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ABSTRACT

Classification-based prognostics aims to predict the
Remaining Useful Life (RUL) of components in diesel
engines by identifying failure and degradation stages. This is
critical for industries such as automotive, aviation, and
manufacturing. Traditional methods rely on classification
models trained on historical data from multiple engines to
forecast failures based on current engine parameters.
However, these global classifiers often struggle with
generalization when applied to unseen engines, resulting in
poor precision and recall. Moreover, they fail to capture the
temporal dependencies inherent in engine degradation, which
are crucial for accurate failure prediction. We propose a
hybrid model that integrates predictions from global
classifiers with time-based memory units to address these
limitations, effectively building irregular time-series models.
Our approach demonstrates a significant performance
improvement, with precision and recall metrics doubling
compared to traditional global classifiers.

Keywords — Remaining Useful Life, Prognostics,
Predictive Maintenance, Engine Health Monitoring,
Downtime reduction, Long short-term memory (LSTM),
Convolutional Neural Network (CNN), Recurrent NN
(RNN).

1. INTRODUCTION

Cummins Inc. is a global corporation specializing in the
design, manufacturing, and distribution of engines, filtration
systems, and power generation products. Headquartered in
Columbus, Indiana, Cummins has been operating since 1919
and serves customers across more than 190 countries and
territories. The company emphasizes innovation and
sustainability in its products and operations.

Rohit Deo et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Prognostics play a vital role in Cummins’ diesel engine
operations by enabling predictive maintenance. Through the
analysis of sensor data and other performance indicators,
prognostics help anticipate when maintenance or repairs are
required. This predictive approach allows for planned
maintenance, reducing downtime and mitigating the risk of
unexpected failures. By leveraging prognostics, Cummins
enhances their diesel engines' performance, reliability, and
lifespan.

Classification-based prognostics is a predictive maintenance
approach where the goal is to estimate the Remaining Useful
Life (RUL) of a component or system by categorizing it into
predefined failure stages or health states. Instead of
predicting an exact time-to-failure, it classifies the system's
condition to assess how close it is to a failure event. The
component's state is classified as Healthy, Degrading, or
Failure Imminent rather than providing a specific time frame
for failure. Models are trained on labelled datasets that
contain failure histories and operating conditions from
multiple components or systems. The dataset consists of
diagnostic features derived from sensor data (e.g.,
temperature, pressure, vibration) to predict the health state.
With this approach, it is easier for decision-making since the
output is in discrete categories. It also helps us get early
indications of degradation stages.

The models predicting the aforementioned discrete categories
are referred to as global classifiers. These machine-learning
(ML) models utilize historical data from multiple engines. An
unseen engine is one whose historical data is available but
may not have been included in training the global classifier.

During inference, predictions for an unseen engine rely solely
on the current parameter values, reflecting the engine's
present condition. Each feature vector in the training set is
labelled with discrete categories. Consequently, predictions
are based on how similar conditions affected other engines
during training, without considering the specific engine's
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historical data. This approach ignores temporal dependencies
in the engine's operational history.

To enhance prediction accuracy, combining global classifier
predictions with a memory-based model that leverages
historical data can be beneficial. This hybrid approach would
incorporate both the engine’s current condition and its
historical behavior, leading to more robust predictions. This
paper describes how predictions from the global classifier can
be effectively combined with those from an individual local
memory-based model. We demonstrate that this blended
approach enhances prediction accuracy for individual
engines and quantifies the potential cost savings resulting
from improved performance.

This work focuses on the prediction of component or system
failures to enable timely maintenance before abrupt
breakdowns occur. Unexpected failures in diesel engines can
be severe, often resulting in increased repair costs and
extended downtime. Given Cummins' commitment to
delivering reliable performance across a wide range of
applications, minimizing such disruptions is critical. When
an engine experiences an unforeseen failure during operation,
it can lead to significant inconvenience, operational delays,
and financial losses for customers. These failures may
involve key subsystems such as aftertreatment components,
oil maintenance systems, and air handling units. Therefore,
predictive maintenance strategies are essential to enhance
reliability, reduce downtime, and optimize service planning.

