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ABSTRACT

High-voltage (HV) relays are essential in electric vehicle
(XEV) power systems, but they are subject to thermal stress
that accelerates contact degradation and can cause severe
failures such as power outages or fires. Monitoring internal
terminal temperature is critical for early detection of such
degradation, yet direct sensor installation is restricted by
packaging, cost, and sealing constraints. To overcome this
limitation, we propose a hybrid Virtual Thermal Sensor (VTS)
that estimates internal relay temperatures using only external
signals, including ambient temperature, busbar temperature,
coil voltage, and load current. The framework integrates a
physics-based RC thermal circuit State-Space Model (RC-
SSM) with a residual Temporal Convolutional Network
(TCN), where the RC-SSM provides baseline thermal
behavior and the residual TCN compensates for modeling
inaccuracies through multivariate time-series learning.
Experimental evaluation was conducted using accelerated
life test data collected under controlled environments and
high-current conditions, with a total of six multivariate
variables, including load current and busbar temperature. For
ground truth, thermocouples were inserted inside terminals
via special machining to measure internal temperatures.
Compared to existing related studies, our hybrid VTS
demonstrated superior performance in both prediction
sensitivity and steady-state stability. The proposed
technology is applicable to HV relays and other components
where internal temperature measurement is not feasible,
providing a robust foundation for state estimation and fault
prognosis.

1. INTRODUCTION

HV relays are essential components of XEV power
conversion systems, serving to maintain or interrupt the flow
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of current between the HV battery and the inverter. The
operational reliability of HV relays has a direct impact on
vehicle performance and safety, making the early diagnosis
and management of potential failures critically important.
Among various environmental stresses, thermal stress exerts
a dominant influence on the performance degradation of HV
relays. At the electrical contact interface, contact resistance
is formed, and when high current is applied, resistive heating
occurs, leading to a rise in temperature. This, in turn,
accelerates the thermal degradation of surrounding polymer
materials and can cause deformation of internal structures,
resulting in abnormal opening or short-circuiting. Such
failures can lead to serious safety issues at the vehicle level,
including system power shutdowns or component damage.

Monitoring the temperature of internal electrical contact
surfaces is essential for the early detection of thermal
degradation. However, installing sensors directly inside a
sealed relay housing is often impractical due to packaging
constraints, sealing requirements, insulation design
considerations, and cost limitations. External temperatures
such as those measured at the busbar or housing surface can
be obtained relatively easily, but they do not accurately
reflect the actual thermal state at the internal contact interface.
Consequently, reliably estimating internal  terminal
temperature under sensor placement constraints is becoming
increasingly important for effective relay condition
monitoring. To address this challenge, VTS (Shin, Ko, & So,
2022) (Ahn, Oh, Kim, Park, & Kim, 2022) have been
investigated as a non-intrusive temperature estimation
technology that infers internal thermal states from
measurable external signals. Traditional physics-based
models such as RC thermal circuits (Silva, 2022) offer
physically interpretable results and stable long-term trends,
but they struggle to capture nonlinear effects, material
degradation, and transient dynamics under diverse operating
conditions.  In  contrast, data-driven  models(e.g.,
RNN/LSTM/TCN) can directly learn complex patterns from
data but risk overfitting and lack physical consistency.
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This study proposes a hybrid VTS framework that integrates
an RC-SSM with a residual TCN (van den Oord et al., 2016)
(Bai, Kolter, & Koltun, 2018) to estimate the internal contact
temperature of relays, which is difficult to measure directly,
using measurable parameters. To address the degradation in
prediction accuracy caused by outliers in time-series
forecasting, a preprocessing method based on temperature
fluctuation characteristics is applied. The RC-SSM generates
baseline temperature estimates grounded in physical heat
transfer dynamics, ensuring stability under steady-state
conditions, while the residual TCN learns to compensate for
dynamics that are difficult to model and nonlinear effects,
improving sensitivity during dynamic transitions. This hybrid
approach is designed to overcome the limitations of single-
model methods and provides a robust and accurate solution
for real-time thermal estimation and health monitoring of HV
relays in practical operating environments. The main
contributions of this study are as follow:

e A novel VTS model combining RC-SSM and residual
TCN was developed to reliably estimate the internal
temperature of a relay.

e Accurate estimation of internal temperature from only
measurable parameters eliminates the additional
processing and cost constraints of direct sensing.

e The proposed model is designed to be expandable
beyond hardware relays to other sealed applications
where internal temperature measurement is not possible,
demonstrating high versatility and scalability.

