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ABSTRACT 

In refinery operations, flare gas is generated as a byproduct. 

It is not only harmful to human health and the environment 

but also causes secondary issues such as noise and unpleasant 

odors. Flare stacks are commonly used to combust and 

neutralize flare gas before releasing it into the atmosphere. 

While accurate monitoring of flare gas flow rate is essential 

for flare gas reduction and recovery, installing flow meters 

on existing facilities can be costly. This study proposes a 

method to estimate flare gas flow rate using the flare images 

and suppression steam flow rate. Flare images are processed 

with a convolutional neural network (CNN) to extract spatial 

features, while suppression steam time-series data are 

processed with a long short-term memory (LSTM) network 

to capture temporal dynamics. These features are fused and 

passed through fully connected layers to regress the flare gas 

flow rate. To address data imbalance due to the infrequent 

occurrence of flare events, we designed a custom loss 

function that assigns higher weights to high-flow samples 

while penalizing overestimation when low-flow samples are 

incorrectly predicted as high flow. Furthermore, we 

employed data augmentation, preprocessing techniques, and 

feature engineering to improve prediction accuracy.  

1. INTRODUCTION 

During the operation of refineries and chemical plants, 

flammable flare gas is generated as a byproduct. These gases 

contain hazardous substances such as SOx, NOx, VOCs, and 

CO, which can lead to ozone layer depletion, acid rain, and 

potential health hazards. In addition, flare activity may cause 

light pollution at night, noise, and unpleasant odors, which 

pose environmental concerns, particularly in refineries 

located near residential areas. Such flare gases are combusted 

and detoxified using a facility called a flare stack, which 

releases the resulting emissions into the atmosphere. A flare 

stack typically consists of a main burner for combustion, a 

pilot burner to maintain continuous ignition, and a steam 

supply system that suppresses black smoke generation. Given 

the aforementioned environmental and social concerns, 

accurate monitoring of flare activity is essential to promote 

emission reduction and gas reuse.  

While real-time and accurate measurement of flare gas flow 

is highly effective for reducing flare emissions and mitigating 

environmental impact, installing flow meters on-site is costly. 

Moreover, such meters may exhibit reduced accuracy due to 

variations in gas composition and temperature. They must 

also cover a wide measurement range to capture rare but large 

flare events, which makes it difficult to detect fine-grained 

variations during normal operation. Currently, most 

monitoring is conducted via visual inspection.  

This study aims to improve the accuracy and reliability of 

flare monitoring in real-world settings through a practical and 

deployable approach, leveraging existing visual and sensor 

data without the need for additional hardware investment. We 

propose a deep learning-based method for estimating flare 

gas flow using flare images and time-series data of steam 

flow. Spatial features are extracted from the images using a 

convolutional neural network (CNN; LeCun et al., 1998), and 

temporal trends in the steam flow are captured using a long 

short-term memory network (LSTM; Hochreiter & 

Schmidhuber, 1997). These representations are then 

integrated to construct a regression model for flow prediction.  

Since large flare events are abnormal and rare in well-

managed facilities, the available training data for high-flow 

conditions is extremely limited. This results in an imbalanced 

data distribution, which is known to cause bias and reduced 
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generalization in deep learning models (Johnson & 

Khoshgoftaar, 2019). To mitigate this issue, we apply a 

weighted loss function that assigns greater importance to the 

small number of high-flow samples. In addition, we introduce 

penalties for overestimating low-flow samples (and not for 

underestimating high-flow samples), helping to suppress 

false positives. This approach enhances the model's 

robustness against data imbalance.  

Furthermore, to improve input diversity, we apply basic 

image transformations such as brightness and contrast 

adjustments for data augmentation. Even simple techniques 

of this kind have been shown to be effective for improving 

the performance of deep learning models (Perez & Wang, 

2017).  

2. FLARE GAS FLOW RATE ESTIMATION 

2.1. Task  

The task is to estimate gas flow rate using steam flow rates 

and flare images. In general, a higher flare gas flow rate is 

associated with a larger flame area. However, the appearance 

of the flame is also affected by the amount of steam injected 

to suppress black smoke generation. Consequently, 

information on the steam flow rate is essential for estimating 

the flare gas flow rate. Furthermore, the appearance of the 

flare is greatly influenced by day and night differences and 

weather conditions, which makes the accurate estimation of 

the flare gas flow rate more challenging. 

We develop a method for such a task and demonstrate its 

effectiveness with real-world plant operation data collected 

from an actual refinery. 

2.2. Data Acquisition 

In this study, we used data from a flare stack facility equipped 

with a flare gas flow meter. The measured gas flow values 

served as ground truth labels in the training data and were 

used to evaluate prediction errors in the test data. 

