Assessment of simulation-based data augmentation technique by
Uncertainty Quantification for spacecraft propulsion system PHM.
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ABSTRACT

One of the challenges of applying Prognostics and Health
Management (PHM) in industrial systems is the lack of
labelled training data including anomalies and faults. This
study proposes training data generation by a physics-based
numerical model and uncertainty quantification (UQ)
considering input uncertainty and model form uncertainty,
and demonstrates the proposed methodology in a spacecraft
propulsion system. A one-dimensional numerical model of
the spacecraft propulsion system has been developed in
which ignition delay and trapped bubble dynamics are
modeled. Sources of uncertainty originating in input
variables of the numerical model are identified by domain
experts. The probability distributions of them are modeled as
uniform distributions, and trainingdata are generated through
the propagation of these probability distributions using a
Monte Carlo approach. The generated training data were
compared with available experimentaldata and showed good
agreement in time-series and frequency-domain response.
The 95% confidence interval (C.I.) of total uncertainty,
integrating input uncertainty and model form uncertainty,
was evaluated through UQ. The generated data enables the
use of unsupervised methods foranomaly detection. The C.I.
can be used as the normal space for anomaly detection.

1. INTRODUCTION

Data-driven approaches are widely used for PHM
(Prognostics and Health Management) (Tahan, M. et al,
2017; Wang, D., Tsui, K.-L., & Miao,Q., 2018; Lee, J. etal,
2014) and anomaly detection. However, in real-world
industrial systems,anomaly dataavailable astrainingdata for
machine learning is quite limited. In more critical systems
such as spacecraft and launch vehicles, even normal data
available is limited. When conductingPHM in such systems,
where the normal and anomaly data are not sufficient, it is
important to leverage domain knowledge of the target system.
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In some cases, numerical models of the target system
incorporating domain knowledge are available. By utilizing
the numericalmodel to generate training data for data-driven
approaches, it becomes possible to conduct healh
management even for systems where training data is
insufficient(Omata, N. et al., 2022; Satoh, D. et al., 2020).

It is desirable that the data generated from the models
reproduce the behavior of the target system. However, in
practice, numerical models contain errors. Constructing the
perfect numerical model replicating the behavior and the
underlying physics is extremely challenging. In addition,
since real-world systems are affected by the uncertainties that
come from the surrounding environment and the system itself,
observations from the system have stochastic perturbations.
Consequently, it is essential to take such uncertainties into
account for training data generation. The quality of the
numerical model is also important. Uncertainty
Quantification (UQ) can evaluate the numerical simulation
results in terms of input uncertainty and model error. This
assessment gives us insights that how we can improve the
plausibility of the generated training data by adding another
physics to the numerical model for more accurate prediction
or conducting additionalexperiment formore plausible input
uncertainty. Thatactivity helps to guarantee the quality of the
generated training data.

In this study, we focus on the spacecraft propulsion system
as the target system and generate training data by using the
numerical model. The numerical model of the spacecraft
propulsion system is evaluated through the UQ technique.

2. SPACECRAFT PROPULSION SYSTEM

Spacecraft propulsion system plays an essential role in
docking to the International Space Station (ISS). The system
consists of propellant and oxidizer tanks, feed lines,
combustion chambers connected to the end line of the feed
lines, and nozzles. Multiple nozzles are installed on the
different faces and generate thrust in different directions. The
propellant/oxidizer supply to the combustion chamber is
controlled by opening and closing valves. If a valve failure
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occurs, thrust in a particular direction may be lost. During
critical phases such as landing or docking, failure may cause
dangerous situations that endangernot only the system itself
butalso the nearby systems and human lives. Therefore, it is
crucial to identify the failure valves as soon as possible. In
real spacecraft, the dynamic pressure response on feed lines
is available. Some previous research was conducted to
identify fault locations based on the pressure response
characteristics.

