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ABSTRACT

This study proposes a fault diagnostics methodology that ad-
dresses the challenges posed by highly imbalanced datasets
typical of railway applications, where faulty conditions consti-
tute the minority class. Fault diagnostics is performed from the
component level upward, considering each sensor’s proximity
to its respective critical component. Advanced signal analysis,
feature engineering, and automated data-driven model gen-
eration techniques were explored to achieve comprehensive
diagnostics, such that the model development process accounts
for variations in the operating conditions and differing levels
of information availability. The proposed methodology is eval-
uated on datasets from the MONOCAB, for scenarios with
limited faulty instances and on the Beijing 2024 IEEE PHM
Conference data challenge, which focused on fault diagnostics
of railway systems under various fault modes and operating
conditions.

1. INTRODUCTION

Advancements in technology have contributed to closing the
transportation gap between urban and rural areas, exemplified
by the development of the MONOCAB. The MONOCAB is
conceptualized as a compact, on-demand autonomous gyro-
stabilized monorail vehicle for the reactivation of rail routes in
rural regions and for the establishment of seamless connectiv-
ity with urban rail networks (Griese & Schulte, 2025; Hanselle,
Griese, Rasche, & Schulte, 2023). Its advantage lies in the nar-
row width of the vehicle in combination with its stabilization
system, such that the vehicle is able to drive bidirectionally
on a single railway track. Operating at Grade of Automa-
tion 4, the MONOCAB functions without onboard personnel,
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such as attendants or drivers. Therefore, to meet stringent
requirements for reliability and safety, the MONOCAB bun-
dles sensors, actuators and information processing units in
a complex mechatronic system that supports autonomous lo-
calization, communication, perception, object and obstacle
detection, intelligent control, condition monitoring, and pre-
dictive maintenance.

Currently, two technology demonstrators of the MONOCAB
exist. Although several onboard sensors are integrated into
the system, they primarily provide data representing healthy
instances. This presents several challenges in developing di-
agnostic and predictive models, such as data imbalance and
limited generalization capability. This study specifically ad-
dresses the challenges posed by highly imbalanced datasets
typical of railway applications, where faulty conditions con-
stitute the minority class. It focuses on leveraging condition
monitoring data to facilitate early fault detection, isolation, and
identification, thereby sustaining the availability, reliability,
and safety of autonomous railway applications.

2. THEORETICAL FRAMEWORK

Rolling stocks typically operate under normal healthy condi-
tions over long periods of time, while faulty conditions often
rarely occur. Furthermore, although vehicle manufacturers
might instrument condition monitoring systems on newly de-
veloped rolling stocks, the acquired data might comprise only
of healthy instances and is not available to train operators.
Particularly, in the field of data-driven diagnostics, such data
imbalance poses a challenge. Although several techniques,
such as undersampling, oversampling have been proposed,
they are not directly applicable under cases, where only lim-
ited healthy data is available.

The flowchart in Figure 1 presents the framework for data-
driven diagnostics, under consideration of three levels of data
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imbalance. In the first level, only healthy instances at distinct
operating conditions (OCs) are available. In the second level,
healthy instances at several distinct OCs and limited faulty
instances at a single OC are available. Finally, in the third
level, healthy and faulty instances at several distinct OCs
are available. The several steps within the framework are
described in the following.

Identify key signals

One of the first steps to consider before implementing a condi-
tion monitoring system, according to the ISO 17359 standard
(ISO 17359:2018(en), 2018), is a failure modes and effects
analysis (FMEA) to identify possible fault modes and their
influence on critical components of a system. Subsequently,
appropriate measurement techniques are selected to monitor
the fault modes, if they are measurable via physical parameters
(ISO 17359:2018(en), 2018). In complex systems, like rolling
stock, with multiple interconnected components, it is advis-
able to place appropriate sensors close to potential sources of
faults, so as to capture the fault signature or symptoms before
been masked or attenuated by other neighboring components.
Thus, for effective fault detection of critical components, it is
essential to prioritize sensor signals that are in close proximity
to these components.