The rest of this paper is organized as follows. Section 2
presents the methodology of this study, including data
preprocessing, the design of the RC-SSM, the design of the
TCN model, and the integration of these into the hybrid
model. Section 3 describes the experimental study, and
finally Section 4 concludes the paper.

2. METHODOLOGY

The following section presents the overall methodology for
developing the proposed VTS framework, which combines a
physics-based RC-SSM with a residual TCN for multivariate
time-series prediction. The workflow consists of four main
stages:

1. Raw data acquisition and preprocessing (sequence
structuring, outlier removal)

2. RC thermal model estimation using steady-state padding
and N4SID-based RC-SSM

3. TCN modeling with dilated causal convolutions for
sequence-to-sequence prediction

4. Hybrid integration of RC-SSM with Residual TCN with
performance evaluation

Figure 1 summarizes the pipeline.
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Figure 1. Overall workflow.

2.1. Data Preprocessing

Measured data can be contaminated by outliers due to
environmental factors, sensing errors, and electrical noise.
Such an outlier can degrade the model accuracy during
training. Therefore, by removing outliers from the input
dataset, the model learns only the data that are meaningful
and relevant to the target prediction. In this study, outlier
detection is performed based on the fluctuation pattern of
“temperature” (Liu, Yang, Zhang, Gao, & Li, 2023). The
temperature gradient between consecutive samples is
calculated and any value exceeding a predefined threshold is
considered abnormal and removed from the dataset. The
dataset is segmented into multiple sequences, where each
sequence contains time-continuous operational data without
any interruptions or missing segments. This ensures that the
temporal dependencies required for multivariate time-series
learning are preserved, enabling the model to accurately
capture both short-term and long-term dynamics for precise
internal temperature estimation.

2.2. RC-SSM (RC Thermal Circuit State-Space Model)

To establish a physically interpretable baseline for internal
temperature prediction, we model the relay’s internal contact
node using a lumped RC thermal circuit (Fig. 2) (Liu et al.
2023). With ambient temperature T;, internal temperature T,
thermal resistance Ry,, and thermal capacitance Cy,, the
governing equation is expressed by Eq. (1):



AsIA PAcIFiIc CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Cin

Figure 2. Equivalent RC thermal circuit.

d(T,—T4) T,—T
Zt L= Pcontact (t) + Pcoil (t) - ; 1(1)
th

The coil power is directly measurable, P.y;(t) =
Veoit () Ieoi (£). When the contact resistance is unavailable,
the contact heating is approximated as P.optact(t) =
k I%,4(t), which is consistent with Joule heating and is
practical for sealed relays.

From cooling segments ([;,.q = 0), we fit exponential decays
to estimate a representative time constant t. From steady-
state heating, the temperature rise AT, is obtained by Eq. (2):

ATss ~ allzoad +b Pcoil (2)

Cen

which decouples Ry, = b and k = a/b. Finally, Cyy, = T/Ry,.

Applying this procedure yields the parameters in Table 1.
These values are physically plausible for a terminal and
busbar assembly, indicating that the simplified RC model
captures the effective thermal behavior.

Table 1. Estimated RC thermal parameters.

Parameter Value Unit
Rin 5.6072 °C/IW
Cen 100.9 °C

T = Ry Cy 566.0 S

To incorporate multivariate excitations and higher-order
dynamics, we further identify a discrete-time state-space
model using the N4SID (Numerical Algorithms for Subspace
State Space System Identification) method (Fig. 3) ((van
Overschee & de Moor, 1993):

X¢r1 = Axy + Bu, (3a)
Ye = Cx; + Du, (3b)
Where:
x, . State vector at time step t
u, : Input vector at time step t
v, . Output scalar at time step t
A € R3*3 : State-transition matrix
B € R3*¢ : Input matrix
C € R¥™3 : Output matrix

D € R¥6 : Direct-feedthrough matrix

N4SID Algotithm
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Figure 3. Structure of the N4SID Algorithm.

