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ABSTRACT 

One of the challenges of applying Prognostics and Health 

Management (PHM) in industrial systems is the lack of 

labelled training data including anomalies and faults. This 

study proposes training data generation by a physics-based 

numerical model and uncertainty quantification  (UQ) 

considering input uncertainty and model form uncertainty, 

and demonstrates the proposed methodology in a spacecraft 

propulsion system. A one-dimensional numerical model of 

the spacecraft propulsion system has been developed in 

which ignition delay and trapped bubble dynamics are 

modeled. Sources of uncertainty originating in input 

variables of the numerical model are identified by domain 

experts. The probability distributions of them are modeled as 

uniform distributions, and training data are generated through 

the propagation of these probability distributions using a 

Monte Carlo approach. The generated training data were 

compared with available experimental data and showed good 

agreement in time-series and frequency-domain response. 

The 95% confidence interval (C.I.) of total uncertainty, 

integrating input uncertainty and model form uncertainty, 

was evaluated through UQ. The generated data enables the 

use of unsupervised methods for anomaly detection. The C.I. 

can be used as the normal space for anomaly detection. 

1. INTRODUCTION 

Data-driven approaches are widely used for PHM 

(Prognostics and Health Management) (Tahan, M. et al., 

2017; Wang, D., Tsui, K.-L., & Miao, Q., 2018; Lee, J. et al., 

2014) and anomaly detection. However, in real-world 

industrial systems, anomaly data available as training data for 

machine learning is quite limited. In more critical systems 

such as spacecraft and launch vehicles, even normal data 

available is limited. When conducting PHM in such systems, 

where the normal and anomaly data are not sufficient, it is 

important to leverage domain knowledge of the target system. 

In some cases, numerical models of the target system 

incorporating domain knowledge are available. By utilizing 

the numerical model to generate training data for data-driven 

approaches, it becomes possible to conduct health 

management even for systems where training data is 

insufficient(Omata, N. et al., 2022; Satoh, D. et al., 2020). 

It is desirable that the data generated from the models 

reproduce the behavior of the target system. However, in 

practice, numerical models contain errors. Constructing the 

perfect numerical model replicating the behavior and the 

underlying physics is extremely challenging. In addition, 

since real-world systems are affected by the uncertainties that 

come from the surrounding environment and the system itself, 

observations from the system have stochastic perturbations. 

Consequently, it is essential to take such uncertainties into 

account for training data generation. The quality of the 

numerical model is also important. Uncertainty 

Quantification (UQ) can evaluate the numerical simulation 

results in terms of input uncertainty and model error. This 

assessment gives us insights that how we can improve the 

plausibility of the generated training data  by adding another 

physics to the numerical model for more accurate prediction 

or conducting additional experiment for more plausible input 

uncertainty. That activity helps to guarantee the quality of the 

generated training data. 

In this study, we focus on the spacecraft propulsion system 

as the target system and generate training data by using the 

numerical model. The numerical model of the spacecraft 

propulsion system is evaluated through the UQ technique. 

2. SPACECRAFT PROPULSION SYSTEM 

Spacecraft propulsion system plays an essential role in 

docking to the International Space Station (ISS). The system 

consists of propellant and oxidizer tanks, feed lines, 

combustion chambers connected to the end line of the feed 

lines, and nozzles. Multiple nozzles are installed on the 

different faces and generate thrust in different directions. The 

propellant/oxidizer supply to the combustion chamber is 

controlled by opening and closing valves. If a  valve failure 
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occurs, thrust in a particular direction may be lost. During 

critical phases such as landing or docking, failure may cause 

dangerous situations that endanger not only the system itself 

but also the nearby systems and human lives. Therefore, it is 

crucial to identify the failure valves as soon as possible. In 

real spacecraft, the dynamic pressure response on feed lines 

is available. Some previous research was conducted to 

identify fault locations based on the pressure response 

characteristics. 