Explore / analyze data

The data exploration and analysis step is essential to uncover
signal deviations from pristine condition, even under limited
data or distinct OCs. This step comprises data visualization
and two steps of the Prognostics and Health Management
(PHM) cycle (Clements, 2011), namely data pre-processing
and feature extraction. In general, data, and time series in
particular, can be analyzed directly in the time domain, or
transformed into the frequency domain to reveal amplitude
variations at characteristic frequencies or to detect frequency

shifts, due to changes in the internal properties of a system,
such as stiffness or damping. Additionally, visualizing data
in the time-frequency domain can uncover local changes in
frequency or amplitude over time (Aimiyekagbon, Bender,
Hemsel, & Sextro, 2024). Data pre-processing typically in-
volves data denoising and data cleansing, such as outlier re-
moval and filling missing numbers. After the optional data
pre-processing, features can then be extracted in the time-,
frequency- and time-frequency domains. Several toolboxes,
such as highly comparative time-series analysis (HCTSA)
(Fulcher, Little, & Jones, 2013; Fulcher & Jones, 2017), elec-
tromyography (EMG) feature extraction toolbox (Too, Abdul-
lah, & Saad, 2019; Too, Abdullah, Mohd Saad, & Tee, 2019),
time series feature extraction on basis of scalable hypothe-
sis tests (tsfresh) (Christ, Braun, Neuffer, & Kempa-Liehr,
2018), and flexible time series processing & feature extrac-
tion (tsflex) (Van Der Donckt, Van Der Donckt, Deprost, &
Van Hoecke, 2022) can automate the feature extraction process.
Feature selection is often conducted after feature extraction
to pre-select relevant features to facilitate efficient training of
machine learning algorithms.

When data regarding different fault modes and underlying
OCs is scarce, then the need for expert knowledge becomes
more significant. For instance, in the first level, where only
healthy data is available, establishing a threshold for healthy
conditions requires expert insight. This is because changes in
OCs can affect condition monitoring signals, making a healthy
threshold or features valid in one OC potentially unsuitable in
another. As more information about the different fault modes
and underlying OCs become available, they should be incor-
porated in the data exploration and analysis to improve fault
detection and subsequently fault isolation and identification.

Level 1: Only healthy training instances under distinct operating conditions
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Figure 1. Framework for fault diagnostics under consideration of limited faulty instances
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Fault detection, isolation and identification

Fault detection is essentially a binary decision of determining
whether a fault exists or not. Fault isolation, on the other hand,
involves distinguishing among multiple fault modes, making it
a multi-class classification problem. Additionally, identifying
a fault through quantifying its size is akin to solving a re-
gression problem. (Isermann, 1994) Consequently, supervised,
semi-supervised, or unsupervised machine learning techniques
can be employed to address these challenges.

In cases where only healthy instances are available, unsuper-
vised techniques for anomaly detection, such as autoencoder,
one-class support vector machine (SVM) and isolation forest
are applicable. However, as previously noted, expert insight
may be necessary for improved performance. For instance,
experts may be required to select distinctive features, when de-
termining the reconstruction error threshold for autoencoders,
or throughout the algorithm training process in general. In
cases where faulty instances corresponding to some or all an-
ticipated fault modes are available, they should be included
with their respective labels during the training phase of semi-
supervised and supervised techniques, respectively.

Model performance evaluation

Evaluating model performance is a crucial step in developing
diagnostic models. For fault identification, regression metrics
like root mean squared error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE) are used,
whereas fault isolation is assessed using classification metrics
such as recall, F1 score, and the Matthews correlation coeffi-
cient, which are obtained from the confusion matrix comparing
predicted and actual classes (Luque, Carrasco, Martin, & de
Las Heras, 2019). However, because previously unseen fault
modes may be misclassified, expert evaluation is also neces-
sary. Additionally, when models are trained solely on healthy
data, any detected anomaly can be accurately attributed to a
specific fault mode and subsequently labeled by experts.