Before identification, each sequence is prepended with a
constant-temperature segment. This “steady-state padding”
allows the observer state x, to converge to a realistic
condition before dynamic variations occur, improving
stability and accuracy.

In summary, the RC-SSM combines effective single-lump
parameters (Ry,, Cip,, T) With an N4SID-based multivariate
realization ( A4,B,C,D ). The former provides physical
interpretability, while the latter captures data-driven
dynamics. This stable baseline will be extended with a
residual TCN in Section 2.4 to enhance dynamic sensitivity.
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Figure 4. Structure of TCN (Kernal size = 5,
Dilation={1, 2, 4})

2.3. TCN(Temporal Convolutional Network) Model

The TCN is a convolution-based architecture widely applied
in time-series forecasting due to its ability to efficiently
capture both short- and long-term temporal dependencies.
Unlike recurrent neural networks, TCN processes all time
steps in parallel, which enables faster training and inference
while avoiding issues such as vanishing or exploding
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Figure 5. Structure of hybrid VTS model (RC + Residual TCN).

gradients. A central characteristic of TCN is the use of causal
convolutions, which ensure that the output at time step t
depends only on the current and past inputs, thereby
preserving the chronological order of the data. This can be
expressed as Eq. (4) (Bai et al. 2018):

k-1
Ye = Z Wi Xp—i (4)
i=0

Where:
x; . Output feature at time step t
k : Kernel size (number of taps
w; : Convolution weight at lag i
Xq—; - Input at lag i (from time t — i)

To expand the receptive field without excessively increasing
model depth, TCN employs dilated convolutions. The dilated
causal convolution at time step t with dilation factor d is
defined as Eq. (5) (Yu and Koltun, 2016):

k-1
Ye = Z Wi - Xt—di 5)
i=0

Where:
d : dilation factor

In this study, the TCN architecture consists of three
sequential 1D convolutional layers with a kernel size of k =
5 and dilation factors d € {1,2,4}, each followed by a ReLU
activation. As illustrated in Figure 4, padding is applied to
preserve sequence length across layers, and a final 1 x 1
convolution layer maps the hidden representation to the
predicted temperature output.

This architecture provides several benefits. By leveraging
multiple dilation factors, the network can effectively capture
temporal dependencies at both short and long time horizons.
The parallel processing of all time steps enhances
computational efficiency, while the absence of recurrent
feedback loops contributes to stable gradient propagation

during training. Furthermore, the structure can be applied to
sequences of varying lengths without requiring architectural
modifications, making it highly flexible for different datasets
and application scenarios.

2.4. Hybrid Model

While the RC-SSM provides physically interpretable and
stable long-term predictions, its assumption of constant
parameters and linear dynamics limits its ability to capture
nonlinear effects, rapid transients, and degradation-induced
changes. Conversely, the TCN excels at learning complex
temporal dependencies directly from data but lacks physical
constraints, which may lead to unrealistic extrapolation under
unseen operating conditions. To leverage the complementary
strengths of both approaches, a hybrid modeling framework
is proposed in which the RC-SSM captures the dominant
thermal dynamics, and a data-driven residual model corrects
for its systematic errors. The overall structure of the hybrid
VTS is shown in Figure 5. Let the residual at time step t be
defined as Eq. (6):

true

1=y — y oS (6)
Where:
1, - Temperature residual
yiTUe: Measured terminal temperature
yRE-SSM - Temperature predicted by the RC-SSM

The residual r, therefore represents the temperature
component unexplained by the RC-based thermal circuit,
including nonlinear heating, unmodeled thermal paths, and
environmental perturbations.

ATCN is then trained to model the mapping from the original
input features to r,. The TCN input can optionally include
yRESSM jtself, enabling the network to learn correction
patterns relative to the physics-based baseline. During
inference, the final hybrid prediction is obtained as Eq. (7):

sHybrid _  RC-SSM | ATCN
Yt =Vt + 7 (6)

Where:
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9f¥rid - predicted temperature by the hybrid model

7TCN: Temperature residual predicted by the TCN

Training process:
1. RC-SSM identification using N4SID with steady-state
padding, producing stable baseline predictions.

