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ABSTRACT 

High-voltage (HV) relays are essential in electric vehicle 

(xEV) power systems, but they are subject to thermal stress 

that accelerates contact degradation and can cause severe 

failures such as power outages or fires. Monitoring internal 

terminal temperature is critical for early detection of such 

degradation, yet direct sensor installation is restricted by 

packaging, cost, and sealing constraints. To overcome this 

limitation, we propose a hybrid Virtual Thermal Sensor (VTS) 

that estimates internal relay temperatures using only external 

signals, including ambient temperature, busbar temperature, 

coil voltage, and load current. The framework integrates a 

physics-based RC thermal circuit State-Space Model (RC-

SSM) with a residual Temporal Convolutional Network 

(TCN), where the RC-SSM provides baseline thermal 

behavior and the residual TCN compensates for modeling 

inaccuracies through multivariate time-series learning. 

Experimental evaluation was conducted using accelerated 

life test data collected under controlled environments and 

high-current conditions, with a total of six multivariate 

variables, including load current and busbar temperature. For 

ground truth, thermocouples were inserted inside terminals 

via special machining to measure internal temperatures. 

Compared to existing related studies, our hybrid VTS 

demonstrated superior performance in both prediction 

sensitivity and steady-state stability. The proposed 

technology is applicable to HV relays and other components 

where internal temperature measurement is not feasible, 

providing a robust foundation for state estimation and fault 

prognosis. 

1. INTRODUCTION 

HV relays are essential components of xEV power 

conversion systems, serving to maintain or interrupt the flow 

of current between the HV battery and the inverter. The 

operational reliability of HV relays has a direct impact on 

vehicle performance and safety, making the early diagnosis 

and management of potential failures critically important. 

Among various environmental stresses, thermal stress exerts 

a dominant influence on the performance degradation of HV 

relays. At the electrical contact interface, contact resistance 

is formed, and when high current is applied, resistive heating 

occurs, leading to a rise in temperature. This, in turn, 

accelerates the thermal degradation of surrounding polymer 

materials and can cause deformation of internal structures, 

resulting in abnormal opening or short-circuiting. Such 

failures can lead to serious safety issues at the vehicle level, 

including system power shutdowns or component damage. 

Monitoring the temperature of internal electrical contact 

surfaces is essential for the early detection of thermal 

degradation. However, installing sensors directly inside a 

sealed relay housing is often impractical due to packaging 

constraints, sealing requirements, insulation design 

considerations, and cost limitations. External temperatures 

such as those measured at the busbar or housing surface can 

be obtained relatively easily, but they do not accurately 

reflect the actual thermal state at the internal contact interface. 

Consequently, reliably estimating internal terminal 

temperature under sensor placement constraints is becoming 

increasingly important for effective relay condition 

monitoring. To address this challenge, VTS (Shin, Ko, & So, 

2022) (Ahn, Oh, Kim, Park, & Kim, 2022) have been 

investigated as a non-intrusive temperature estimation 

technology that infers internal thermal states from 

measurable external signals. Traditional physics-based 

models such as RC thermal circuits (Silva, 2022) offer 

physically interpretable results and stable long-term trends, 

but they struggle to capture nonlinear effects, material 

degradation, and transient dynamics under diverse operating 

conditions. In contrast, data-driven models(e.g., 

RNN/LSTM/TCN) can directly learn complex patterns from 

data but risk overfitting and lack physical consistency. 
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This study proposes a hybrid VTS framework that integrates 

an RC-SSM with a residual TCN (van den Oord et al., 2016) 

(Bai, Kolter, & Koltun, 2018) to estimate the internal contact 

temperature of relays, which is difficult to measure directly, 

using measurable parameters. To address the degradation in 

prediction accuracy caused by outliers in time-series 

forecasting, a preprocessing method based on temperature 

fluctuation characteristics is applied. The RC-SSM generates 

baseline temperature estimates grounded in physical heat 

transfer dynamics, ensuring stability under steady-state 

conditions, while the residual TCN learns to compensate for 

dynamics that are difficult to model and nonlinear effects, 

improving sensitivity during dynamic transitions. This hybrid 

approach is designed to overcome the limitations of single-

model methods and provides a robust and accurate solution 

for real-time thermal estimation and health monitoring of HV 

relays in practical operating environments. The main 

contributions of this study are as follow: 

• A novel VTS model combining RC-SSM and residual 

TCN was developed to reliably estimate the internal 

temperature of a relay. 

• Accurate estimation of internal temperature from only 

measurable parameters eliminates the additional 

processing and cost constraints of direct sensing. 

