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ABSTRACT

In refinery operations, flare gas is generated as a byproduct.
It is not only harmful to human health and the environment
but also causes secondary issues such as noise and unpleasant
odors. Flare stacks are commonly used to combust and
neutralize flare gas before releasing it into the atmosphere.
While accurate monitoring of flare gas flow rate is essential
for flare gas reduction and recovery, installing flow meters
on existing facilities can be costly. This study proposes a
method to estimate flare gas flow rate using the flare images
and suppression steam flow rate. Flare images are processed
with a convolutional neural network (CNN) to extract spatial
features, while suppression steam time-series data are
processed with a long short-term memory (LSTM) network
to capture temporal dynamics. These features are fused and
passed through fully connected layers to regress the flare gas
flow rate. To address data imbalance due to the infrequent
occurrence of flare events, we designed a custom loss
function that assigns higher weights to high-flow samples
while penalizing overestimation when low-flow samples are
incorrectly predicted as high flow. Furthermore, we
employed data augmentation, preprocessing techniques, and
feature engineering to improve prediction accuracy.

1. INTRODUCTION

During the operation of refineries and chemical plants,
flammable flare gas is generated as a byproduct. These gases
contain hazardous substances such as SOx, NOx, VOCs, and
CO, which can lead to ozone layer depletion, acid rain, and
potential health hazards. In addition, flare activity may cause
light pollution at night, noise, and unpleasant odors, which
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pose environmental concerns, particularly in refineries
located near residential areas. Such flare gases are combusted
and detoxified using a facility called a flare stack, which
releases the resulting emissions into the atmosphere. A flare
stack typically consists of a main burner for combustion, a
pilot burner to maintain continuous ignition, and a steam
supply system that suppresses black smoke generation. Given
the aforementioned environmental and social concerns,
accurate monitoring of flare activity is essential to promote
emission reduction and gas reuse.

While real-time and accurate measurement of flare gas flow
is highly effective for reducing flare emissions and mitigating
environmental impact, installing flow meters on-site is costly.
Moreover, such meters may exhibit reduced accuracy due to
variations in gas composition and temperature. They must
also cover a wide measurement range to capture rare but large
flare events, which makes it difficult to detect fine-grained
variations during normal operation. Currently, most
monitoring is conducted via visual inspection.

This study aims to improve the accuracy and reliability of
flare monitoring in real-world settings through a practical and
deployable approach, leveraging existing visual and sensor
data without the need for additional hardware investment. We
propose a deep learning-based method for estimating flare
gas flow using flare images and time-series data of steam
flow. Spatial features are extracted from the images using a
convolutional neural network (CNN; LeCun et al., 1998), and
temporal trends in the steam flow are captured using a long
short-term  memory network (LSTM; Hochreiter &
Schmidhuber, 1997). These representations are then
integrated to construct a regression model for flow prediction.

Since large flare events are abnormal and rare in well-
managed facilities, the available training data for high-flow
conditions is extremely limited. This results in an imbalanced
data distribution, which is known to cause bias and reduced
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generalization in deep learning models (Johnson &
Khoshgoftaar, 2019). To mitigate this issue, we apply a
weighted loss function that assigns greater importance to the
small number of high-flow samples. In addition, we introduce
penalties for overestimating low-flow samples (and not for
underestimating high-flow samples), helping to suppress
false positives. This approach enhances the model's
robustness against data imbalance.

Furthermore, to improve input diversity, we apply basic
image transformations such as brightness and contrast
adjustments for data augmentation. Even simple techniques
of this kind have been shown to be effective for improving
the performance of deep learning models (Perez & Wang,
2017).

2. FLARE GAS FLOW RATE ESTIMATION

2.1. Task

The task is to estimate gas flow rate using steam flow rates
and flare images. In general, a higher flare gas flow rate is
associated with a larger flame area. However, the appearance
of the flame is also affected by the amount of steam injected
to suppress black smoke generation. Consequently,
information on the steam flow rate is essential for estimating
the flare gas flow rate. Furthermore, the appearance of the
flare is greatly influenced by day and night differences and
weather conditions, which makes the accurate estimation of
the flare gas flow rate more challenging.