Faulty instance database

At the first level, only healthy data is available. Thus, the faulty
instance database is initially empty. As mentioned earlier, once
an anomaly is accurately associated with a particular fault
mode, it is labeled and stored in a faulty instance database.
As a result, the task shifts from anomaly detection to fault
isolation, with the database, and eventually the model, being
updated incrementally as each new fault mode gets correctly
identified. In the case of the second and third levels, the
faulty instance database and eventually the model are also
updated, when previously unseen and unlabeled fault modes
are precisely linked to a particular fault mode and eventually
labeled.

3. APPLICATION EXAMPLES

Two application examples are considered to demonstrate the
effectiveness of the proposed framework. The first applica-
tion focuses on the MONOCAB dataset, which contains only
healthy data. This scenario emphasizes the framework’s abil-
ity to operate under limited and challenging data conditions.
The second application involves the Beijing Jiaotong Univer-
sity (BJTU) bogie dataset provided for the PHM-Beijing 2024
Data Challenge (Ding et al., 2024). This dataset includes both
healthy and faulty instances, allowing for a comprehensive
evaluation of the framework’s performance in a more conven-
tional setting.

3.1. MONOCAB dataset

In the following, the different steps of the proposed framework
will be elaborated using the MONOCAB dataset as a case
study.

3.1.1. Identify key signals

In the context of developing a condition monitoring system
for the MONOCAB, an FMEA is carried out to reveal possi-
ble failures. A concise description of the FMEA of various
components is presented in Table 7, in the appendix. Unlike
conventional rail vehicles, the MONOCAB runs on one rail
with the aid of a comprehensive stabilization system. As seen
in top sub-figure of Figure 2, two counter-rotating control mo-
ment gyroscopes (CMGs) counteract dynamic disturbances
on the rolling axis of the vehicle, while a laterally movable
trim mass counteract stationary disturbances. Finally, a me-
chanical support system is meant to keep the vehicle upright
during emergencies or halt. The wheelset of the MONOCAB
is constructed differently, because it drives on one rail. How-
ever, since similar failure modes also occur for conventional
train wheelsets, the FMEA is similar. Thus, in addition to the
stabilization system comprising of the CMGs and trim mass
based on the previous works (Rezvanizaniani, Valibeigloo,
Asghari, Barabady, & Kumar, 2008; Miiller, 2009; Szkoda &
Satora, 2019; Pang, Dai, & Chen, 2024), the wheelset, brake
and suspension are considered very important.

The next step after the FMEA is the selection of appropri-
ate sensors for continuous monitoring of the critical compo-
nents. There are several onboard sensors on the MONOCAB
used to control and monitor the condition of the vehicle. The
translational accelerations, rotational angles and rotation rates
are measured using two redundant inertial measurement unit
(IMU) sensors mounted on the frame of the MONOCAB near
the CMGs. They are used to determine the current roll angle
for the stabilization control and also the translational accelera-
tion of the vehicle for the longitudinal control.

The vehicles velocity and relative position are measured using
two inductive proximity sensors, located at the front and rear
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Figure 2: (a) MONOCAB in the Dérentrup test site, and corresponding (b) main components description adapted from (Griese et
al., 2023; Griese & Schulte, 2025) and sensor placement of the accelerometers

wheel shaft of the vehicle. They are pointing at the sprocket
on the wheel shaft to detect if a tooth is present or not. Based
on these discrete signals, the velocity is calculated. The rela-
tive position is a basic integration of the velocity value. The
direction of the velocity is based on the driving stage of the
vehicle. Both values are needed for the longitudinal control of
the MONOCAB.

Furthermore, the motor current and power consumption are
continuously monitored using the frequency inverter of the
drive motors, eliminating the need for additional external sen-
sors. This enables fault diagnostics of the motor itself as well
as neighboring components.

