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ABSTRACT 

Most electric vehicle drivetrain fault diagnosis methods have 
been validated only under constant load and rotational speed 
conditions, showing limited performance in real driving 
environments where load and speed continuously vary. This 
study proposes a novel vibration signal generalization 
method that combines order tracking with physics-based 
amplitude adjustment techniques to improve diagnostic 
accuracy under variable operating conditions. Order tracking 
addresses the problem of the frequency variation of vibration 
signals that vary with speed over time. The proposed method 
converts vibration signals under variable speed conditions 
into pseudo-stationary signals of equivalent levels by 
adjusting amplitudes through factors that consider both 
centrifugal and tangential forces acting on rotating 
components in the drivetrain. To validate the effectiveness of 
the proposed technique, experiments were conducted using 
actual electric vehicles equipped with drivetrains at various 
degradation levels. Drivetrain vibration data were collected 
and evaluated across multiple operating scenarios. 
Experimental results demonstrate that the proposed method 
reduces variability across different speed conditions 
compared to raw signals. The proposed method shows 
promise for robust drivetrain diagnosis applications even 
under variable speed conditions, addressing a significant 
limitation of existing diagnostic approaches. 

1. INTRODUCTION 

Electric vehicle drivetrains consist of critical components, 
including electric motors, gearboxes, bearings, and power 
transmission elements, all of which are subject to various 
failure modes such as bearing degradation, gear tooth damage, 
rotor eccentricity, and winding faults (Lee et al., 2025). Early 
detection of these faults is crucial for preventing catastrophic 
failures, reducing maintenance costs, and ensuring vehicle 
safety. Vibration-based condition monitoring has emerged as 
one of the most effective approaches for drivetrain fault 
diagnosis due to its ability to detect incipient faults before 
they lead to complete system failure (Oh et al., 2025). 

However, most existing vibration-based fault diagnosis 
methods for electric vehicle drivetrains have been developed 
and validated under controlled laboratory conditions with 
constant load and speed parameters. These methods typically 
assume stationary operating conditions where the rotational 
speed and load remain constant throughout the measurement 
period. While this assumption simplifies the analysis and 
enables the use of conventional frequency-domain techniques, 
it fails to capture the reality of actual driving conditions 
where speed and load continuously vary (Choi et al., 2025). 

Order tracking has emerged as a promising technique for 
analyzing vibration signals from rotating machinery under 
variable speed conditions. By resampling the vibration signal 
with respect to the rotational angle rather than time, order 
tracking transforms speed-dependent spectral components 
into stationary orders, enabling more effective fault detection. 
However, the amplitude variations caused by changing 
centrifugal and tangential forces under different speed 
conditions remain a significant challenge that has not been 
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adequately addressed in existing order tracking 
implementations. 

The physical understanding of rotating machinery dynamics 
suggests that the vibration amplitudes are influenced by both 
the rotational speed and the forces acting on the rotating 
components. Centrifugal forces increase quadratically with 
rotational speed, while tangential forces vary with torque and 
speed conditions. These physics-based relationships provide 
valuable insights that can be leveraged to generalize vibration 
signals across different operating conditions, potentially 
improving the consistency and reliability of fault diagnosis 
under variable speed scenarios. 

Previous research has partially leveraged these physical 
insights. For instance, Kim et al. (2024) attempted to 
generalize vibration signals across different speed conditions 
using a speed-squared term based on centrifugal force. 
However, this approach ignores the influence of torque 
variations during acceleration—namely, the tangential 
force—risking amplitude distortion and misjudgment of fault 
severity in real-world driving conditions. Therefore, an 
amplitude adjustment technique that considers both 
centrifugal and tangential forces is essential for fault 
diagnosis in electric vehicle (EV) driving scenarios involving 
various acceleration levels. 