We develop a method for such a task and demonstrate its
effectiveness with real-world plant operation data collected
from an actual refinery.

2.2. Data Acquisition

In this study, we used data from a flare stack facility equipped
with a flare gas flow meter. The measured gas flow values
served as ground truth labels in the training data and were
used to evaluate prediction errors in the test data.

Gas flow rate and steam flow rate were recorded at 1-minute
intervals, while flare images were captured at 10-minute
intervals. Consequently, timesteps at 10-minute intervals
contain synchronized data across all three modalities.

2.3. Data Characteristics

Our dataset comprises three distinct periods that include high
gas flow events. For each period, Table 1 summarizes the
date range, total number of samples at 10-min intervals, and
the number and percentage of samples exceeding a heuristic
threshold set to detect high-flow events. Notably, the dataset
exhibits a significant class imbalance: low-gas flow samples
are predominant, while high-gas flow samples are rare.

To preserve confidentiality, in this paper, the threshold is
denoted just by T without revealing its concrete value, and all

flow values are normalized by dividing them by the global
maximum value observed across all periods.

Table 1. Overview of dataset

Period | Date Range Total Number of
number of | Samples
Samples Above
at 10-min Threshold t
intervals (Percentage)
A Oct 25-Nov 30, | 5235 58 (1.11 %)
2023
B Mar 1-Mar 31, | 4464 169 (3.79 %)
2024
Cc May 1-Jun 10, 5904 227 (3.84 %)
2024

2.4, Data Overview

Figure 1 and Figure 2 respectively illustrate the gas flow rate
and steam flow rate over time for each period (A, B, and C).
Figure 3 shows representative flare images captured under
different gas flow conditions and at various times of day (e.g.,
morning and night). These images reveal visual differences
in flare appearance influenced not only by flow rate but also
by environmental conditions such as lighting and cloud
coverage.
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Figure 1. Normalized Gas Flow Rate Over Time
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Figure 2. Normalized Steam Flow Rate Over Time
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Figure 3. Examples of Flare Imageslunder Varying Flow
and Environmental Conditions

3. METHODS

We use a multimodal learning approach for estimating gas
flow rate using flare images and steam flow rate. The task is
formulated as a regression problem, where the target variable
is the gas flow rate at each time step.

3.1. Model Architectures

We design and compare three neural network models that
share a common convolutional neural network (CNN)
encoder for processing flare images. The key difference
among the models lies in how steam flow rate data is
processed. Figures 4-6 illustrate the architectures of the three
models.

3.1.1. Flare Image

Input RGB images of size 128x128 pixels are processed
through two convolutional layers with 3x 3 kernels and
padding of 1. The number of channels is increased from 3 to
16 in the first layer and from 16 to 32 in the second layer.
Each convolutional layer is followed by a ReLU activation
and a 2x2 max-pooling layer that reduces spatial dimensions
by half. After the second pooling, the resulting 32 feature
maps have spatial dimensions of 32x32. These feature maps
are flattened and passed through a fully connected layer to
produce a 32-dimensional feature vector.

3.1.2. Steam Flow Rate

For processing steam flow rate information, we try three
different models as follows:

e Model 1 (Single Steam Flow Rate): This model uses only
the steam flow rate at the same time step as the flare
image. The input steam flow rate value is simply
concatenated to the output feature vector obtained from
the CNN processing of the flare image.

e Model 2 (Sequential Steam Flow Rate): This model
incorporates a sequence of past steam flow rates,
including time steps where no image is available. The
sequence, consisting of 10 time steps sampled at 1-

minute intervals, is processed using a long short-term
memory (LSTM) network to capture temporal
dependencies. The LSTM has a single layer with a
hidden size of 32, and the final hidden state is used as the
steam flow feature representation.

e Model 3 (Sequential and Differential Steam Flow Rate):
This model incorporates a sequence of past steam flow
rates and corresponding first-order difference sequence.
The difference sequence has 9 time steps. Both
sequences include time steps where no image is available.
Each sequence is processed by a separate LSTM encoder
with the same architecture as Model 2.