2. Residual computation from measured data and RC-SSM
outputs.

3. Residual TCN training to minimize the mean squared
error between predicted and measured residuals.

By combining the physical consistency of RC-SSM with the
flexibility of TCN, the hybrid model maintains robust long-
term trends while significantly improving prediction
accuracy in nonlinear and dynamic operating regions. This
architecture is particularly advantageous for real-world
deployment, where operating conditions may deviate from
those observed during model training.

3. EXPERIMENT & RESULTS

Table 2. Categories and parameters of the test data.

Index | Category Parameter Unit
1 Coil voltage \
2 Load current A
3 Coil current A

Input
4 Busbar temperature °C
5 Ambient temperature 1 °C
6 Ambient temperature 2 °C
7 Target | Internal terminal temperature °C
Table 3. Dataset summary.
Item Value Description
Number of Distinct time-series
994 .

sequences segments in the dataset

Total time steps | 4,252,144 | Sum over all sequences

3.1. Data Sets

In this study, an HV relay used in a power relay assembly
(PRA) was employed. Relay state and environmental data
obtained from accelerated high-temperature operation life
tests of the HV relay were used for model training. Figure 6a,
Figure 6b show the target point of the VTS and the test setup.

When a high current is applied to the relay, the circuit
temperature increases due to the Joule heating principle. In
this study, the relay was placed in a high-temperature
environment of 60 < and subjected to a load current of 200
A for testing. During the test, the coil voltage and current for
relay operation control, the load current applied to the

¢ = ’_1

VTS
Targﬁ?oinl
At b 7‘

Load power
source
(PSW 30-108)

Coil power
source
(PSW 80-27)

Environmental Chamber
(ACS, Challenge 1200 chamber)

TN | AQ
(Yokogawa, MV 2000)

(b)
Figure 6. (a) VTS target point inside the HV relay,
(b) Test setup

contacts, the chamber ambient temperature, and the
temperature of the busbar connected to the terminal were
measured. The target point of the VTS is the internal
electrical contact temperature of the relay. To provide ground
truth for the accuracy analysis of the developed prediction
model, the temperature inside the terminal connected to the
contact was also measured. All parameters were acquired at
1 Hz using a data logger. The categories and parameters of
the test data are listed in Table 2.

The entire dataset consists of 994 sequences, where the
number of time steps in each sequence varies and the
operating conditions differ. Among these sequences, 25 were
carefully selected to capture representative characteristics
and used exclusively for testing. The remaining sequences
were then divided into 80% for model training and 20% for
model validation in this study. Table 3 shows the composition
and size of the dataset.

3.2. Evaluation Results

To qualitatively assess the prediction performance of the
three models (RC-SSM, TCN, and the proposed Hybrid
model), four representative validation sequences with distinct
thermal behaviors were selected. Figure 7(a)-(d) show the
comparison between the measured internal terminal
temperature (Ground-truth) and the predicted values from
each model.

e  Sequence 1:

This case corresponds to a scenario where the relay is
energized, causing a temperature rise due to Joule
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Figure 7. Comparison between ground truth and model predictions for representative sequences: (a) Temperature rise
and subsequent decay after current application; (b) Initial heating after current application; (¢) Relay off—on
switching after thermal saturation; (d) Cooling to ambient temperature after thermal saturation.

heating, followed by a cooling phase after the load
current is removed. The RC-SSM captures the general
long-term trend but underestimates the initial heating
rate. The TCN-only model responds quickly to changes
but exhibits significant oscillations in the cooling phase.
The Hybrid model closely follows both the heating and
cooling transitions, achieving high fidelity in both
steady-state and transient periods.

Sequence 2:

When the relay is turned on, the temperature rises
sharply before stabilizing. RC-SSM predictions lag
during the early heating phase, while the TCN-only
model captures the fast rise but produces minor
overshoots. The Hybrid model successfully reproduces
the rapid initial temperature increase and the subsequent
steady-state plateau with minimal deviation.