The paper is organized as follows: Section 2 provides a
literature survey. Section 3 elaborates on the proposed hybrid
model, followed by results and discussions in section 4.
Section 5 gives conclusions and future scope.

2. LITERATURE SURVEY

A new technology in the field of equipment maintenance and
support viz.- Prognostics and health management (PHM)
improves equipment reliability and safety which enhances
equipment support maintenance support capabilities and
reduces the maintenance support cost. PHM for diesel
engines majorly involves four steps. Data acquisition, data
processing, fault diagnosis and health status assessment (Liu
et al., 2023). Data acquisition is the basis of the next steps.
The acquired data through different sensors in diesel engines
are raw signals that are of poor quality. To make the raw
signals deterministicc we need data processing. Once
processed, fault diagnosis can be done based on knowledge,
signal processing or machine learning. And then comes the
health status assessment which relies on data processing
outcomes, utilizing failure models or intelligent algorithms to
evaluate the operational condition of the diesel engine. Later,
the research focused on expanding failure studies across all
diesel engine subsystems, investigating performance under
complex operating conditions, and improving remaining life
prediction (RUL) and maintenance decision-making for real-
world applications. Machine learning has revolutionized

Remaining Useful Life (RUL) prediction for diesel engines
by analyzing sensor data and failure patterns to identify wear
and degradation trends. These models enable proactive
maintenance by forecasting potential failures before they
occur. A variety of models are used for RUL prediction in
diesel engines, including regression models (e.g., Linear
Regression), time-series models (e.g., Long Short-Term
Memory), ensemble methods (e.g., Random Forests), deep
learning models (e.g., Convolutional Neural Networks), and
hybrid physics-informed approaches. The model choice
depends on the data's complexity, operating conditions, and
failure patterns.

To enable time series classification, (Karim, Majumdar,
Darabi, & Harford, 2019) transformed univariate series into
multivariate using a fully convolutional block enhanced with
a squeeze-and-excitation (SE) block (J. Hu, Shen, & Sun,
2018), which boosts neural networks by emphasizing key
features via channel-wise attention. This SE mechanism was
adapted for 1D models, improving LSTM-FCN and Attention
LSTM-FCN architectures. In financial time series
prediction—complex like diesel engine prognostics—
(Alhnaity & Abbod, 2020) proposed a hybrid model
combining empirical mode decomposition, neural networks,
and support vector regression, optimized with genetic
algorithms to reduce errors. Similarly, (Zhao, Li, Xu, Fu, &
Chen, 2023) used AdaBoost, KNN, and LSTM for financial
data classification.

In (W. Hu & Shi, 2020), combining LSTM with Random
Forest (LSTM-RF) improves prediction for consumer
behavior but is limited to structured temporal data, making it
less suitable for irregular patterns in diesel engine prognostics.
The CNN-BiGRU model (Xuan et al., 2021) enhances short-
term load forecasting by capturing non-linear and temporal
patterns, aided by feature selection and model fusion, but still
assumes continuous time-series data. (Bieber, Verhagen, &
Santos, 2021) were among the first to integrate environmental
data for aircraft engine prognostics using raw sensor inputs
and Random Forest for RUL prediction. For similar engines
(Cheng, Zeng, Wang, & Song, 2023) used an ensemble deep
learning approach with models like autoencoders, LSTM,
and CNNs, weighted by Mahalanobis distance between
health states, to estimate RUL for predictive maintenance.

In (Cheng, Wang, Wu, Zhu, & Lee, 2022), DL-based
prognostics models are critiqued for lacking diverse feature
extraction and ignoring operating conditions. To address this,
they propose MDRNN combined with bi-LSTM to capture
temporal dependencies and degradation features, achieving
low RMSE on benchmark data. For multivariate time-series,
(Yang et al., 2023) introduce attentional Gated Res2Net to
detect multi-granular patterns and variable relationships.
Though transformers are common in NLP and vision, (Jiang,
Liu, & Lian, 2022) apply multi-modal fusion transformers for
time-series classification using Gramian Angular Fields and
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Figure 1. Block diagram of the proposed hybrid model where the output of the globally trained classifier is fed as one of the
inputs to the individual LSTM models, built for individual trucks.