3.1.3. Fusion and Prediction

After encoding each modality, the resulting features are
concatenated and passed to a linear output layer for gas flow
rate prediction.
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Figure 4. Model 1 (Single Steam Flow Rate)
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Figure 5. Model 2 (Sequential Steam Flow Rate)
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Figure 6. Model 3 (Sequential and Differential Steam
Flow Rate)

3.2. Loss Function

To address the asymmetry in importance between high-flow
and low-flow predictions, we introduce a custom Wighted
Mean Squared Error (Weighted MSE) loss function. The
objective of the loss function is to prioritize accurate
prediction of high gas flow events, as failing to detect these
critical conditions can have significant consequences.
Simultaneously, the loss penalizes overestimation during
low-flow periods to reduce false positive alarms.
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Let y; denote the true gas flow rate and 9; the predicted value
at sample i. The weighted MSE is defined as:

I~
L= NZ w;(F; — yi) €Y)
i=1
where w; is a sample-specific weight determined by:
Whigh, ifyi >t
w; ={Wiow, ify;<tand y; > (2)
1, otherwise

where 7 is the threshold defined in Section 2.2 to identify
high-flow events.

3.3. Data Augmentation

To increase the size and diversity of the training dataset, we
generate additional samples by applying image processing
operations such as color jittering, which randomly adjusts
brightness, contrast, saturation, and hue, to the original
images. This approach can double the dataset size and
enhance data variety. Figure 7 shows pairs of original images
and their augmented images produced by applying color
jittering.

‘
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Figure 7. Examples of original and augmented image
pairs (left: original images, right: augmented images)

4. EXPERIMENTS

We conducted experiments using the dataset described in
Section 2 to evaluate the effectiveness of the proposed
models.

4.1. Experimental Setup

We used data from periods A and B for training, and data
from period C for testing.

For image preprocessing, the right half of each image was
extracted to focus on the region of interest corresponding to
the target flare stack. The cropped images were subsequently
resized such that their shorter side measured 128 pixels,

followed by a center crop to obtain a fixed resolution of
128x128 pixels.

All experiments were repeated three times, and the reported
results represent the average performance across these runs.

4.2. Evaluation Metrics

To evaluate the model performance, we use two metrics,
high-flow MSE, and low-flow MSE. High-flow MSE
specifically measures the prediction error on samples where
the true gas flow rate exceeds a predefined threshold 7. Low-
flow MSE measures the error on samples below the threshold
T.

4.3. Results

4.3.1. Steam Flow Rate

We evaluated the performance of the three models described
in Section 3.1.2, which differ in how they incorporate steam
flow rate information. Model 1 uses a single steam flow value.
Model 2 uses a temporal sequence of past steam flow rates,
and Model 3 uses both the original steam flow rate sequence
and its first-order difference. For this experiment, we used
MSE loss (i.e., Whigh = Wiy = 1).

Table 2 represents a comparison of the average model
performance in terms of high-flow MSE, low-flow MSE for
the three different input structures of the steam flow rate. The
results indicate that incorporating temporal sequences
(Model 2) and additional differential temporal sequences
(Model 3) leads to a reduction in high-MSE, while
maintaining comparable low-flow MSE performance.

Figures 8, 9, and 10 show the time series of predicted gas
flow rates obtained using Models 1, 2, and 3, respectively.
Each figure compares the predicted values with the ground
truth values over the evaluation period. In Model 1, the high-
flow events are not well captured, with most predictions
tending to classify the flow as low-flow. In contrast to Model
1, Models 2 and 3 successfully capture the high-flow events,
with Model 3 providing predictions that more closely match
the ground truth values.