In this study, we focus on the spacecraft for the Martian 

Moons eXploration (MMX) project. The mission of this 

project is to make a  sample return from the Martian moon 

Phobos. In this mission, the spacecraft plans to land on the 

Phobos ground, and the propulsion system plays a n important 

role. The propulsion system dynamic characteristics were 

validated in a system-level Static Firing Test (SFT). In the 

flight, the system is equipped with two main thrusters and 

twenty small thrusters (RCS: Reaction Control System). In 

the SFT, the test scope was limited to the two main thrusters 

and ten RCSs. The schematic diagram of the propellant 

(hydrazine) feed lines in the SFT is illustrated in Fig.1. 

The configuration of the MMX propulsion system in the SFT 

was modelled(Daimon, Y. et al., 2024). The modeling 

approach is based on fundamental tests using a single 

combustor and physical understanding using Computational 

Fluid Dynamics (CFD). The developed model was 

implemented as a Modelica -based one-dimensional CAE 

model, which incorporates the combustion pressure 

prediction model(Inoue, C. et al., 2021), ignition timing 

prediction model(Daimon, Y. et al., 2023), and trapped 

bubble effect model(Yamamoto, H. et al., 2023). This 

numerical model enables one to predict the dynamic pressure 

response during valve operation sequences, and the results 

have been validated against the experimental results. 

Fig.1 Schematic diagram of MMX propellant feed lines. 

3. SIMULATION-BASED DATA AUGMENTATION 

In the previous research(Tominaga, K. et al., 2023), since the 

valve failure affects the frequency response and modes of the 

pressure dynamics, our target data is the time series and 

frequency response data of the pressure dynamics in feed 

lines. In the field of image recognition, data augmentation is 

performed by simply rotating, scaling, and flipping images. 

However, in this study, the data set we want to generate is 

numerical data obtained as the results of physical phenomena. 

Consequently, it is necessary to consider the underlying 

physics and uncertainties behind the data. 

The measurement data obtained from the real-world system 

contains uncertainty. For example, the measurement results 

vary even in the same operational conditions due to the 

external factors such as the surrounding environment and the 

internal uncertainties the system itself has. In contrast, 

numerical models generate unique and deterministic outputs 

for the obtained input conditions. 

Sources of uncertainty, which are expected to vary among 

multiple test cases, a re recognized from the input variables of 

the MMX propulsion system model through a discussion with  

propulsion system experts, focusing on only the propellant 

feed lines. The recognized sources of uncertainty are shown 

in Table 1. 

Table.1 Sources of uncertainty in the propellant feed lines of 

the MMX propulsion system model. 

Variable Distribution 

Fuel speed of sound Uniform 

Valve opening/closing time delay Uniform 

Fuel inlet tank pressure Uniform 

Outlet tank pressure Uniform 

Trapped bubbles Uniform 

 

The speed of sound in the propellant varies depending on its 

temperature and the vapor deposition of dissolved helium, 

which could result in a two-phase flow. The valve opening 

and closing duration changes due to the pressure difference 

across the valve and manufacturing tolerances. Although the 

propellant tank pressures are regulated, they are not perfectly 

constant but vary stochastically. In the SFT, since some valve 

outlets were connected not to combustion chambers but to 

large tanks, the back pressure of the tanks are identified as 

the sources of uncertainty. Small gas bubbles may be trapped 

in the branching section or at the pressure sensor mounting. 

These trapped bubbles are difficult to mea sure their volume. 

The volumes of the bubbles are estimated based on data 

assimilation to the experimental results. The identified 

bubble locations are shown in Fig.1. 

To model the identified sources of uncertainty as probability 

distributions, enough experimental data is required. However, 

the available experimental data on each operational condition 

were limited. Therefore, each probability distributions of the 

sources of uncertainty are defined as uniform distributions 
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based on the limited experimental data and expert knowledge. 

From the parameter space defined as uniform distributions, 

1024 points are sampled using Latin Hypercube Sampling 

(LHS). A Monte-Carlo simulation was conducted to generate 

synthetic training data. The target operational mode is that 

only the R3 thruster was operated for three pulses, where a 

single pulse is defined as the set of the opening and closing.  

The pressure time-series data was measured at the sensor 

FPR3F in the propellant feed lines. The location of the sensor 

and the operated thruster are illustrated in Fig.1. A Fast 

Fourier Transformation (FFT) was applied to the closing 

duration of the final pulse in the measured time-series data  to 

examine not only the time-series data but frequency-domain 

response. 

