed method
reduces variability across different speed conditions
compared to raw signals. The proposed method shows
promise for robust drivetrain diagnosis applications even
under variable speed conditions, addressing a significant
limitation of existing diagnostic approaches.

Jeongmin Oh et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

Electric vehicle drivetrains consist of critical components,
including electric motors, gearboxes, bearings, and power
transmission elements, all of which are subject to various
failure modes such as bearing degradation, gear tooth damage,
rotor eccentricity, and winding faults (Lee et al., 2025). Early
detection of these faults is crucial for preventing catastrophic
failures, reducing maintenance costs, and ensuring vehicle
safety. Vibration-based condition monitoring has emerged as
one of the most effective approaches for drivetrain fault
diagnosis due to its ability to detect incipient faults before
they lead to complete system failure (Oh et al., 2025).

However, most existing vibration-based fault diagnosis
methods for electric vehicle drivetrains have been developed
and validated under controlled laboratory conditions with
constant load and speed parameters. These methods typically
assume stationary operating conditions where the rotational
speed and load remain constant throughout the measurement
period. While this assumption simplifies the analysis and
enables the use of conventional frequency-domain techniques,
it fails to capture the reality of actual driving conditions
where speed and load continuously vary (Choi et al., 2025).

Order tracking has emerged as a promising technique for
analyzing vibration signals from rotating machinery under
variable speed conditions. By resampling the vibration signal
with respect to the rotational angle rather than time, order
tracking transforms speed-dependent spectral components
into stationary orders, enabling more effective fault detection.
However, the amplitude variations caused by changing
centrifugal and tangential forces under different speed
conditions remain a significant challenge that has not been
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adequately addressed in order

implementations.

existing tracking

The physical understanding of rotating machinery dynamics
suggests that the vibration amplitudes are influenced by both
the rotational speed and the forces acting on the rotating
components. Centrifugal forces increase quadratically with
rotational speed, while tangential forces vary with torque and
speed conditions. These physics-based relationships provide
valuable insights that can be leveraged to generalize vibration
signals across different operating conditions, potentially
improving the consistency and reliability of fault diagnosis
under variable speed scenarios.

Previous research has partially leveraged these physical
insights. For instance, Kim et al. (2024) attempted to
generalize vibration signals across different speed conditions
using a speed-squared term based on centrifugal force.
However, this approach ignores the influence of torque
variations during acceleration—namely, the tangential
force—risking amplitude distortion and misjudgment of fault
severity in real-world driving conditions. Therefore, an
amplitude adjustment technique that considers both
centrifugal and tangential forces is essential for fault
diagnosis in electric vehicle (EV) driving scenarios involving
various acceleration levels.

To overcome these limitations, this study proposes a novel
vibration signal generalization method that combines order
tracking with a physics-based amplitude adjustment. The
proposed method aims to convert non-stationary vibration
signals collected under variable speed conditions into
pseudo-stationary signals with consistent amplitude levels,
thereby enabling more reliable fault diagnosis in real-world
EV applications.

The main contributions of this paper are as follows:

e  We propose a new physics-based amplitude adjustment
coefficient that integrates both centrifugal and tangential
forces to effectively account for the complex variable
speed and load conditions of EVs.

e We establish a comprehensive signal generalization
pipeline that combines the proposed technique with
order tracking to effectively remove both frequency and
amplitude fluctuations.

e We experimentally validate our method on five real-
world EVs under various acceleration scenarios,
demonstrating a significant quantitative improvement in
diagnostic robustness over conventional methods.

2. THEORETICAL BACKGROUND

2.1. Amplitude Adjustment

Vibration amplitude levels vary significantly across different
speed conditions in rotating machinery. During rotational
motion of drivetrain components, radial vibrations are

primarily proportional to centrifugal forces, which can be
expressed as Eq. (1):

F, = mrw? (1)

where m is the mass of the rotating component,  is the radius
of rotation, and w is the angular velocity. For a given system,
only the rotational speed term w? varies under different
operating conditions.

Based on this physical relationship, Kim et al. (2024)
proposed an amplitude adjustment method to generalize
vibration signals across different speed conditions. The
generalized amplitude can be expressed as Eq. (2):
A

Agen = (:)azw 2
where A, is the raw vibration amplitude and Age, is the
speed-generalized amplitude. This approach effectively
equalizes vibration amplitudes from different speed domains
under constant speed and constant load conditions.