Sequence 9:

In this case, the relay is operated under continuous load
until thermal saturation, then briefly turned off and on
again. RC-SSM predictions track the overall trend well
but exhibit slight residual errors, particularly during the
transient phases, resulting in continuous small
discrepancies between predicted and actual temperatures.

The TCN-only model reacts quickly but overshoots
during the transient. The Hybrid model effectively tracks
the abrupt temperature dip and recovery while
maintaining accuracy in the saturated state.

e Sequence 10:

After the relay reaches thermal equilibrium under load,
the load current is removed, and the temperature
decreases toward the chamber’s ambient temperature.
RC-SSM accurately follows the cooling trend but
exhibits small residual errors that persist during the
saturation state. The TCN model captures the initial
temperature drop but produces a pronounced undershoot
during the cooling phase, leading to unrealistic
predictions of low temperatures before settling. The
Hybrid model maintains close agreement with the
ground truth throughout the entire cooling process.

Across all four representative sequences, the Hybrid model
consistently outperforms the individual RC-SSM and TCN-
only models. By leveraging the RC-SSM’s stability in
steady-state conditions and the TCN’s adaptability in
dynamic transitions, the Hybrid approach achieves superior
tracking performance in both transient and equilibrium
regimes.
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Table 4. Dataset summary.

Model Type RMSE MAE R?
RC-SSM | Physics-only | 8.081 5.601 0.918
TCN Deep learning| 10.725 7.158 0.856
RC + TCN .
(Optimized) Hybrid 4.710 2.946 0.970

3.3. Performance Comparison (RMSE, MAE, R?)

To quantitatively evaluate the three models (RC-SSM, TCN,
and the Hybrid model), we compute the Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and the
coefficient of determination (R?) on the validation dataset,
and the results are summarized in Table 4.

The RC-SSM exhibits stable long-term prediction capability,
but shows relatively higher errors due to its inability to
capture nonlinear dynamics and rapid transients. The TCN-
only model exhibits a higher overall error than RC-SSM in
this dataset, despite its high responsiveness in dynamic
regions, and it is more sensitive to unseen operating
conditions, sometimes producing overshoots or undershoots.
The hybrid model achieves the lowest RMSE and MAE while
obtaining the highest R? value, indicating superior predictive
accuracy under both steady-state and dynamic operating
conditions. This confirms that combining the physical
interpretability of RC-SSM with the adaptive learning
capacity of TCN results in a more robust and accurate
prediction framework.

4, CONCLUSION

This study proposed a Hybrid VTS framework that integrates
a physics-based RC-SSM with a data-driven TCN to estimate
the internal terminal temperature of an HV relay under
limited sensor availability. The RC-SSM provides physically
interpretable and stable long-term predictions, while the TCN
compensates for nonlinear behaviors, rapid transients, and
environmental effects not captured by the physics model.
Using data from accelerated high temperature operation life
tests, the proposed model was shown to outperform RC-SSM
and TCN-only approaches in both steady-state and dynamic
regimes, achieving the lowest RMSE and MAE and the
highest R? among the compared methods. Although the
proposed framework demonstrated high prediction accuracy,
it was trained and validated only on a single relay, and
therefore its performance has not been verified for relays with
different specifications, load profiles, or environmental
conditions. Furthermore, the RC-SSM parameters were
treated as constant, which may limit its ability to reflect
degradation-induced changes over extended operation.
Future work will address these limitations by incorporating
adaptive parameter identification into the RC-SSM, applying
transfer learning to adapt the TCN across different relay types,

and employing domain adaptation techniques for deployment
in real-world field environments. The results of this study
suggest that hybrid VTS can be effectively integrated into EV
battery management systems (BMS) and PRA to enable real-
time internal temperature estimation without direct sensing.
Beyond HV relays, the framework has potential applications
in predictive maintenance and health monitoring of HV
switching devices, contactors, and power electronic modules
where accurate internal thermal state estimation is essential
to ensure safety, reliability, and extended service life.