4. UNCERTAINTY QUANTIFICATION 

In this study, we performed Uncertainty Quantification (UQ) 

with reference (Roy, C. J. & Oberkampf, W. L., 2011). In this 

method, uncertainty consists of three uncertainties. 

1. Numerical approximation 

2. Input uncertainty 

3. Model form uncertainty 

Numerical approximation is a numerical error related to 

iteration error for iteration computation and discretization 

error, for example. Input uncertainty evaluates the 

uncertainty propagated from the input variables to the output 

variables. Specifically, modeling the sources of uncertainty 

as probability distribution, sampling from these distributions 

and conducting Monte Carlo simulations enable to obtain the 

probability distribution of the output variables. Model form 

uncertainty is the evaluation of the error between the varying 

experimental results and the numerical solutions. Illustrating 

the input uncertainty and the experimental results in 

Cumulative Density Function (CDF) and calculating the area 

covered with these two CDFs obtain the evaluation of the 

error between the experiment and the simulation. This area is 

called Area Validation Metric and is equal to the expectation 

of the difference between these two probability distributions. 

For anomaly detection of the valve failure, since frequency-

domain response is important (Tominaga, K. et al., 2023), we 

chose the first modal frequency of the closed duration in the 

operation sequence as Quantity of Interest (QoI). The results 

of FFT can be affected by sidelobes and frequency resolution 

due to signal length and window function settings. Since the 

pressure time-series dynamics in closed duration closely  

resemble a dumped sinusoidal waveform, we evaluated the 

modal frequency by modal decomposition using a 

superposition of damped sinusoidal waveforms. By 

optimizing the parameters of the damped sinusoidal 

waveform to match the original time-series data , the 

frequency of the signal can be estimated more reliably. In this 

study, we evaluated input uncertainty, model form 

uncertainty, and total uncertainty. 

5. RESULTS AND DISCUSSION 

5.1. Data augmentation 

The synthetic training data  are compared with the 

experimental data. Figure 2 illustrates the pressure time-

series dynamics on the sensor FPR3F in the propellant feed 

lines. Randomly chosen a single data out of 1024 cases is 

shown. 

Fig.2 Pressure time-series dynamics on the sensor FPR3F 

in the propellant feed lines. 

Since the tank pressure measured during the test campaign 

was used as the simulation input, the mean pressure in the 

opening and closing duration agrees with the experimental 

results. Not only the mean but the frequency and the 

amplitude agree as well.  

The generated 1024 cases are compared with the experiment. 

In this figure, 128 samples out of 1024 samples are randomly 

chosen for ease of visibility. Figure 3 shows the pressure 

time-series dynamics of the 128 cases on the sensor FPR3F. 

Fig.3 Pressure time-series dynamics on the sensor FPR3F. 

Comparison between the synthetic 128 cases and the 

experimental data. 

The mean pressure in the opening duration agrees with the 

experiment. However, the mean pressure in the closing 

duration is lower than the experimental value. The tank 

pressure affects the mean pressure in the closing duration, 

which is regulated in the morning of each test day and 

gradually decreases as the experiments proceed. The range of 

tank pressure was determined from the minimum and 

maximum values observed during a test day. Since the 

experimental result shown in Fig.3 was obtained from the 

first test of the day, the mean pressure of the experiment is 

higher than the generated data. The surge pressure of the 

generated data is lower than the experiment, which is 
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influenced by multiple factors such as valve closing speed 

and trapped bubbles. In this study, since the focus is on modal 

frequencies in the frequency domain, the errors on the mean 

pressure and surge pressure are not critical. Overall, the 

generated data generally encompasses experimental result, 

indicating that assumption of the sources of uncertainty was 

appropriate.  

In addition to the time-series dynamics, the frequency-

domain response was examined. The duration shown in Fig.2 , 

ranging from 0.6 to 0.8s, was processed by FFT. Figures 4 

illustrate the frequency-domain response from the sensor 

FPR3F. As with Fig.3, 128 samples were randomly chosen 

out of 1024 samples in Fig.4. 