In this study, we focus on the spacecraft for the Martian
Moons eXploration (MMX) project. The mission of this
project is to make a sample return from the Martian moon
Phobos. In this mission, the spacecraft plans to land on the
Phobos ground, and the propulsion system plays an important
role. The propulsion system dynamic characteristics were
validated in a system-level Static Firing Test (SFT). In the
flight, the system is equipped with two main thrusters and
twenty small thrusters (RCS: Reaction Control System). In
the SFT, thetest scope was limited to the two main thrusters
and ten RCSs. The schematic diagram of the propellant
(hydrazine) feed lines in the SFT is illustrated in Fig.1.

The configuration of the MMX propulsion system in the SFT
was modelled(Daimon, Y. et al, 2024). The modeling
approach is based on fundamental tests using a single
combustor and physical understanding using Computational
Fluid Dynamics (CFD). The developed model was
implemented as a Modelica-based one-dimensional CAE
model, which incorporates the combustion pressure
prediction model(Inoue, C. et al, 2021), ignition timing
prediction model(Daimon, Y. et al, 2023), and trapped
bubble effect model(Yamamoto, H. et al, 2023). This
numericalmodel enables one to predict the dynamic pressure
response during valve operation sequences, and the results
have been validated against the experimental results.
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Fig.1 Schematic diagram of MMX propellant feed lines.

3. SIMULATION-BASED DATA AUGMENTATION

In the previous research(Tominaga, K. et al., 2023), since the
valve failure affects the frequency response and modes of the
pressure dynamics, our target data is the time series and

frequency response data of the pressure dynamics in feed
lines. In the field of image recognition, data augmentation is
performed by simply rotating, scaling, and flipping images.
However, in this study, the dataset we want to generate is
numericaldata obtained asthe results of physical phenomena.
Consequently, it is necessary to consider the underlying
physics and uncertainties behind the data.

The measurement data obtained from the real-world system
contains uncertainty. For example, the measurement results
vary even in the same operational conditions due to the
externalfactors such as the surrounding environment and the
internal uncertainties the system itself has. In contrast,
numerical models generate unique and deterministic outputs
for the obtained input conditions.

Sources of uncertainty, which are expected to vary among
multiple test cases,arerecognized from the input variables of
the MMX propulsion system model through a discussion with
propulsion system experts, focusing on only the propellant
feed lines. The recognized sources of uncertainty are shown
in Table 1.

Table.1 Sources of uncertainty in the propellant feed lines of
the MMX propulsion system model.

Variable Distribution
Fuel speed of sound Uniform
Valve opening/closing time delay Uniform
Fuel inlet tank pressure Uniform
Outlet tank pressure Uniform
Trapped bubbles Uniform

The speed of sound in the propellant varies depending on its
temperature and the vapor deposition of dissolved helium,
which could result in a two-phase flow. The valve opening
and closing duration changes due to the pressure difference
across the valve and manufacturingtolerances. Although the
propellant tank pressures are regulated, they are not perfectly
constantbut vary stochastically. In the SFT, since some valve
outlets were connected not to combustion chambers but to
large tanks, the back pressure of the tanks are identified as
the sources of uncertainty. Small gas bubbles may be trapped
in the branching section or at the pressure sensor mounting.
These trapped bubbles are difficult to measure their volume.
The volumes of the bubbles are estimated based on data
assimilation to the experimental results. The identified
bubble locations are shown in Fig.1.

To model the identified sources of uncertainty as probability
distributions, enough experimentaldata isrequired. However,
theavailable experimentaldata on each operational condition
were limited. Therefore, each probability distributions of the
sources of uncertainty are defined as uniform distributions
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based on the limited experimentaldata and expert knowledge.
From the parameter space defined as uniform distributions,
1024 points are sampled using Latin Hypercube Sampling
(LHS). A Monte-Carlo simulation was conducted to generate
synthetic training data. The target operational mode is that
only the R3 thruster was operated for three pulses, where a
single pulse is defined as the set of the opening and closing.
The pressure time-series data was measured at the sensor
FPR3F in the propellant feed lines. The location of the sensor
and the operated thruster are illustrated in Fig.1. A Fast
Fourier Transformation (FFT) was applied to the closing
duration of the final pulse in the measured time-series data to
examine not only the time-series data but frequency-domam
response.