Gas flow rate and steam flow rate were recorded at 1-minute 

intervals, while flare images were captured at 10-minute 

intervals. Consequently, timesteps at 10-minute intervals 

contain synchronized data across all three modalities. 

2.3. Data Characteristics 

Our dataset comprises three distinct periods that include high 

gas flow events. For each period, Table 1 summarizes the 

date range, total number of samples at 10-min intervals, and 

the number and percentage of samples exceeding a heuristic 

threshold set to detect high-flow events. Notably, the dataset 

exhibits a significant class imbalance: low-gas flow samples 

are predominant, while high-gas flow samples are rare.  

To preserve confidentiality, in this paper, the threshold is 

denoted just by 𝜏 without revealing its concrete value, and all 

flow values are normalized by dividing them by the global 

maximum value observed across all periods.  

Table 1. Overview of dataset 

Period Date Range Total 

number of  
Samples 
at 10-min 

intervals 

Number of 

Samples 

Above 

Threshold 𝜏 

(Percentage) 

A Oct 25-Nov 30, 

2023 

5235 58 (1.11 %) 

B Mar 1-Mar 31, 

2024 

4464 169 (3.79 %) 

C May 1-Jun 10, 

2024 

5904 227 (3.84 %) 

 

2.4. Data Overview 

Figure 1 and Figure 2 respectively illustrate the gas flow rate 

and steam flow rate over time for each period (A, B, and C). 

Figure 3 shows representative flare images captured under 

different gas flow conditions and at various times of day (e.g., 

morning and night). These images reveal visual differences 

in flare appearance influenced not only by flow rate but also 

by environmental conditions such as lighting and cloud 

coverage.  

 

Figure 1. Normalized Gas Flow Rate Over Time 

 

 

Figure 2. Normalized Steam Flow Rate Over Time 
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Figure 3. Examples of Flare Images under Varying Flow 

and Environmental Conditions 

 

3. METHODS 

We use a multimodal learning approach for estimating gas 

flow rate using flare images and steam flow rate. The task is 

formulated as a regression problem, where the target variable 

is the gas flow rate at each time step.  

3.1. Model Architectures 

We design and compare three neural network models that 

share a common convolutional neural network (CNN) 

encoder for processing flare images. The key difference 

among the models lies in how steam flow rate data is 

processed. Figures 4–6 illustrate the architectures of the three 

models. 

3.1.1. Flare Image 

Input RGB images of size 128×128 pixels are processed 

through two convolutional layers with 3 × 3 kernels and 

padding of 1. The number of channels is increased from 3 to 

16 in the first layer and from 16 to 32 in the second layer. 

Each convolutional layer is followed by a ReLU activation 

and a 2×2 max-pooling layer that reduces spatial dimensions 

by half. After the second pooling, the resulting 32 feature 

maps have spatial dimensions of 32×32. These feature maps 

are flattened and passed through a fully connected layer to 

produce a 32-dimensional feature vector. 

3.1.2. Steam Flow Rate 

For processing steam flow rate information, we try three 

different models as follows: 

• Model 1 (Single Steam Flow Rate): This model uses only 

the steam flow rate at the same time step as the flare 

image. The input steam flow rate value is simply 

concatenated to the output feature vector obtained from 

the CNN processing of the flare image. 

• Model 2 (Sequential Steam Flow Rate): This model 

incorporates a sequence of past steam flow rates, 

including time steps where no image is available. The 

sequence, consisting of 10 time steps sampled at 1-

minute intervals, is processed using a long short-term 

memory (LSTM) network to capture temporal 

dependencies. The LSTM has a single layer with a 

hidden size of 32, and the final hidden state is used as the 

steam flow feature representation. 

• Model 3 (Sequential and Differential Steam Flow Rate): 

This model incorporates a sequence of past steam flow 

rates and corresponding first-order difference sequence. 

The difference sequence has 9 time steps.  Both 

sequences include time steps where no image is available. 

Each sequence is processed by a separate LSTM encoder 
with the same architecture as Model 2. 

3.1.3. Fusion and Prediction 

After encoding each modality, the resulting features are 

concatenated and passed to a linear output layer for gas flow 

rate prediction. 

 

Figure 4. Model 1 (Single Steam Flow Rate) 

 

 

Figure 5. Model 2 (Sequential Steam Flow Rate) 

 

 

Figure 6. Model 3 (Sequential and Differential Steam 

Flow Rate) 

 

3.2. Loss Function 

To address the asymmetry in importance between high-flow 

and low-flow predictions, we introduce a custom Wighted 

Mean Squared Error (Weighted MSE) loss function. The 

objective of the loss function is to prioritize accurate 

prediction of high gas flow events, as failing to detect these 

critical conditions can have significant consequences. 