Fig.4 Frequency-domain response of the pressure 

dynamics on the sensor FPR3F. Comparison between the 

synthetic 128 samples and the experimental data. 

The frequency response exhibits modes associated with the 

propellant feed line geometry and the trapped bubbles. 

Additional modes emerge by the effect of the bends and 

branch points in the feed lines. The biggest mode around 

28Hz corresponds to a primary mode of the feed line, which 

is reproduced in the generated data. The modal frequency 

varies from 20 to 40Hz depending on the sources of 

uncertainty. The modal frequency around 90Hz also comes 

from the feed line geometry, which varies from 50 to 100Hz. 

The modal frequencies over 100Hz have minor discrepancies 

between the experimental and simulation results. Since these 

higher modes are influenced by the location and volume of 

the trapped gases, the assumption of the trapped gas location 

may be different from the experimental situation. Although 

minor discrepancies in the higher frequency area  exist, the 

generated training data successfully reproduced both the 

time-series and frequency-domain characteristics. The 

generated training data enables one to conduct unsupervised 

learning-based anomaly detection. 

5.2. Uncertainty Quantification 

UQ was performed for the first modal frequency from FPR3F 

in Fig.4. Modal decomposition by a superposition of 

dumped-sinusoidal waveform was applied to the closing 

duration in Fig.2 to evaluate the first modal frequency. Figure 

5 shows the CDF of the first modal frequency extracted from 

the 1024 samples and the model form uncertainty. Since only 

the single experimental data was available, it is represented 

as a single straight line in Fig.5. 

From the CDF of the numerical simulation, the 95% 

Confidence Interval (C.I.) ranges from 29.09 to 31.15Hz. The 

error between the generated data and the experimental data 

was evaluated based on area validation metric and was found 

to be 1.29Hz. The 95% C.I. of the total uncertainty based on 

the input uncertainty and model form uncertainty ranges from 

27.79 to 32.45Hz. This C.I. can be utilized as a normal space 

for anomaly detection. Increasing the amount of experimental 

data and modeling the sources of uncertainty with more 

plausible probability distributions will improve the fidelity of 

the synthetic dataset and the C.I., and enhance the reliability 

of PHM in data -limited systems. 

 

Fig.5 Assessment of the generated training data in the form 

of input uncertainty and model form uncertainty. 

6. CONCLUSION 

In this study, we focused on the spacecraft propulsion system  

and investigated synthetic data generation for PHM in 

systems where available normal and anomaly data for 

machine learning are quite limited. Synthetic training data 

was generated by the 1D-CAE numerical model 

incorporating domain knowledge. We applied Uncertainty 

Quantification (UQ) to assess the generated training data in 

comparison to the experimental data. Sources of uncertainty 

from the input variables in the numerical model of the 

system-level static firing test were identified through 

discussions with propulsion system experts and modelled as 

probability distributions. From these sources of uncertainty, 

Latin Hypercube sampling and Monte Carlo simulations on 

the numerical model enable one to generate synthetic training 
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data. Comparison with the experimental data in the same 

operational conditions showed that the generated data  

successfully reproduced the time-series dynamics and 

frequency-domain response characteristics. These generated 

training data can be utilized for unsupervised learning-based 

anomaly detection. In addition, UQ was conducted for the 

first modal frequency, which is important for valve failure 

detection, to evaluate input uncertainty, model form 

uncertainty, and total uncertainty. Taking into account both 

the effect of the sources of uncertainty and the inherent error 

of the 1D-CAE model, the 95% confidence interval of the 

predictions was evaluated. This confidence interval can be 

used as a normal space for anomaly detection. Modeling the 

probability distribution of uncertainty sources more plausibly 

by increasing the amount of available experimental data  will 

improve the reliability of unsupervised learning-based and 

confidence interval-based anomaly detection. The proposed 

approach provides a means of health monitoring for data-

limited systems such as spacecraft. In future application, it is 

expected to contribute to autonomous health management 

and state-dependent operation in Orbital Transfer Vehicles 

(OTVs) and planetary exploration spacecraft. 
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