To overcome these limitations, this study proposes a novel 
vibration signal generalization method that combines order 
tracking with a physics-based amplitude adjustment. The 
proposed method aims to convert non-stationary vibration 
signals collected under variable speed conditions into 
pseudo-stationary signals with consistent amplitude levels, 
thereby enabling more reliable fault diagnosis in real-world 
EV applications. 

The main contributions of this paper are as follows: 

• We propose a new physics-based amplitude adjustment 
coefficient that integrates both centrifugal and tangential 
forces to effectively account for the complex variable 
speed and load conditions of EVs. 

• We establish a comprehensive signal generalization 
pipeline that combines the proposed technique with 
order tracking to effectively remove both frequency and 
amplitude fluctuations. 

• We experimentally validate our method on five real-
world EVs under various acceleration scenarios, 
demonstrating a significant quantitative improvement in 
diagnostic robustness over conventional methods. 

2. THEORETICAL BACKGROUND 

2.1. Amplitude Adjustment 

Vibration amplitude levels vary significantly across different 
speed conditions in rotating machinery. During rotational 
motion of drivetrain components, radial vibrations are 

primarily proportional to centrifugal forces, which can be 
expressed as Eq. (1):  

 𝐹𝑐 = 𝑚𝑟𝜔2 (1) 

where m is the mass of the rotating component, r is the radius 
of rotation, and ω is the angular velocity. For a given system, 
only the rotational speed term ω2 varies under different 
operating conditions. 

Based on this physical relationship, Kim et al. (2024) 
proposed an amplitude adjustment method to generalize 
vibration signals across different speed conditions. The 
generalized amplitude can be expressed as Eq. (2): 

 𝐴𝑔𝑒𝑛 =
𝐴𝑟𝑎𝑤
ω2

 (2) 

where Araw is the raw vibration amplitude and Agen is the 
speed-generalized amplitude. This approach effectively 
equalizes vibration amplitudes from different speed domains 
under constant speed and constant load conditions. 

3. PROPOSED METHOD 

The amplitude adjustment method described in Section 2.1 is 
effective for different speed domains under constant speed 
and constant load conditions, but may not be effective under 
variable speed and variable load conditions. While 
conventional constant-speed and constant-load conditions 
only involve changes in the speed component of centrifugal 
forces, variable-speed and variable-load conditions also 
involve changes in torque. Rotational torque can be 
substituted with tangential forces, which, along with 
centrifugal forces, affect radial vibrations in drivetrain 
systems. Therefore, to generate generalized vibration 
amplitudes under variable speed and variable load conditions, 
it is necessary to consider both centrifugal and tangential 
forces. 

 
Figure 1. Proposed vibration generalization process 
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During vehicle acceleration and deceleration, changes in 
acceleration and velocity create variations in driving 
resistance, which correspond to changes in tangential forces 
acting on the drivetrain (Lim et al., 2025). The total driving 
resistance and its components can be expressed as Eq. (3), (4), 
(5), (6): 

 𝐹𝑡 = 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 + 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 (3) 

 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 = 𝜇𝑟𝑟𝑚𝑔 cos(θ) (4) 

 𝐹𝑑𝑟𝑎𝑔 =
1

2
𝜌𝐶𝑑𝐴𝑣

2 (5) 

 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝑚𝑎 (6) 

where 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 , 𝐹𝑑𝑟𝑎𝑔 , and 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎  represent rolling 
resistance force, aerodynamic drag force, and inertia force, 
respectively. 𝜇𝑟𝑟  is the rolling resistance coefficient, m is 
vehicle mass, g is gravitational acceleration, θ is road grade, 
ρ is air density, 𝐶𝑑 is drag coefficient, A is frontal projection 
area, v is vehicle velocity, and a is acceleration. 

The proposed amplitude adjustment coefficient that considers 
both centrifugal and tangential forces is expressed as Eq. (7): 

 𝛼 = 𝜆𝐹𝑐 + (1 − 𝜆)𝐹𝑡 (7) 

where λ is a weight coefficient that controls the relative 
influence of centrifugal and tangential forces. To create the 
most optimal generalized vibration amplitude, the weight 
coefficient is determined through optimization algorithms 
based on training data. 