4. UNCERTAINTY QUANTIFICATION

In this study, we performed Uncertainty Quantification (UQ)
with reference (Roy, C.J. & Oberkampf, W.L., 2011).In this
method, uncertainty consists of three uncertainties.

1. Numerical approximation
2. Input uncertainty
3. Model form uncertainty

Numerical approximation is a numerical error related to
iteration error for iteration computation and discretization
error, for example. Input uncertainty evaluates the
uncertainty propagated from the input variables to the output
variables. Specifically, modeling the sources of uncertainty
as probability distribution, sampling from these distributions
and conductingMonte Carlo simulations enable to obtain the
probability distribution of the output variables. Model form
uncertainty is the evaluation of the error between the varying
experimentalresults and the numerical solutions. Illustrating
the input uncertainty and the experimental results in
Cumulative Density Function (CDF) and calculatingthe area
covered with these two CDFs obtain the evaluation of the
error between the experiment and the simulation. This area is
called Area Validation Metric and is equalto the expectation
of'the difference between these two probability distributions.

For anomaly detection of the valve failure, since frequency-
domain response is important (Tominaga, K. etal., 2023), we
chose the first modalfrequency of the closed duration in the
operation sequence as Quantity of Interest (Qol). The results
of FFT canbe affected by sidelobes and frequency resolution
due to signal length and window function settings. Since the
pressure time-series dynamics in closed duration closely
resemble a dumped sinusoidal waveform, we evaluated the
modal frequency by modal decomposition using a
superposition of damped sinusoidal waveforms. By
optimizing the parameters of the damped sinusoidal
waveform to match the original time-series data, the
frequency of the signal can be estimated more reliably. In this
study, we evaluated input uncertainty, model fomm
uncertainty, and total uncertainty.

5. RESULTS AND DISCUSSION

5.1. Data augmentation

The synthetic training data are compared with the
experimental data. Figure 2 illustrates the pressure time-
series dynamics on the sensor FPR3F in the propellant feed
lines. Randomly chosen a single data out of 1024 cases is
shown.
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Fig.2 Pressure time-series dynamicson the sensor FPR3F

in the propellant feed lines.

Since the tank pressure measured during the test campaign
was used as the simulation input, the mean pressure in the
opening and closing duration agrees with the experimental
results. Not only the mean but the frequency and the
amplitude agree as well.

The generated 1024 cases are compared with the experiment.
In this figure, 128 samplesoutof 1024 samples are randomly
chosen for ease of visibility. Figure 3 shows the pressure
time-series dynamics of the 128 cases on the sensor FPR3F.
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Fig.3 Pressure time-series dynamics on the sensor FPR3F.
Comparison between the synthetic 128 cases and the
experimental data.

The mean pressure in the opening duration agrees with the
experiment. However, the mean pressure in the closing
duration is lower than the experimental value. The tank
pressure affects the mean pressure in the closing duration,
which is regulated in the moming of each test day and
gradually decreases asthe experiments proceed. The range of
tank pressure was determined from the minimum and
maximum values observed during a test day. Since the
experimental result shown in Fig.3 was obtained from the
first test of the day, the mean pressure of the experiment is
higher than the generated data. The surge pressure of the
generated data is lower than the experiment, which is
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influenced by multiple factors such as valve closing speed
and trapped bubbles. In this study, since the focus is on modal
frequencies in the frequency domain, the errors on the mean
pressure and surge pressure are not critical. Overall, the
generated data generally encompasses experimental result,
indicating that assumption of the sources of uncertainty was
appropriate.

In addition to the time-series dynamics, the frequency-
domain response was examined. The duration shown in Fig.2,
ranging from 0.6 to 0.8s, was processed by FFT. Figures 4
illustrate the frequency-domain response from the sensor
FPR3F. As with Fig.3, 128 samples were randomly chosen
out of 1024 samples in Fig.4.
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Fig4 Frequency-domain response of the pressure
dynamics on the sensor FPR3F. Comparison between the
synthetic 128 samples and the experimental data.