Vibration sensors are particularly suitable for detecting failure
modes in mechanical components at an early stage (Bernal,
Spiryagin, & Cole, 2018). They are capable of capturing even
subtle changes in a component’s vibration behavior, which
may be caused by material defects such as cracks or plastic
deformation. Specifically, cracks and axle deformation result
in local changes in stiffness, which manifest as shifts in res-
onance frequencies or the appearance of additional vibration
modes. Thus, external accelerometers are mounted on critical
components of the MONOCAB as further sensors.

3.1.2. Explore / analyze data

To investigate the dynamic behavior of the MONOCAB’s sta-
bilization system, a comprehensive measurement campaign
was conducted at the Dorentrup test site. The measurement
setup included nine +6 g triaxial accelerometers, mounted mag-
netically at key structural and functional components of the
MONOCAB. As seen in the bottom sub-figure of Figure 2, the

sensor positions were strategically selected, such that sensors
1 and 2 were mounted on the wheel suspension, sensors 3 and
4 on the gyroscopic stabilization units, sensors 5 and 6 on the
main frame, sensor 7 on the sliding mass bearing (integral to
the stabilization mechanism), sensor 8 adjacent to the Inertial
Measurement Unit (IMU), and sensor 9 beneath a seat, rep-
resenting passenger exposure. All sensors were connected to
a central data acquisition unit housed in a measurement case,
powered via a 230V power supply, and after synchronized
with the MONOCAB’s onboard data acquisition system for
comparative analysis.

Four experimental measurement data, namely MO1 through
MO04 are considered for the MONOCAB dataset. They consist
of sensor measurements collected under different operational
settings. The measurement data MO1 and M04 were collected
during the run-up phase of the CMGs, while measurement
data M02 and M03 were collected after reaching the preces-
sional speed of the CMGs and during the shutdown of the trim
mass stabilization system, in the sense that the control system
stops sending actuation signals, causing no further displace-
ment from that point onward. The sampling frequency of the
internal and external sensor signals considered in this study
are 2kHz and 5 kHz, respectively. The gyroscopic spin fre-
quency is depicted in Figure 3(a) for measurement data MO1
and M04. As seen in the top sub-figure of Figure 3(a), the
CMGs reach the precessional speed of 4800 rpm, that is 80 Hz
after approximately 12 min. Furthermore, as seen in the bot-
tom sub-figure of Figure 3(a) for measurement data M02, the
CMGs remain at the precessional speed of 4800 rpm during
operation. The corresponding time-frequency domain analy-
sis results of the onboard accelerometer of IMU rear sensor
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Figure 3: Comparative analysis of experiments MO1 (top) and M02 (bottom) of the MONOCAB (a) Gyroscopic spin frequency
in the time domain (b) Time-frequency domain analysis of the internal accelerometer of IMU rear sensor in the y-direction (c)
Time-frequency domain analysis of external accelerometer at position 7 in the y-direction

and the external accelerometer at position 7 along the y-axis
are presented in Figures 3(b) and 3(c), respectively. As seen
in the top sub-figures, the harmonics of the spin frequency
are dominant. Furthermore, after reaching the precessional
speed, as indicated by the dashed red line, the intensity of
the amplitudes at distinct frequencies and especially at fre-
quencies below 100 Hz. The dominant amplitudes at distinct
frequencies, resulting from the active trim mass stabilization,
are seen better in the bottom sub-figures of Figures 3(b) and
3(c). After the shutdown of the trim mass stabilization at about
75 s, the intensity of the amplitudes at the distinct frequencies
also clearly decreases.