Table 2. Comparison of Average Model Performance
based on Steam Flow Rate Input Structures

Model High-flow MSE | Low-flow MSE
Model 1 (Single) | 148.6 0.320

Model 2 (Seq.) 128.2 0.372

Model 3 1225 0.206
(Seq.+Diff)
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4.3.2. Loss Function

We experimented with different combinations of wy, 4, and
Wiow - Whign 1S the weight applied to high-flow samples,
emphasizing their importance in the loss function. wy,,
serves as a penalty when the model incorrectly predicts a high
gas flow rate during low-flow periods. We evaluated 9
combinations of loss weights, with
Whigh € {1,5,10} and wy,,, € {1,3,5}. For this experiment,
we used Model 3, which showed the best performance among
the steam flow rate input structures in Section 4.3.1.

Table 3 represents a comparison of the average model
performance in terms of high-flow MSE, low-flow MSE
under different loss weight configurations. The results show
that increasing wy, g, leads to a reduction in high-flow MSE,

Figure 11. Gas Flow Rate Prediction Using Loss Weights
Whigh = 10,wy,, =1
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Figure 12. Gas Flow Rate Prediction Using Loss Weights
Whigh = 1, Wigy = 5
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4.3.3. Data Augmentation

We evaluated the performance with data augmentation. For
this experiment, we used Model 3, which showed the best
performance among the steam flow rate input structures in
Section 4.3.1. The evaluation was conducted for 9
combinations of wy;, € {1,5,10} and wy,,, € {1,3,5}.
Table 4 represents a comparison of the average model
performance in terms of high-flow MSE, low-flow MSE with
and without data augmentation. The results show that data
augmentation tends to reduce high-flow MSE in many
configurations.

Figure 13 shows the time series of predicted gas flow rate
with data augmentation (wp;gn = Wi = 1). Compared to
Figure 10, which shows the result without augmentation, the
predictions in Figure 13 during high-flow events are more
accurate.

Table 4. Comparison of Average Model Performance
With and Without Date Augmentation

Whigh Wiow WIthOUt Wlth
Augmentation Augmentation
High- | Low- High- | Low-
flow flow flow flow
MSE MSE MSE MSE
1 1 122.49 | 0.206 115.74 | 0.328
5 94.24 2.555 92.89 2.666
10 89.60 8.044 103.43 | 1.820
1 3 130.18 | 0.175 130.68 | 0.255
5 119.57 | 1.143 110.75 | 0.970
10 131.66 | 1.742 101.91 | 1.226
1 5 125.10 | 0.167 141.57 | 0.158
5 142.34 | 1.029 110.87 | 0.639
10 120.65 | 0.954 112.09 | 1.183
g L) p— Ground Truth
E 0.8 Mean Prediction
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Figure 13. Gas Flow Rate Prediction With Data
Augmentation
Whigh = 1, Wi =1

5. CONCLUSION

We have constructed a multimodal neural network that
processes the time series of steam flow rates and their first-
order differences using separate LSTM networks, processes
flare images using a CNN, and integrates these modalities for

gas flow rate prediction. Compared to models that use only
single steam flow rate values or incorporate a sequence of
past steam flow rates, the model that additionally
incorporates the first-order difference sequence was more
effective in capturing high-flow events and provided
predictions that more closely matched the ground truth.

Furthermore, to address the data imbalance caused by the
limited number of high-flow samples, we have also designed
a customized loss function that assigns higher importance to
high-flow predictions and penalizes overestimation in low-
flow cases. We observed that placing more emphasis on high-
flow events in the loss function tended to improve accuracy
in predicting high-flow events, while increasing the penalty
for overestimating low-flow events helped reduce errors in
such cases. These findings suggest that adjusting the loss
weights allows flexible control over prediction accuracy for
different flow rate conditions.

To further enhance model performance, we also applied data
augmentation to the flare images, generating additional
training samples by introducing variations in brightness,
contrast, saturation, and hue. We observed an improvement
in high-flow MSE, indicating that data augmentation helps
improve prediction accuracy.
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