Simultaneously, the loss penalizes overestimation during 

low-flow periods to reduce false positive alarms. 
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Let 𝑦𝑖  denote the true gas flow rate and 𝑦̂𝑖 the predicted value 

at sample 𝑖. The weighted MSE is defined as: 

ℒ =
1

𝑁
∑ 𝑤𝑖(𝑦̂𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

(1) 

 where 𝑤𝑖  is a sample-specific weight determined by: 

𝑤𝑖 = {

𝑤ℎ𝑖𝑔ℎ ,
𝑤𝑙𝑜𝑤 ,

1,
   

𝑖𝑓 𝑦𝑖 > 𝜏
𝑖𝑓 𝑦𝑖 ≤ 𝜏 𝑎𝑛𝑑 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑦̂𝑖 > 𝜏 (2) 

where 𝜏 is the threshold defined in Section 2.2 to identify 

high-flow events.  

3.3. Data Augmentation 

To increase the size and diversity of the training dataset, we 

generate additional samples by applying image processing 

operations such as color jittering, which randomly adjusts 

brightness, contrast, saturation, and hue, to the original 

images. This approach can double the dataset size and 

enhance data variety. Figure 7 shows pairs of original images 

and their augmented images produced by applying color 

jittering. 

 

 

 

Figure 7. Examples of original and augmented image 

pairs (left: original images, right: augmented images) 

4. EXPERIMENTS 

We conducted experiments using the dataset described in 

Section 2 to evaluate the effectiveness of the proposed 

models. 

4.1. Experimental Setup 

We used data from periods A and B for training, and data 

from period C for testing.  

For image preprocessing, the right half of each image was 

extracted to focus on the region of interest corresponding to 

the target flare stack. The cropped images were subsequently 

resized such that their shorter side measured 128 pixels, 

followed by a center crop to obtain a fixed resolution of 

128×128 pixels. 

All experiments were repeated three times, and the reported 

results represent the average performance across these runs. 

4.2. Evaluation Metrics 

To evaluate the model performance, we use two metrics, 

high-flow MSE, and low-flow MSE. High-flow MSE 

specifically measures the prediction error on samples where 

the true gas flow rate exceeds a predefined threshold 𝜏. Low-

flow MSE measures the error on samples below the threshold 

𝜏. 

4.3. Results 

4.3.1. Steam Flow Rate 

We evaluated the performance of the three models described 

in Section 3.1.2, which differ in how they incorporate steam 

flow rate information. Model 1 uses a single steam flow value. 

Model 2 uses a temporal sequence of past steam flow rates, 

and Model 3 uses both the original steam flow rate sequence 

and its first-order difference. For this experiment, we used 

MSE loss (i.e., 𝑤ℎ𝑖𝑔ℎ = 𝑤𝑙𝑜𝑤 = 1). 

Table 2 represents a comparison of the average model 

performance in terms of high-flow MSE, low-flow MSE for 

the three different input structures of the steam flow rate. The 

results indicate that incorporating temporal sequences 

(Model 2) and additional differential temporal sequences 

(Model 3) leads to a reduction in high-MSE, while 

maintaining comparable low-flow MSE performance.  

Figures 8, 9, and 10 show the time series of predicted gas 

flow rates obtained using Models 1, 2, and 3, respectively. 

Each figure compares the predicted values with the ground 

truth values over the evaluation period. In Model 1, the high-

flow events are not well captured, with most predictions 

tending to classify the flow as low-flow. In contrast to Model 

1, Models 2 and 3 successfully capture the high-flow events, 

with Model 3 providing predictions that more closely match 

the ground truth values. 

Table 2. Comparison of Average Model Performance 

based on Steam Flow Rate Input Structures 

Model High-flow MSE Low-flow MSE 

Model 1 (Single) 148.6 0.320 

Model 2 (Seq.) 128.2 0.372 

Model 3 

(Seq.+Diff) 

122.5 0.206 
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Figure 8. Gas Flow Rate Prediction Using Model 1 

 

 
Figure 9. Gas Flow Rate Prediction Using Model 2 

 

 
Figure 10. Gas Flow Rate Prediction Using Model 3 

4.3.2. Loss Function 

We experimented with different combinations of 𝑤ℎ𝑖𝑔ℎ and 

𝑤𝑙𝑜𝑤 . 𝑤ℎ𝑖𝑔ℎ  is the weight applied to high-flow samples, 

emphasizing their importance in the loss function. 𝑤𝑙𝑜𝑤 

serves as a penalty when the model incorrectly predicts a high 

gas flow rate during low-flow periods. We evaluated 9 

combinations of loss weights, with  

𝑤ℎ𝑖𝑔ℎ ∈ {1, 5, 10} and 𝑤𝑙𝑜𝑤 ∈ {1, 3, 5}. For this experiment, 

we used Model 3, which showed the best performance among 

the steam flow rate input structures in Section 4.3.1. 