• The proposed model is designed to be expandable 

beyond hardware relays to other sealed applications 

where internal temperature measurement is not possible, 

demonstrating high versatility and scalability. 

The rest of this paper is organized as follows. Section 2 

presents the methodology of this study, including data 

preprocessing, the design of the RC-SSM, the design of the 

TCN model, and the integration of these into the hybrid 

model. Section 3 describes the experimental study, and 

finally Section 4 concludes the paper. 

2. METHODOLOGY 

The following section presents the overall methodology for 

developing the proposed VTS framework, which combines a 

physics-based RC-SSM with a residual TCN for multivariate 

time-series prediction. The workflow consists of four main 

stages: 

1. Raw data acquisition and preprocessing (sequence 

structuring, outlier removal) 

2. RC thermal model estimation using steady-state padding 

and N4SID-based RC-SSM 

3. TCN modeling with dilated causal convolutions for 

sequence-to-sequence prediction 

4. Hybrid integration of RC-SSM with Residual TCN with 

performance evaluation 

Figure 1 summarizes the pipeline. 

 

 

Figure 1. Overall workflow. 

2.1. Data Preprocessing 

Measured data can be contaminated by outliers due to 

environmental factors, sensing errors, and electrical noise. 

Such an outlier can degrade the model accuracy during 

training. Therefore, by removing outliers from the input 

dataset, the model learns only the data that are meaningful 

and relevant to the target prediction. In this study, outlier 

detection is performed based on the fluctuation pattern of 

“temperature” (Liu, Yang, Zhang, Gao, & Li, 2023). The 

temperature gradient between consecutive samples is 

calculated and any value exceeding a predefined threshold is 

considered abnormal and removed from the dataset. The 

dataset is segmented into multiple sequences, where each 

sequence contains time-continuous operational data without 

any interruptions or missing segments. This ensures that the 

temporal dependencies required for multivariate time-series 

learning are preserved, enabling the model to accurately 

capture both short-term and long-term dynamics for precise 

internal temperature estimation. 

2.2. RC-SSM (RC Thermal Circuit State-Space Model) 

To establish a physically interpretable baseline for internal 

temperature prediction, we model the relay’s internal contact 

node using a lumped RC thermal circuit (Fig. 2) (Liu et al. 

2023). With ambient temperature 𝑇1, internal temperature 𝑇2, 

thermal resistance 𝑅th , and thermal capacitance 𝐶th , the 

governing equation is expressed by Eq. (1): 
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Figure 2. Equivalent RC thermal circuit. 

 

𝐶𝑡ℎ  
𝑑(𝑇2−𝑇1)

𝑑𝑡
= 𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑡) + 𝑃𝑐𝑜𝑖𝑙(𝑡) −

𝑇2−𝑇1

𝑅𝑡ℎ
(1)  

The coil power is directly measurable, 𝑃coil(𝑡) =
𝑉coil(𝑡) 𝐼coil(𝑡). When the contact resistance is unavailable, 

the contact heating is approximated as 𝑃contact(𝑡) ≈
𝑘 𝐼load

2 (𝑡) , which is consistent with Joule heating and is 

practical for sealed relays. 

From cooling segments (𝐼load ≈ 0), we fit exponential decays 

to estimate a representative time constant 𝜏. From steady-

state heating, the temperature rise Δ𝑇𝑠𝑠 is obtained by Eq. (2): 
 

Δ𝑇𝑠𝑠 ≈ 𝑎 𝐼load
2 + 𝑏 𝑃coil     (2) 

which decouples 𝑅th = 𝑏 and 𝑘 = 𝑎/𝑏. Finally, 𝐶th = 𝜏/𝑅th. 

Applying this procedure yields the parameters in Table 1. 

These values are physically plausible for a terminal and 

busbar assembly, indicating that the simplified RC model 

captures the effective thermal behavior. 

 

Table 1. Estimated RC thermal parameters. 
 

Parameter Value Unit 

𝑅th 5.6072 ∘C/W 

𝐶th 100.9 ∘C 

𝜏 = 𝑅th𝐶th 566.0 s 

 

To incorporate multivariate excitations and higher-order 

dynamics, we further identify a discrete-time state-space 

model using the N4SID (Numerical Algorithms for Subspace 

State Space System Identification) method (Fig. 3) ((van 

Overschee & de Moor, 1993): 
 

 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡   (3a) 

 𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 (3b) 

Where: 

𝑥𝑡 : State vector at time step t 

𝑢𝑡 : Input vector at time step t 

𝑦𝑡  : Output scalar at time step t 

𝐴 ∈ ℝ3×3 : State-transition matrix 

𝐵 ∈ ℝ3×6 : Input matrix 

𝐶 ∈ ℝ1×3 : Output matrix 

𝐷 ∈ ℝ1×6 : Direct-feedthrough matrix 

 

Figure 3. Structure of the N4SID Algorithm. 