3. PROPOSED METHOD

The amplitude adjustment method described in Section 2.1 is
effective for different speed domains under constant speed
and constant load conditions, but may not be effective under
variable speed and variable load conditions. While
conventional constant-speed and constant-load conditions
only involve changes in the speed component of centrifugal
forces, variable-speed and variable-load conditions also
involve changes in torque. Rotational torque can be
substituted with tangential forces, which, along with
centrifugal forces, affect radial vibrations in drivetrain
systems. Therefore, to generate generalized vibration
amplitudes under variable speed and variable load conditions,
it is necessary to consider both centrifugal and tangential
forces.
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Figure 1. Proposed vibration generalization process
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Figure 2. Comparison of vibration processing results of car #1 with new #1 drivetrain under steady 80 kph and low

acceleration condition: (a) Raw signal; (b) Existing method; (c) Proposed method

During vehicle acceleration and deceleration, changes in
acceleration and velocity create variations in driving
resistance, which correspond to changes in tangential forces
acting on the drivetrain (Lim et al., 2025). The total driving
resistance and its components can be expressed as Eq. (3), (4),

(5), (6):

The complete signal processing procedure involves two main
steps. First, order tracking is applied to raw vibration signals
to generate frequency-invariant vibration signals with respect
to speed variations. Subsequently, the amplitude adjustment
coefficient, calculated using the optimized lambda and
vehicle dynamics terms, is applied to create the final
generalized vibration signal with invariant amplitude

Fe = Frouing + Farag + Finertia B)  Characteristics as depicted in Figure 1.
Frolling = Urrmg cos(8) “4)
1 .
Farag = EpCdsz (5) Table 1. Experimental setup
Finertia = ma ©) Vehicle Real-scale test car

where Frouing » Farag » and Fipersiq tepresent rolling
resistance force, aerodynamic drag force, and inertia force,
respectively. y,, is the rolling resistance coefficient, m is

Steady 80 kph, 100 kph,

Low acceleration (0 ~ 50 kph)
Mild acceleration (0 ~ 120 kph)
Full acceleration (0 ~ 120 kph)

Speed condition

vehicle mass, g is gravitational acceleration, 6 is road grade, Drivetrain condition ~ Nominal ;Vela k ? e\;ere
p is air density, Cy is drag coefficient, 4 is frontal projection New #1 autt Sﬁit#l
area, v is vehicle velocity, and a is acceleration. Car #1 old #2 ’ Old #3 Old # "
The proposed amplitude adjustment coefficient that considers ) Car#r  New#l,
both centrifugal and tangential forces is expressed as Eq. (7): Vehicle Old #1
type Car #3 New #1,
a=AF, + (1—A)F, (7) Old #1
where 1 is a weight coefficient that controls the relative g:ﬁ z;‘ II:IIZX zi Old #1
influence of centrifugal and tangential forces. To create the Sampling rate: 25,600 Hz
Measurement i

most optimal generalized vibration amplitude, the weight
coefficient is determined through optimization algorithms
based on training data.

To maximize the stationary characteristics of vibration
signals and equalize their scales, the objective function is

Location: Motor left hand x, y, z axes

Table 2. Evaluation of amplitude adjustment methods

Sum of RMS Absolute sum of

formulated to minimize both the residual of RMS across : 5 gradient of RMS
different speed conditions and the gradient of RMS within residuals (m/s%) (m/s?)
each speed condition. This optimization approach ensures Raw signal 74.80 1.45
that the resulting generalized signals exhibit consistent Existing method 83.11 2.51
amplitude characteristics across various operating conditions. Proposed method 38.78 1.16
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4. CASE STUDY

4.1. Experimental Setup

Vibration data were collected from various types of electric
vehicles equipped with drivetrains having different mileage
levels under both variable and constant speed conditions, as
shown in Table 1. The experiments were conducted on five
different vehicle scales under the following operating
conditions: steady 80 kph, steady 100 kph, low acceleration,
mid acceleration, and full acceleration. The drivetrain health
classes were categorized into three levels: normal, weak fault,
and severe fault.

Accelerometer sensors with a sampling rate of 25,600 Hz
were attached to the x, y, and z axes of the drivetrain, and
three measurements were taken for each condition.
Additionally, encoder sensors were used to acquire rotational
speed data of the drivetrain, and acceleration data were
obtained through numerical differentiation of the speed
signals.