CNNs, followed by ResNet. In cybersecurity, (Karat et al.,
2024) use CNN-LSTM to tackle evolving threats, while
(Roshanzadeh, Choi, Bidram, & Martinez-Ramon, 2024)
apply a 1D convolutional autoencoder for cyberattack
detection in AC microgrids, combining CNN for local
features and LSTM for temporal modeling. (Gong, Li, &
Wang, 2022) propose TCN-BiGRU with attention and VMD
to fuse multi-sensor data, optimize IMFs, and refine
hyperparameters via grid search and cross-validation,
achieving strong RUL prediction on C-MAPSS and sealing
ring datasets.

S. Hamida and et. al. build a hybrid system (Hamida et al.,
2023) developed a hybrid system for skin disease
classification using Random Forest for feature selection and
CNN for classification. To handle sequential and non-
sequential data, (Haibin & Yongliang, 2023) fed LSTM
outputs into decision trees for time-dependent predictions.
The LSTM-RF-PSO model (Chen, Chen, & Gu, 2023)
integrates LSTM for autoregression, RF for environmental
analysis, and PSO for optimization, outperforming
standalone models in tourist flow forecasting. (Almaghrabi,
Rana, Hamilton, & Rahaman, 2024) proposed a multilevel
fusion framework with spatial encoding via 3D autoencoder,
temporal encoding with residual connections, and prediction
processing using sequence analyzers. This is termed MF-
NBEA (Khan & Kumar, 2024). For ECG data, a GRU-CNN
hybrid model with reductive bias (RB-GRU-CNN) fuses past
residuals with current predictions to reduce error.

To predict wind power, (Pu et al., 2024) use VMD to reduce
dimensionality, followed by BiLSTM and Random Forest,
whose weighted outputs form the final prediction. For power
load forecasting, (Jin, Weiqing, Bingcun, & Xiaobo, 2024)
apply a hybrid of LSTM and genetic algorithm. In
meteorology, (Vallejo & Manzione, 2024) use neural
network auto-regression for multidimensional precipitation
forecasting. Overall, while hybrid models show promise,
challenges like individualized learning and irregular time-
series data—especially in diesel engine prognostics—remain.
This study proposes a global classifier trained across trucks,

fused with individualized LSTMs, to reduce unnecessary
repairs and downtime for Cummins.

3. PROPOSED METHODOLOGY

We propose a generalized (which could be any classifier with
best-suited hyperparameters and performance) classifier that
predicts the degrading stage for prognostics. In our case, the
XGBoost is the classifier and then the output is blended with
LSTM for each truck, described below. The block diagram is
depicted in Figure 1.

3.1. Data Description

We at Cummins, have built an embedded software feature
that summarizes and stores information about its powertrain
via 400+ parameters. This proprietary data can be viewed,
analyzed and downloaded using tools. Field Performance
Analytics (FPA) at Cummins involves analyzing real-world
data to evaluate the performance and reliability of engines
and components under actual operating conditions. This
includes metrics like fuel efficiency, operational hours,
failure rates, and maintenance trends, along with
environmental and application-specific factors. The insights
gained help Cummins enhance product design, optimize
maintenance schedules, and improve customer satisfaction
by ensuring engines perform reliably across diverse
environments. FPA also supports predictive maintenance and
compliance with global regulations, driving innovation and
quality in Cummins' offerings.

The FPA data is collected via the Electronic Control Module
(ECM), which records information from various sensors and
actuators embedded within the engine. The ECM stores data
at a fixed sampling frequency and aggregates it into fewer
rows corresponding to each trip, defined by a key-on and key-
off cycle. This aggregation is necessary due to the limited
memory capacity of the ECM. Additionally, data extraction
occurs at irregular intervals, typically when the engine is
brought in for service and accessed via a datalogger device.
However, the ECM retains only the most recent trip data up
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to its memory limit, resulting in the loss of older trip records
if the engine has not been serviced for an extended period.
3.2. Data Preparation

This section outlines the data preparation steps for both the
Global classifier and the LSTM model. Figure 2 illustrates
the preprocessing pseudo-code for the overall data.

Step 1: Drop parameters with >40% missing values.

Step 2: Compute RUL for gach row.