 

Before identification, each sequence is prepended with a 

constant-temperature segment. This “steady-state padding” 

allows the observer state 𝑥0  to converge to a realistic 

condition before dynamic variations occur, improving 

stability and accuracy. 

In summary, the RC-SSM combines effective single-lump 

parameters (𝑅th, 𝐶th, 𝜏 ) with an N4SID-based multivariate 

realization ( 𝐴, 𝐵, 𝐶, 𝐷 ). The former provides physical 

interpretability, while the latter captures data-driven 

dynamics. This stable baseline will be extended with a 

residual TCN in Section 2.4 to enhance dynamic sensitivity. 

 

 

Figure 4. Structure of TCN (Kernal size = 5,  

Dilation={1, 2, 4}) 

2.3. TCN(Temporal Convolutional Network) Model 

The TCN is a convolution-based architecture widely applied 

in time-series forecasting due to its ability to efficiently 

capture both short- and long-term temporal dependencies. 

Unlike recurrent neural networks, TCN processes all time 

steps in parallel, which enables faster training and inference 

while avoiding issues such as vanishing or exploding 
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gradients. A central characteristic of TCN is the use of causal 

convolutions, which ensure that the output at time step t 

depends only on the current and past inputs, thereby 

preserving the chronological order of the data. This can be 

expressed as Eq. (4) (Bai et al. 2018): 

 𝑦𝑡 = ∑ 𝑤𝑖

𝑘−1

𝑖=0

⋅ 𝑥𝑡−𝑖   (4) 

Where: 

𝑥𝑡 : Output feature at time step t 

𝑘 : Kernel size (number of taps 

𝑤𝑖  : Convolution weight at lag 𝑖 

𝑥𝑡−𝑖 : Input at lag 𝑖 (from time 𝑡 − 𝑖) 

To expand the receptive field without excessively increasing 

model depth, TCN employs dilated convolutions. The dilated 

causal convolution at time step t with dilation factor d is 

defined as Eq. (5) (Yu and Koltun, 2016): 

 
 

 𝑦𝑡 = ∑ 𝑤𝑖

𝑘−1

𝑖=0

⋅ 𝑥𝑡−𝑑𝑖   (5) 

Where: 

𝑑 : dilation factor 

In this study, the TCN architecture consists of three 

sequential 1D convolutional layers with a kernel size of 𝒌 =
5 and dilation factors 𝒅 ∈ {1,2,4}, each followed by a ReLU 

activation. As illustrated in Figure 4, padding is applied to 

preserve sequence length across layers, and a final 𝟏 × 𝟏 

convolution layer maps the hidden representation to the 

predicted temperature output. 

This architecture provides several benefits. By leveraging 

multiple dilation factors, the network can effectively capture 

temporal dependencies at both short and long time horizons. 

The parallel processing of all time steps enhances 

computational efficiency, while the absence of recurrent 

feedback loops contributes to stable gradient propagation 

during training. Furthermore, the structure can be applied to 

sequences of varying lengths without requiring architectural 

modifications, making it highly flexible for different datasets 

and application scenarios. 

2.4. Hybrid Model 

While the RC-SSM provides physically interpretable and 

stable long-term predictions, its assumption of constant 

parameters and linear dynamics limits its ability to capture 

nonlinear effects, rapid transients, and degradation-induced 

changes. Conversely, the TCN excels at learning complex 

temporal dependencies directly from data but lacks physical 

constraints, which may lead to unrealistic extrapolation under 

unseen operating conditions. To leverage the complementary 

strengths of both approaches, a hybrid modeling framework 

is proposed in which the RC-SSM captures the dominant 

thermal dynamics, and a data-driven residual model corrects 

for its systematic errors. The overall structure of the hybrid 

VTS is shown in Figure 5. Let the residual at time step t be 

defined as Eq. (6): 
 

 𝑟𝑡 = 𝑦𝑡
true − 𝑦𝑡

RC-SSM   (6) 

Where: 

𝑟𝑡 : Temperature residual 

𝑦𝑡
true: Measured terminal temperature 

𝑦𝑡
RC-SSM : Temperature predicted by the RC-SSM 

The residual 𝐫𝐭  therefore represents the temperature 

component unexplained by the RC-based thermal circuit, 

including nonlinear heating, unmodeled thermal paths, and 

environmental perturbations. 