For optimization of the weight coefficient, datasets 1 and 2
from Car #1 with New #1 drivetrain were used as training
data, while the remaining datasets served as test data. The
Brent optimization method was employed to calculate the
optimized weight coefficient A for each axis (x, y, z)
independently.

4.2. Results

The results of applying the proposed method to generalize
vibration data under variable speed conditions are presented
in Figure 2. This figure compares the z-axis vibration data
from Car #1 with New #1 drivetrain under steady 80 kph and
low acceleration conditions. Figure 2(a) shows the raw signal,
which clearly demonstrates scale differences between the two
conditions, with the low acceleration data showing
progressively increasing amplitude as speed increases. Figure
2(b) presents the results after applying the conventional
amplitude adjustment based on the speed-squared term. This
method showed no significant reduction in scale differences
and, critically, exhibited an amplitude divergence
phenomenon in the low-speed region of the low acceleration
condition. This divergence occurs because the conventional
method divides the amplitude by the speed-squared term (w?),
which approaches zero at low speeds, causing the value to
become unstable. In contrast, Figure 2(c) displays the results
using the proposed vehicle dynamics-based amplitude
adjustment. The proposed method demonstrated superior
scale difference reduction and amplitude consistency. By
incorporating the tangential force () term based on vehicle
dynamics, it ensures stable and effective normalization even
at low speeds, avoiding the divergence issues of the
conventional approach.

To quantitatively evaluate the generalization performance of
the proposed method, the average sum of RMS residuals and

the average absolute sum of gradient of RMS were calculated
for all speed condition data across each vehicle type and
health class. The results presented in Table 2 demonstrate that
the proposed method achieved lower RMS residuals and
gradients compared to conventional method, confirming its
superior ability to create consistent, pseudo-stationary signals.
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Figure 3. Comparison of order spectrum for normal and
faulty drivetrains: (a) before applying the
proposed amplitude adjustment; (b) after applying
the proposed amplitude adjustment

Table 3. Comparison of fault diagnosis accuracy by signal
processing method

Accuracy (%)
Raw signal 75.68
Existing method 76.31
Proposed method 86.79
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Under variable speed conditions, the significant influence of
speed can mask the characteristic features of a drivetrain fault,
posing a major challenge for accurate diagnosis. To
investigate this, Figure 3 compares the order spectrum of a
healthy drivetrain (Car #1, New #1) under mild acceleration
with that of a drivetrain with a weak fault (Car #1, Old #3)
under low acceleration. Figure 3(a) shows the results without
amplitude adjustment. Although the weakly faulty drivetrain
(Old #3) exhibits broad excitation across the order spectrum,
its amplitude at high-order rotational and characteristic
bearing frequencies is notably lower than that of the healthy
drivetrain. This masking effect could easily lead to a
misdiagnosis, where a faulty component is classified as
healthy. Figure 3(b), however, shows the results after
applying the proposed amplitude adjustment. The fault
signatures are now clearly enhanced. The overall excitation
across the spectrum from the drivetrain degradation is more
prominent, and the amplitudes at high-order rotational
frequencies and bearing characteristic frequencies are
correctly shown to be greater than those of the healthy
condition.

This enhancement directly translates to improved diagnostic
accuracy. Table 3 presents the results of a fault diagnosis
classification based on the RMS energy level of the vibration
signals. Using thresholds of 1.2 m/s? (to distinguish normal
from weak fault) and 4.0 m/s? (to distinguish weak from
severe fault), the diagnostic accuracy for both the raw signal
and the signal adjusted by the conventional method was
approximately 75%. In contrast, the proposed method
achieved a diagnostic accuracy of approximately 87%,
demonstrating a significant improvement.

These results validate the effectiveness of incorporating both
centrifugal and tangential force considerations in the
amplitude adjustment process. The physics-based approach
successfully addresses the limitations of existing methods
when applied to variable speed and load conditions,
providing a more robust foundation for fault diagnosis in real-
world electric vehicle applications.

5. CONCLUSION

This study proposed a novel vibration signal generalization
method that combines order tracking with physics-based
amplitude adjustment to improve fault diagnosis accuracy
under variable operating conditions in electric vehicle
drivetrains. The key contributions and findings of this
research can be summarized as follows.

The proposed signal processing approach effectively
transforms non-stationary vibration signals into pseudo-
stationary signals. This transformation enables the
application of conventional fault diagnosis techniques to
signals collected under variable operating conditions,
significantly expanding the practical utility of existing
diagnostic methods.
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