3.1.3. Fault detection, isolation and identification

Based on the findings from the preceding section, four statis-
tical features, namely the variance, standard deviation, range
and interquartile range were exemplarily extracted each from
the amplitudes in the frequency range [10; 40] Hz of 10 s mea-
surement segments. The variance is exemplarily shown in the
top sub-figure of Figure 4(a) for the measurement data MO1.
As seen in the figure, the variance is comparatively higher
when the trim mass stabilization is active, except for the initial
segments with increased variance. Thus, the features derived
in the time segment during the active trim mass stabilization
were utilized to exemplarily train a one-class SVM. The re-
sulting prediction result is mapped to the underlying vibration
signal and shown in the bottom sub-figure of Figure 4(a),
where an anomaly represents an intentional or unintentional

-
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Figure 4: Fault detection based on one-class SVM ultilizing (a) features derived from 10 s time segments for experiment M0O1
(top). Corresponding predicted anomaly for the experiment MO1 (bottom), (b) Predicted anomaly for experiment M04, (c)

Predicted anomaly for experiments M02 (top) and M03 (bottom)
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inactive trim mass stabilization. As seen in the Figure, the
one-class SVM model is capable of detecting an inactive trim
mass stabilization. The prediction results obtained from the
same model are presented in Figures 4(b) and 4(c), where the
trim mass stabilization was inactive before and after reaching
the precessional speed, respectively.

3.1.4. Model performance evaluation

The confusion matrix is employed to evaluate the model perfor-
mance, where class 0 represents an active trim mass stabiliza-
tion, while class 1 represents an intentional or unintentional
inactive trim mass stabilization. Due to safety-critical rea-
sons, an undetected inactive trim mass stabilization is more
dire. Hence, the precision and recall, corresponding to the
second-row value of the first column on the far right and the
first-row value of the second column at the bottom of the plots,
respectively, are particularly emphasized. As seen in Figure
5, the model performs good with at least a precision of 80%
and at least a recall of 90% over all considered measurement
cases. Although the detected anomaly can be pinpointed to
the inactive trim mass stabilization, further amount of data,
also with sufficient faulty instances are required for a com-
prehensive fault isolation and identification for this presented
case study. As more faulty instance become available, they
can be incorporated in the faulty instance database to address
data imbalance and improve the performance of the diagnostic
models.

3.2. Beijing Jiaotong University (BJTU) bogie dataset

The BJTU bogie dataset is comprised of experimental data
collected at different health states and OCs of several critical
components of a real subway bogie (Ding et al., 2024). In the
following, the distinct steps of the proposed framework will
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be elaborated upon.

3.2.1. Identify key signals

As considered in the foregoing application example, previous
studies (Rezvanizaniani et al., 2008; Miiller, 2009; Szkoda &
Satora, 2019) have investigated the FMEA of a railway bogie.
Furthermore, it is assumed that the sensors, as listed in Table
1 have been optimally selected and positioned close to the
component of interest. Thus, although the effect of a fault in
one component could be reflected in neighboring components,
the sensor with the closest path to a probable faulty component
should be prioritized, under consideration of the fault mode.
For example, for the diagnostics of a motor short circuit fault,
the motor current signals should be analyzed.

Channel Component Signal Type
1-3 Motor (drive end) Tri-axial ACC
4-6 Motor (fan end) Tri-axial ACC
7-9 Motor (cable) 3-phase current
10-12 Gearbox (input axle) Tri-axial ACC
13-15 Gearbox (output axle) Tri-axial ACC
16 - 18 Axle box left (end cover) Tri-axial ACC
19-21 Axle box right (end cover) Tri-axial ACC

Table 1. Overview of sensor channels (Ding et al., 2024)