A TCN is then trained to model the mapping from the original 

input features to 𝐫𝐭. The TCN input can optionally include 

𝐲𝐭
RC-SSM  itself, enabling the network to learn correction 

patterns relative to the physics-based baseline. During 

inference, the final hybrid prediction is obtained as Eq. (7):  
 

 

 𝑦̂𝑡
Hybrid

= 𝑦𝑡
RC-SSM + 𝑟̂𝑡

TCN   (6) 

Where: 

Figure 5. Structure of hybrid VTS model (RC + Residual TCN). 
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𝑦̂𝑡
Hybrid

 : Predicted temperature by the hybrid model 

𝑟̂𝑡
TCN: Temperature residual predicted by the TCN 

Training process: 

1. RC-SSM identification using N4SID with steady-state 

padding, producing stable baseline predictions. 

2. Residual computation from measured data and RC-SSM 

outputs. 

3. Residual TCN training to minimize the mean squared 

error between predicted and measured residuals. 

By combining the physical consistency of RC-SSM with the 

flexibility of TCN, the hybrid model maintains robust long-

term trends while significantly improving prediction 

accuracy in nonlinear and dynamic operating regions. This 

architecture is particularly advantageous for real-world 

deployment, where operating conditions may deviate from 

those observed during model training. 

3. EXPERIMENT & RESULTS 

Table 2. Categories and parameters of the test data. 
 

Index Category Parameter Unit 

1 

Input 

Coil voltage V 

2 Load current A 

3 Coil current A 

4 Busbar temperature ∘C 

5 Ambient temperature 1 ∘C 

6 Ambient temperature 2 ∘C 

7 Target Internal terminal temperature ∘C 

 

Table 3. Dataset summary. 
 

Item Value Description 

Number of 

sequences 
994 

Distinct time-series 

segments in the dataset 

Total time steps 4,252,144 Sum over all sequences 

 

3.1. Data Sets 

In this study, an HV relay used in a power relay assembly 

(PRA) was employed. Relay state and environmental data 

obtained from accelerated high-temperature operation life 

tests of the HV relay were used for model training. Figure 6a, 

Figure 6b show the target point of the VTS and the test setup. 

When a high current is applied to the relay, the circuit 

temperature increases due to the Joule heating principle. In 

this study, the relay was placed in a high-temperature 

environment of 60 °C and subjected to a load current of 200 

A for testing. During the test, the coil voltage and current for 

relay operation control, the load current applied to the  

 

(a)

 

(b) 
  

Figure 6. (a) VTS target point inside the HV relay,  

(b) Test setup 

 

contacts, the chamber ambient temperature, and the 

temperature of the busbar connected to the terminal were 

measured. The target point of the VTS is the internal 

electrical contact temperature of the relay. To provide ground 

truth for the accuracy analysis of the developed prediction 

model, the temperature inside the terminal connected to the 

contact was also measured. All parameters were acquired at 

1 Hz using a data logger. The categories and parameters of 

the test data are listed in Table 2. 

The entire dataset consists of 994 sequences, where the 

number of time steps in each sequence varies and the 

operating conditions differ. Among these sequences, 25 were 

carefully selected to capture representative characteristics 

and used exclusively for testing. The remaining sequences 

were then divided into 80% for model training and 20% for 

model validation in this study. Table 3 shows the composition 

and size of the dataset. 

3.2. Evaluation Results 

To qualitatively assess the prediction performance of the 

three models (RC-SSM, TCN, and the proposed Hybrid 

model), four representative validation sequences with distinct 

thermal behaviors were selected. Figure 7(a)-(d) show the 

comparison between the measured internal terminal 

temperature (Ground-truth) and the predicted values from 

each model. 

• Sequence 1: 

This case corresponds to a scenario where the relay is 

energized, causing a temperature rise due to Joule 
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heating, followed by a cooling phase after the load 

current is removed. The RC-SSM captures the general 

long-term trend but underestimates the initial heating 

rate. The TCN-only model responds quickly to changes 

but exhibits significant oscillations in the cooling phase. 

The Hybrid model closely follows both the heating and 

cooling transitions, achieving high fidelity in both 

steady-state and transient periods. 

• Sequence 2: 

When the relay is turned on, the temperature rises 

sharply before stabilizing. RC-SSM predictions lag 

during the early heating phase, while the TCN-only 

model captures the fast rise but produces minor 

overshoots. The Hybrid model successfully reproduces 

the rapid initial temperature increase and the subsequent 

steady-state plateau with minimal deviation. 