To maximize the stationary characteristics of vibration 
signals and equalize their scales, the objective function is 
formulated to minimize both the residual of RMS across 
different speed conditions and the gradient of RMS within 
each speed condition. This optimization approach ensures 
that the resulting generalized signals exhibit consistent 
amplitude characteristics across various operating conditions. 

 

 

 

The complete signal processing procedure involves two main 
steps. First, order tracking is applied to raw vibration signals 
to generate frequency-invariant vibration signals with respect 
to speed variations. Subsequently, the amplitude adjustment 
coefficient, calculated using the optimized lambda and 
vehicle dynamics terms, is applied to create the final 
generalized vibration signal with invariant amplitude 
characteristics as depicted in Figure 1. 

 

Table 1. Experimental setup 
 

Vehicle Real-scale test car 

Speed condition 

Steady 80 kph, 100 kph, 
Low acceleration (0 ~ 50 kph) 
Mild acceleration (0 ~ 120 kph) 
Full acceleration (0 ~ 120 kph) 

Drivetrain condition Nominal Weak 
fault 

Severe 
fault 

Vehicle 
type 

Car #1 New #1, 
Old #2 Old #3 Old #1, 

Old #4 

Car #2 New #1, 
Old #1   

Car #3 New #1, 
Old #1   

Car #4 New #1   
Car #5 New #1 Old #1  

Measurement Sampling rate: 25,600 Hz 
Location: Motor left hand x, y, z axes 

 

Table 2. Evaluation of amplitude adjustment methods 
 

 Sum of RMS 
residuals (m/s2) 

Absolute sum of 
gradient of RMS 

(m/s2) 
Raw signal 74.80 1.45 

Existing method 83.11 2.51 
Proposed method 38.78 1.16 

(a)                                                               (b)                                                             (c) 
Figure 2. Comparison of vibration processing results of car #1 with new #1 drivetrain under steady 80 kph and low 

acceleration condition: (a) Raw signal; (b) Existing method; (c) Proposed method 
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4. CASE STUDY 

4.1. Experimental Setup 

Vibration data were collected from various types of electric 
vehicles equipped with drivetrains having different mileage 
levels under both variable and constant speed conditions, as 
shown in Table 1. The experiments were conducted on five 
different vehicle scales under the following operating 
conditions: steady 80 kph, steady 100 kph, low acceleration, 
mid acceleration, and full acceleration. The drivetrain health 
classes were categorized into three levels: normal, weak fault, 
and severe fault. 

Accelerometer sensors with a sampling rate of 25,600 Hz 
were attached to the x, y, and z axes of the drivetrain, and 
three measurements were taken for each condition. 
Additionally, encoder sensors were used to acquire rotational 
speed data of the drivetrain, and acceleration data were 
obtained through numerical differentiation of the speed 
signals. 

For optimization of the weight coefficient, datasets 1 and 2 
from Car #1 with New #1 drivetrain were used as training 
data, while the remaining datasets served as test data. The 
Brent optimization method was employed to calculate the 
optimized weight coefficient λ for each axis (x, y, z) 
independently. 

4.2. Results 

The results of applying the proposed method to generalize 
vibration data under variable speed conditions are presented 
in Figure 2. This figure compares the z-axis vibration data 
from Car #1 with New #1 drivetrain under steady 80 kph and 
low acceleration conditions. Figure 2(a) shows the raw signal, 
which clearly demonstrates scale differences between the two 
conditions, with the low acceleration data showing 
progressively increasing amplitude as speed increases. Figure 
2(b) presents the results after applying the conventional 
amplitude adjustment based on the speed-squared term. This 
method showed no significant reduction in scale differences 
and, critically, exhibited an amplitude divergence 
phenomenon in the low-speed region of the low acceleration 
condition. This divergence occurs because the conventional 
method divides the amplitude by the speed-squared term (ω2), 
which approaches zero at low speeds, causing the value to 
become unstable. In contrast, Figure 2(c) displays the results 
using the proposed vehicle dynamics-based amplitude 
adjustment. The proposed method demonstrated superior 
scale difference reduction and amplitude consistency. By 
incorporating the tangential force (Ft) term based on vehicle 
dynamics, it ensures stable and effective normalization even 
at low speeds, avoiding the divergence issues of the 
conventional approach. 