ACKNOWLEDGEMENT

This study was supported by the Hyundai Motor Group
(HMG) (Grant No. TM00047501) and the Korea Institute for
Advancement of Technology (KIAT) (Grant No. RS-2025-
25397256)

REFERENCES

Chen, W., (1991). Nonlinear Analysis of Electronic
Prognostics. Doctoral dissertation. The Technical
University of Napoli, Napoli, Italy.

Ahn, C.-U,, S. Oh, H.-S. Kim, D. I. Park, and J.-G. Kim. 2022.
“Virtual Thermal Sensor for Real-Time Monitoring of
Electronic Packages in a Totally Enclosed System.”
IEEE Access 10: 50589-600.
https://doi.org/10.1109/ACCESS.2022.3174287.

Bai, S., J. Z. Kolter, and V. Koltun. 2018. “An Empirical
Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling.” arXiv Preprint
arXiv:1803.01271. https://arxiv.org/abs/1803.01271.

Liu, J., D. Yang, K. Zhang, H. Gao, and J. Li. 2023.
“Anomaly and Change Point Detection for Time Series
with Concept Drift.” World Wide Web 26: 3229-52.
https://doi.org/10.1007/s11280-023-01181-z.

Shin, S., B. Ko, and H. So. 2022. “Noncontact Thermal
Mapping Method Based on Local Temperature Data
Using Deep Neural Network Regression.” International
Journal of Heat and Mass Transfer 183: 122236.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.12223
6.

Silva, D. 2022. “Modeling the Transient Response of
Thermal Circuits.” Applied Sciences 12 (24): 12555.
https://doi.org/10.3390/app122412555.

van den Oord, A., S. Dieleman, H. Zen, et al. 2016.
“WaveNet: A Generative Model for Raw Audio.” arXiv
Preprint arXiv:1609.03499.
https://arxiv.org/abs/1609.03499.

van Overschee, P., and B. de Moor. 1993. “N4SID:
Numerical Algorithms for State Space Subspace System
Identification.” IFAC Proceedings Volumes 26 (2, Part
5): 55-58. https://doi.org/10.1016/S1474-
6670(17)48221-8

Yu, F., and V. Koltun. 2016. “Multi-Scale Context
Aggregation by Dilated Convolutions.” arXiv Preprint
arXiv:1511.07122. https://arxiv.org/abs/1511.07122.


https://doi.org/10.1016/S1474-6670(17)48221-8
https://doi.org/10.1016/S1474-6670(17)48221-8
https://arxiv.org/abs/1511.07122

AsIA PAcIFiIc CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

BIOGRAPHIES

Sewoong Gim received his B.S. degree in Mechanical
Engineering from Jeonbuk National University, Jeonju,
South Korea, in 2023. Since 2023, he has
n worked at the Reliability R&D Division of

iy the Korea Automotive Technology Institute
< (KATECH), Cheonan, South Korea, where
he is currently a researcher. He is currently
pursuing an M.S. degree in Automotive
Engineering from Hanyang University,
Seoul, South Korea. His research interests include failure-
based lifetime prediction, prognostics and health
management (PHM), deep learning—based data augmentation,
and transfer learning.

Jaephil Park received his B.S., M.S., and Ph.D. degrees in
Mechanical Engineering from Pusan

National University, Busan, South Korea, in
Q 2015, 2018 and 2022, respectively. Since

2023, he has worked at the Reliability and

& Certification Research Laboratory of the
Korea Automotive Technology Institute
! . (KATECH), Cheonan, South Korea, where
he is currently a senior researcher. His

research interests include modeling of degradation
phenomena with both physics and measured data.

Sanghoon Lee received his B.S. and M.S. degrees in
Automotive Engineering from Kookmin University, Seoul,
South Korea, in 2008 and 2009, respectively.

From 2009 to 2011, he worked as a research

o [y engineer at the Korea Institute of Science

= and Technology (KIST), Seoul, South Korea.

& Since 2011, he has worked at the Reliability
‘/x . and Certification Research Laboratory of the
Korea Automotive Technology Institute

(KATECH), Cheonan, South Korea, where he is currently a
principal researcher. He is currently pursuing a Ph.D. degree
in mechanical engineering from Yonsei University, Seoul,

South Korea. His research interests include failure-based
lifetime prediction and the health management of automotive

systems.