Table 3 represents a comparison of the average model 

performance in terms of high-flow MSE, low-flow MSE 

under different loss weight configurations. The results show 

that increasing 𝑤ℎ𝑖𝑔ℎ leads to a reduction in high-flow MSE, 

indicating improved accuracy for high-flow events. However, 

this is accompanied by an increase in low-flow MSE. This 

trade-off highlights the need to carefully balance loss weights 

based on the desired performance priorities. 

Figure 11 and Figure 12 respectively show the time series of 

predicted gas flow rate with the lowest high-flow MSE and 

the lowest low-flow MSE.  

Table 3. Comparison of Average Model Performance 

based on Loss Weight 

𝑤ℎ𝑖𝑔ℎ 𝑤𝑙𝑜𝑤 High-Flow 

MSE 

Low-Flow 

MSE 

1 1 122.49 0.206 

5 94.24 2.555 

10 89.60 8.044 

1 3 130.18 0.175 

5 119.57 1.143 

10 131.66 1.742 

1 5 125.10 0.167 

5 142.34 1.029 

10 120.65 0.954 

 

 

Figure 11. Gas Flow Rate Prediction Using Loss Weights  
𝒘𝒉𝒊𝒈𝒉 = 𝟏𝟎, 𝒘𝒍𝒐𝒘 = 𝟏 

 
Figure 12. Gas Flow Rate Prediction Using Loss Weights  

𝒘𝒉𝒊𝒈𝒉 = 𝟏, 𝒘𝒍𝒐𝒘 = 𝟓 
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4.3.3. Data Augmentation 

We evaluated the performance with data augmentation. For 

this experiment, we used Model 3, which showed the best 

performance among the steam flow rate input structures in 

Section 4.3.1. The evaluation was conducted for 9 

combinations of 𝑤ℎ𝑖𝑔ℎ ∈ {1, 5, 10} and 𝑤𝑙𝑜𝑤 ∈ {1, 3, 5}. 

Table 4 represents a comparison of the average model 

performance in terms of high-flow MSE, low-flow MSE with 

and without data augmentation. The results show that data 

augmentation tends to reduce high-flow MSE in many 

configurations.  

Figure 13 shows the time series of predicted gas flow rate 

with data augmentation (𝑤ℎ𝑖𝑔ℎ = 𝑤𝑙𝑜𝑤 = 1). Compared to 

Figure 10, which shows the result without augmentation, the 

predictions in Figure 13 during high-flow events are more 

accurate. 

 

Table 4. Comparison of Average Model Performance 

With and Without Date Augmentation 

𝑤ℎ𝑖𝑔ℎ 𝑤𝑙𝑜𝑤 Without 

Augmentation 

With 

Augmentation 

High-

flow 

MSE 

Low-

flow 

MSE 

High-

flow 

MSE 

Low-

flow 

MSE 

1 1 122.49 0.206 115.74 0.328 

5 94.24 2.555 92.89 2.666 

10 89.60 8.044 103.43 1.820 

1 3 130.18 0.175 130.68 0.255 

5 119.57 1.143 110.75 0.970 

10 131.66 1.742 101.91 1.226 

1 5 125.10 0.167 141.57 0.158 

5 142.34 1.029 110.87 0.639 

10 120.65 0.954 112.09 1.183 

 

 
Figure 13. Gas Flow Rate Prediction With Data 

Augmentation 
𝒘𝒉𝒊𝒈𝒉 = 𝟏, 𝒘𝒍𝒐𝒘 = 𝟏 

5. CONCLUSION 

We have constructed a multimodal neural network that 

processes the time series of steam flow rates and their first-

order differences using separate LSTM networks, processes 

flare images using a CNN, and integrates these modalities for 

gas flow rate prediction. Compared to models that use only 

single steam flow rate values or incorporate a sequence of 

past steam flow rates, the model that additionally 

incorporates the first-order difference sequence was more 

effective in capturing high-flow events and provided 

predictions that more closely matched the ground truth.  

Furthermore, to address the data imbalance caused by the 

limited number of high-flow samples, we have also designed 

a customized loss function that assigns higher importance to 

high-flow predictions and penalizes overestimation in low-

flow cases. We observed that placing more emphasis on high-

flow events in the loss function tended to improve accuracy 

in predicting high-flow events, while increasing the penalty 

for overestimating low-flow events helped reduce errors in 

such cases. These findings suggest that adjusting the loss 

weights allows flexible control over prediction accuracy for 

different flow rate conditions. 

To further enhance model performance, we also applied data 

augmentation to the flare images, generating additional 

training samples by introducing variations in brightness, 

contrast, saturation, and hue. We observed an improvement 

in high-flow MSE, indicating that data augmentation helps 

improve prediction accuracy. 
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