3.2.2. Explore / analyze data

As seen in Table 2, three motor speed and three lateral load
settings, which simulate different train speeds and the exerted
forces as a train moves through a curve, are considered as OCs
in the dataset (Ding et al., 2024). Furthermore, as listed in Ta-
ble 2, at a constant OC and a certain health state, sensor signals
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Figure 5: Confusion matrix for (a) experiments MO1 (top) and M04 (bottom), and (b) M02 (top) and MO3 (bottom)
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Figure 6: Frequency (top) and time-frequency domain analysis (bottom) of one of the three-phase current (channel 7) for the

motor rotating frequency of (a) 20 Hz, (b) 40 Hz and (c) 60 Hz

OC Motor speed / Hz Lateral load / kN

1 20 0

2 20 10
3 20 -10
4 40 0

5 40 10
6 40 -10
7 60 0

8 60 10
9 60 -10

Table 2. Overview of OCs (Ding et al., 2024)

from the 21 channels were acquired at a sampling frequency
of 64 kHz. One of the three-phase current, namely channel 7,
is exemplarily analyzed in the frequency- and time-frequency
domain for the data indices 1, 18, 35, 2,19 and 36, that is for
the normal condition and for motor short circuit. As seen
in the first row of Figure 6 for the data indices 1, 18 and 35,
the distinct motor rotating frequencies are visible in the fre-
quency spectrum. As also seen in the second row of Figure
6, for the data indices 1, 18 and 35, resonance and the corre-
sponding harmonics occur at approximately, 8 kHz, 16 kHz
and 24 kHz, irrespective of the rotating frequency, but the in-
tensity increases with increasing rotating frequency. However,
as seen in the third row of Figure 6, in the event of a motor
fault, that is for data indices 2, 19 and 36, sub-harmonics oc-
cur at approximately 3kHz, 6 kHz, 9kHz and so on. Thus,
features can be extracted specifically from the sub-harmonics
to diagnose a motor fault. However, to minimize the manual
effort and associated costs of analyzing individual sensor sig-
nals for each component, the following subsections present an
automated, data-driven modeling approach.

3.2.3. Fault detection, isolation and identification

To automatically detect faults based on the healthy instances in
the training data set, a Long Short-Term Memory Autoencoder
(LSTM AE) is employed, which is already applied success-
fully to time series anomaly detection, such as in (Wei et al.,
2023), able in capturing long-term relationships in sequential
data. The LSTM AE is integrated into a toolbox for facilitated
generation of data-driven models which ensures standardized
interfaces between data processing steps, model re-usability,
and simplified deployment (Lowen, Quirin, Hesse, & Aimiyek-
agbon, 2025). The LSTM AE is using all 21 sensors as inputs,
simulating a scenario where no prior knowledge is used to gen-
erate a model for fault detection as automated as possible. The
input is followed by hidden layers with dimensions 16 and 8 in
the encoder, symmetrically mirrored in the decoder. The data
is compressed into a latent representation of size 8, thereby
facilitating the effective learning of temporal dependencies
inherent in the data, and reconstructed. The reconstruction
error is calculated as the mean squared error (MSE) through
the signals j between the data z and the reconstruction & at
each time ¢ as depicted in Equation 1.

21

1 .
MSEl = ﬁ Z(Iivj — Iivj)z

j=1

ey

The three-sigma rule is applied to automatically determine
the threshold on the reconstruction error to detect anomalies
within a measurement, see Equation 2, as it is frequently and
successfully employed, such as in (Nicholaus, Park, Jung,
Lee, & Kang, 2021). For each measurement, the detected
anomalies are aggregated and expressed as a percentage. Very
crucial is to set another threshold to identify a measurement as
anomalous or not. To automate this decision, the percentage
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Training data index Test data index
Fault oc