The frequency response exhibits modes associated with the
propellant feed line geometry and the trapped bubbles.
Additional modes emerge by the effect of the bends and
branch points in the feed lines. The biggest mode around
28Hz corresponds to a primary mode of the feed line, which
is reproduced in the generated data. The modal frequency
varies from 20 to 40Hz depending on the sources of
uncertainty. The modal frequency around 90Hz also comes
from the feed line geometry, which varies from 50 to 100Hz.
The modalfrequencies over I00Hz have minordiscrepancies
between the experimental and simulation results. Since these
higher modes are influenced by the location and volume of
the trapped gases, the assumption of the trapped gaslocation
may be different from the experimental situation. Although
minor discrepancies in the higher frequency area exist, the
generated training data successfully reproduced both the
time-series and frequency-domain characteristics. The
generated training data enables one to conductunsupervised
learning-based anomaly detection.

5.2. Uncertainty Quantification

UQ was performed forthe first modal frequency from FPR3F
in Fig4. Modal decomposition by a superposition of
dumped-sinusoidal waveform was applied to the closing
duration in Fig.2 to evaluate the first modalfrequency. Figure
5 shows the CDF of the first modalfrequency extracted from
the 1024 samplesand the model form uncertainty. Since only

the single experimental data was available, it is represented
as a single straight line in Fig.5.

From the CDF of the numerical simulation, the 95%
Confidence Interval (C.I.) ranges from 29.09 to 31.15Hz. The
error between the generated data and the experimental data
was evaluated based on area validation metric and was found
to be 1.29Hz. The 95% C.I. of the totaluncertainty based on
the input uncertainty and model form uncertainty ranges from
27.79to 32.45Hz. This C.I. can be utilized asa normalspace
foranomaly detection. Increasingthe amountof experimental
data and modeling the sources of uncertainty with more
plausible probability distributions will improve the fidelity of
the synthetic dataset and the C.I., and enhance the reliability
of PHM in data-limited systems.
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Fig.5 Assessment of the generated trainingdata in the fom
of input uncertainty and model form uncertainty.

6. CONCLUSION

In this study, we focused on the spacecraft propulsion system
and investigated synthetic data generation for PHM in
systems where available normal and anomaly data for
machine learning are quite limited. Synthetic training data
was generated by the 1D-CAE numerical model
incorporating domain knowledge. We applied Uncertainty
Quantification (UQ) to assess the generated training data n
comparison to the experimental data. Sources of uncertainty
from the input variables in the numerical model of the
system-level static firing test were identified through
discussions with propulsion system experts and modelled as
probability distributions. From these sources of uncertainty,
Latin Hypercube sampling and Monte Carlo simulations on
the numericalmodel enable one to generate synthetic training
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data. Comparison with the experimental data in the same
operational conditions showed that the generated data
successfully reproduced the time-series dynamics and
frequency-domain response characteristics. These generated
training data can be utilized for unsupervised learning-based
anomaly detection. In addition, UQ was conducted for the
first modal frequency, which is important for valve failure
detection, to evaluate input uncertainty, model fomm
uncertainty, and total uncertainty. Taking into account both
the effect of the sources of uncertainty and the inherent error
of the 1D-CAE model, the 95% confidence interval of the
predictions was evaluated. This confidence interval can be
used as a normalspace for anomaly detection. Modeling the
probability distribution of uncertainty sources more plausibly
by increasing the amount of available experimentaldata will
improve the reliability of unsupervised learning-based and
confidence interval-based anomaly detection. The proposed
approach provides a means of health monitoring for data-
limited systems such as spacecraft. In future application, it is
expected to contribute to autonomous health management
and state-dependent operation in Orbital Transfer Vehicles
(OTVs) and planetary exploration spacecraft.
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