• Sequence 9: 

In this case, the relay is operated under continuous load 

until thermal saturation, then briefly turned off and on 

again. RC-SSM predictions track the overall trend well 

but exhibit slight residual errors, particularly during the 

transient phases, resulting in continuous small 

discrepancies between predicted and actual temperatures. 

The TCN-only model reacts quickly but overshoots 

during the transient. The Hybrid model effectively tracks 

the abrupt temperature dip and recovery while 

maintaining accuracy in the saturated state. 

• Sequence 10: 

After the relay reaches thermal equilibrium under load, 

the load current is removed, and the temperature 

decreases toward the chamber’s ambient temperature. 

RC-SSM accurately follows the cooling trend but 

exhibits small residual errors that persist during the 

saturation state. The TCN model captures the initial 

temperature drop but produces a pronounced undershoot 

during the cooling phase, leading to unrealistic 

predictions of low temperatures before settling. The 

Hybrid model maintains close agreement with the 

ground truth throughout the entire cooling process. 

Across all four representative sequences, the Hybrid model 

consistently outperforms the individual RC-SSM and TCN-

only models. By leveraging the RC-SSM’s stability in 

steady-state conditions and the TCN’s adaptability in 

dynamic transitions, the Hybrid approach achieves superior 

tracking performance in both transient and equilibrium 

regimes. 

Figure 7. Comparison between ground truth and model predictions for representative sequences: (a) Temperature rise 

and subsequent decay after current application; (b) Initial heating after current application; (c) Relay off–on 

switching after thermal saturation; (d) Cooling to ambient temperature after thermal saturation. 
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Table 4. Dataset summary. 
 

Model Type RMSE MAE R2 

RC-SSM Physics-only 8.081 5.601 0.918 

TCN Deep learning 10.725 7.158 0.856 

RC + TCN 

(Optimized) 
Hybrid 4.710 2.946 0.970 

 

3.3. Performance Comparison (RMSE, MAE, R2) 

To quantitatively evaluate the three models (RC-SSM, TCN, 

and the Hybrid model), we compute the Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), and the 

coefficient of determination (R2) on the validation dataset, 

and the results are summarized in Table 4. 

The RC-SSM exhibits stable long-term prediction capability, 

but shows relatively higher errors due to its inability to 

capture nonlinear dynamics and rapid transients. The TCN-

only model exhibits a higher overall error than RC-SSM in 

this dataset, despite its high responsiveness in dynamic 

regions, and it is more sensitive to unseen operating 

conditions, sometimes producing overshoots or undershoots. 

The hybrid model achieves the lowest RMSE and MAE while 

obtaining the highest R2 value, indicating superior predictive 

accuracy under both steady-state and dynamic operating 

conditions. This confirms that combining the physical 

interpretability of RC-SSM with the adaptive learning 

capacity of TCN results in a more robust and accurate 

prediction framework. 

4. CONCLUSION 

This study proposed a Hybrid VTS framework that integrates 

a physics-based RC-SSM with a data-driven TCN to estimate 

the internal terminal temperature of an HV relay under 

limited sensor availability. The RC-SSM provides physically 

interpretable and stable long-term predictions, while the TCN 

compensates for nonlinear behaviors, rapid transients, and 

environmental effects not captured by the physics model. 

Using data from accelerated high temperature operation life 

tests, the proposed model was shown to outperform RC-SSM 

and TCN-only approaches in both steady-state and dynamic 

regimes, achieving the lowest RMSE and MAE and the 

highest R2 among the compared methods. Although the 

proposed framework demonstrated high prediction accuracy, 

it was trained and validated only on a single relay, and 

therefore its performance has not been verified for relays with 

different specifications, load profiles, or environmental 

conditions. Furthermore, the RC-SSM parameters were 

treated as constant, which may limit its ability to reflect 

degradation-induced changes over extended operation. 

Future work will address these limitations by incorporating 

adaptive parameter identification into the RC-SSM, applying 

transfer learning to adapt the TCN across different relay types, 

and employing domain adaptation techniques for deployment 

in real-world field environments. The results of this study 

suggest that hybrid VTS can be effectively integrated into EV 

battery management systems (BMS) and PRA to enable real-

time internal temperature estimation without direct sensing. 

Beyond HV relays, the framework has potential applications 

in predictive maintenance and health monitoring of HV 

switching devices, contactors, and power electronic modules 

where accurate internal thermal state estimation is essential 

to ensure safety, reliability, and extended service life. 
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