Label Component Description 30 J b2 1 g 7 8

NO All components  Normal condition I 18 35 52 69 86 103 120 137
M1 Short circuit 2 19 36 53 70 87 104 121 138
M2 Motor Broken rotor bar 320 37 54 71 88 105 122 139
M3 Bearing fault 4 21 38 55 72 89 106 123 140
M4 Bowed rotor 5 22 39 56 73 90 107 124 141
Gl Gear cracked tooth 6 23 40 57 74 91 108 125 142
G2 Gear worn tooth 7 24 41 58 75 92 109 126 143
G3 Gear missing tooth 8 25 42 59 76 93 110 127 144
G4 Gearbox Gear chipped tooth 9 26 43 60 77 94 111 128 145
G5 Inner race fault 10 27 44 61 78 95 112 129 146
Go6 Outer race fault 11 28 45 62 79 96 113 130 147
G7 Rolling element fault 12 29 46 63 80 97 114 131 148
G8 Bearing cage fault 13 30 47 64 81 98 115 132 149
LA1 Inner race fault 14 31 48 65 82 99 116 133 150
LA2  Left AxleBox  Outer race fault 15 32 49 66 83 100 117 134 151
LA3 Rolling element fault 16 33 50 67 84 101 118 135 152
LA4 Bearing cage fault 17 34 51 68 8 102 119 136 153

Table 3. Training and test data indices with respective OCs and fault labels (Ding et al., 2024)

is considered as the model’s confidence. This means if more
than 50 % of the data points in a measurement are identified
as anomalies, the measurement itself is classified as such

Threshold = y(MSE) + 3 - ¢(MSE). (2)
If data regarding the faults to be recognized is provided, a
classifier can be trained to recognize them, e.g. after a LSTM
AE detects one. The toolbox that has already been applied
to a classification problem can be used again for this purpose
(Lowen et al., 2025). The data processing steps employed
there can be reapplied, which consists of feature extraction,
selection, standardization, and model training.

3.2.4. Model performance evaluation

To set up LSTM AE, the knowledge about the motor speed
is used such that the OC regarding the motor speeds are con-
sidered separately, i.e., motor speeds of 20 Hz (OC 1, 2, 3),
40Hz (OC 4, 5, 6), and 60 Hz (OC 7, 8 ,9). This means that a
separate model is constructed for each motor speed and trained
on training data 1, 18 and 35, respectively. A normalization
process is fitted to adjust the input signals of the training data
to the range [0,1], which is then separately applied on the test
data of OC 1 and 2 (20 Hz), 4 and 5 (40 Hz), 7 and 8 (60 Hz).
The Table 4 provides an overview of the hyperparameters
utilized for the LSTM AE.

Figure 7 shows exemplary the percentages related to the data

sets from OC 1, 2 and 3. There, most of the considered faults
show an anomaly percentage of over 70 %. Similar results
shows the LSTM AE trained on data 18. The LSTM AE
trained on data 35 shows a clear but less distinct separation.

100 0 [0 0% OOOOOOOOO
501 Training e True normal
O Detected True anomaly
X ol e
o : . ‘ : . :
& 1 4 7 10 13 16
Z 100 Training data index
% OOOOOO 96%%404 S6T6%0 Ooooooooo
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52 55 58 61 64 67 70 73 76 79 82 85
Test data index

Figure 7. Percentages of detected anomalies in the data. Train-
ing on healthy condition OC 3. Test on OC 1, 2 and 3

Applying the percentage threshold at 50 % as mentioned be-
fore, the accuracy, precision and recall of each LSTM AE
achieved are shown in Table 5, where an anomaly is consid-
ered as the positive class. Since there are only two healthy
instances in each test data sets, the negative predictive value is
very low if e.g. three faults are not classified as such, which is
the case for the LSTM AE considered in Figure 7. However,
the results show that the models can detect the majority of
faults across different OCs with the condition that the motor
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Hyperparameter Value
Batch size 64
Number of epochs 1000
Layer configuration | 21-16-8-16-21
Learning rate 0.01

Table 4. Utilized hyperparameters for the LSTM AE.

oC Accuracy | Precision | Recall
0C1,2,3 94.0 % 100.0% | 93.8 %
0C4,5,6 94.0 % 100.0% | 93.8 %
0C7,8,9 74.0 % 100.0% | 729 %

Table 5. Accuracy, Recall and Precision of the LSTM AE on
the test data. A measurement is classified as faulty when more
than 50 % of anomalies in it are detected.

speed is known. If more data were available for training in-
cluding faulty data, the results could potentially be further
improved and generalized through hyperparameter optimiza-
tion and cross-validation, which is already integrated in the
aforementioned toolbox (Lowen et al., 2025).