To quantitatively evaluate the generalization performance of 
the proposed method, the average sum of RMS residuals and 

the average absolute sum of gradient of RMS were calculated 
for all speed condition data across each vehicle type and 
health class. The results presented in Table 2 demonstrate that 
the proposed method achieved lower RMS residuals and 
gradients compared to conventional method, confirming its 
superior ability to create consistent, pseudo-stationary signals. 

 

 
(a) 

 
(b) 

Figure 3. Comparison of order spectrum for normal and 
faulty drivetrains: (a) before applying the 
proposed amplitude adjustment; (b) after applying 
the proposed amplitude adjustment 

 
Table 3. Comparison of fault diagnosis accuracy by signal 

processing method 
 

 Accuracy (%) 
Raw signal 75.68 

Existing method 76.31 
Proposed method 86.79 
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Under variable speed conditions, the significant influence of 
speed can mask the characteristic features of a drivetrain fault, 
posing a major challenge for accurate diagnosis. To 
investigate this, Figure 3 compares the order spectrum of a 
healthy drivetrain (Car #1, New #1) under mild acceleration 
with that of a drivetrain with a weak fault (Car #1, Old #3) 
under low acceleration. Figure 3(a) shows the results without 
amplitude adjustment. Although the weakly faulty drivetrain 
(Old #3) exhibits broad excitation across the order spectrum, 
its amplitude at high-order rotational and characteristic 
bearing frequencies is notably lower than that of the healthy 
drivetrain. This masking effect could easily lead to a 
misdiagnosis, where a faulty component is classified as 
healthy. Figure 3(b), however, shows the results after 
applying the proposed amplitude adjustment. The fault 
signatures are now clearly enhanced. The overall excitation 
across the spectrum from the drivetrain degradation is more 
prominent, and the amplitudes at high-order rotational 
frequencies and bearing characteristic frequencies are 
correctly shown to be greater than those of the healthy 
condition. 

This enhancement directly translates to improved diagnostic 
accuracy. Table 3 presents the results of a fault diagnosis 
classification based on the RMS energy level of the vibration 
signals. Using thresholds of 1.2 m/s² (to distinguish normal 
from weak fault) and 4.0 m/s² (to distinguish weak from 
severe fault), the diagnostic accuracy for both the raw signal 
and the signal adjusted by the conventional method was 
approximately 75%. In contrast, the proposed method 
achieved a diagnostic accuracy of approximately 87%, 
demonstrating a significant improvement. 

These results validate the effectiveness of incorporating both 
centrifugal and tangential force considerations in the 
amplitude adjustment process. The physics-based approach 
successfully addresses the limitations of existing methods 
when applied to variable speed and load conditions, 
providing a more robust foundation for fault diagnosis in real-
world electric vehicle applications. 

5. CONCLUSION 

This study proposed a novel vibration signal generalization 
method that combines order tracking with physics-based 
amplitude adjustment to improve fault diagnosis accuracy 
under variable operating conditions in electric vehicle 
drivetrains. The key contributions and findings of this 
research can be summarized as follows. 

The proposed signal processing approach effectively 
transforms non-stationary vibration signals into pseudo-
stationary signals. This transformation enables the 
application of conventional fault diagnosis techniques to 
signals collected under variable operating conditions, 
significantly expanding the practical utility of existing 
diagnostic methods. 
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