As mentioned before, a classifier can be trained to learn known
faults to isolate and identify recurring faults, if the correspond-
ing data is available, where the training data, data index 1 to
51, is treated as such. The following data processing steps
orient on them employed in (Lowen et al., 2025). Firstly, to
extract features, the HCTSA toolbox is applied. Subsequently,
features which contain constant values or contain entries such
as not a number (NaN) or infinite values are removed. If
such entries appear in the test data, NaN values will be re-
placed by 0, while infinite values will be substituted with the
largest representable number. To select the most significant
features, analysis of variance is applied, to select the 50 most
informative features, considering that highly correlated fea-
tures are sorted out. Since the number of samples per fault
class is very limited, a comparatively less complex algorithm,
the k-nearest neighbors classifier (KNN) from scikit-learn
(Pedregosa et al., 2011), is employed. Hyperparameter are
optimized within a cross-validation procedure using scikit-
optimize (Head, Kumar, Nahrstaedt, Louppe, & Shcherbatyi,
2021), where a StratifiedKFold strategy ensures that class dis-
tributions are preserved across the splits. The resulting values
for various hyperparameters are listet in Table 6.

Hyperparameter Value
Distance metric Manhattan
Number of neighbors 4
Searching algorithm | Brute-force
Weight function distance

Table 6. Optimized hyperparameters for the KNN algorithm.

The result is shown in Figure 8, where an F1 score of 0.79
is reached. Notable is, that the model has difficulties in the
recognition of faults G2, G4 and G6. However, in cases of mis-
classifications, the instances are usually assigned to the correct
component. When focusing on predictions at the component
level, an F1 score of 0.97 is achieved.

[=l=)=l]

Actual
@

SO0 O—ROOoOTINOSOSOO
—OOOOOOOOOEOOOOOO
l=l=l=lelelelelelelelelelolole ]

QT-OODOOOOEOOO'—OOOO
C%—-OOOOOO [=leleleleleleles]]
O)—OOOOO (S lelelelelelelelele]

[=lelelelelelelelelele]oloelele]

Gy |
R

8
Sccoccocococoocoooo
SO0 OOOCO——OTO
SO OOTSOoOTOOON
[=lelelelelelelelolelel]

(=l jelelelelelelele]
SO0 OCOOOOCOD
g
=l=1= O j=lelelelelele)ele)ollw]
= O gi=l=l=lslelelelelelelele]]

T T T
~

S

&
(?7

"()-OO CCOoOO0OOCOOOOOOOO

%
c,
8
O)
OS?

<
<

Predicted

Figure 8. Confusion matrix for predicted classes of test data
sets 52 to 153

4. CONCLUSION

The current study underlines the potential of advanced sig-
nal analysis, feature engineering, and automated data-driven
model generation techniques for comprehensive diagnostics,
even in scenarios with limited faulty instances. The method-
ology was validated using datasets from the MONOCAB and
the Beijing 2024 IEEE PHM conference data challenge, which
focused on fault diagnostics of a railway bogie under dis-
tinct constant operating conditions and different fault modes.
The findings of this study are in line with current research,
indicating that as the level of automation increases in data-
driven model generation, the amount of required information,
for training, testing and validation, also increases. However,
models trained solely on healthy instances proved sufficiently
effective for fault detection and expert-informed identification
of faulty components. These findings underscore the potential
of the presented approach for deployment in prototype sys-
tems or technical systems where faulty instances are scarce or
unavailable, such as in the case of the MONOCAB. Although
only evaluated on a relatively small dataset, the proposed
methodology is applicable to larger datasets or real-time mon-
itoring scenarios, depending on data quality. However, the
expert-informed identification is identified as the bottleneck
during scalability.
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