Step 3: Create Target: [f RUL < 10,000 + Target = 1 (Faulty) Else = Target = 0 (Healthy).

Step 4: Standardize the parameters,
Step 5: Remove highly correlated features.

Step 6: Handle missing values.

Figure 2. Data Preparation Method.

3.3. Global Classifier

Instead of predicting an exact time-to-failure, the classifier
classifies the system's condition to assess how close it is to a
failure event. As stated above, 400+ features together
constitute the feature space for the global classifier —
XGBoost.

In the proposed methodology, we employ XGBoost as the
global classifier to predict the Remaining Useful Life (RUL)
of diesel engine components, utilizing historical Field
Performance Analytics (FPA) data. The FPA data, which
includes both static engine parameters (e.g., load, fuel
efficiency) and aggregated performance metrics from diverse
operating conditions, serves as input to the global classifier.
XGBoost, known for its ability to handle large datasets and
complex feature interactions, is trained on these features to
identify degradation patterns and predict failure stages across
multiple engines. By leveraging this approach, the global
classifier captures generalized trends in engine behavior,
forming a foundation for identifying potential failures.
However, to improve generalization and account for temporal
dependencies in the degradation process, this global
classification output is further enhanced by time-based
memory units in our hybrid model. The Global classifier was
optimized through hyperparameter tuning using the method
from the scikit-learn library.

3.4. LSTMs

Long Short-Term Memory (LSTM) networks are a type of
recurrent neural network designed to capture long-term
dependencies in sequential data. They overcome the
vanishing gradient problem, enabling them to retain
important information over long sequences. LSTMs are ideal

for tasks involving temporal dynamics, such as time-series
prediction and pattern recognition.

3.5. Hybrid Model

The engines used to train the global classifier are kept
separate from the unseen engines. For each unseen engine, a
global classifier is applied to the data of each trip, and its
predictions are added to the feature space formed by the Field
Performance Analytics (FPA) data. These global classifier
predictions (0 = healthy, 1 = faulty) are then incorporated into
the feature space on which an individual LSTM model is
trained for each engine. By leveraging both the temporal
dependencies specific to each engine's operational history
and the global degradation patterns captured by the classifier,
this hybrid model effectively integrates global and temporal
information. The performance of this approach is evaluated
in the subsequent section.

4. EXPERIMENTS, RESULTS, AND DISCUSSIONS

For experimentation, we have access to the FPA (Field
Performance Analytics) dataset, which consists of
approximately 150,000 engines, with 3,900 having
previously failed. To build our model, we applied a
bootstrapping technique to downsize the dataset, ensuring
that both failed and non-failed engines were well-represented.
The ratio of faulty to healthy engines was set at 1:1, with
healthy engines randomly selected from a pool of
approximately 140,000 non-failed engines and faulty engines
from 3900 failed engines. The bootstrapping approach
ensured random selection and representative sampling of
both healthy and failed engine populations. Statistical
validation was performed using a z-test across all parameters,
confirming similarity between the selected subset and the
overall population with a p-value > 0.90.

The global classifier was trained on a subset of 882 engines,
which were kept separate from the LSTM models. The LSTM
was developed using data from 301 engines, where
predictions from the global classifier were included as a
critical input feature. In the classification task, failure was
annotated as 1 and non-failure as 0. On average, the dataset
exhibits a substantial class imbalance with a ratio of 99.3:0.7
between non-failure and failure instances (Healthy v/s faulty)
across individual engines. We assessed the performance of
our hybrid model by comparing it to a baseline model that
excludes the LSTM component. The results reveal significant
improvements: precision doubled, recall increased by 10%,
and overall accuracy improved by 20%. To validate the
robustness of our methodology, we also applied it to the C-
MAPPS dataset by NASA [24]. The dataset consists of
multiple multivariate time series, each representing data from
a different jet engine in a fleet of the same type, with varying
degrees of initial wear and manufacturing variation. The
engines operate normally at the start of each time series,
developing a fault at some point, with the training set
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capturing fault growth until failure, and the test set ending
before failure. The goal is to predict the RUL in the test set,
i.e., the number of cycles an engine will continue to operate
before failure, with true RUL values also provided for
evaluation.

We obtain similar performance improvements. These
findings highlight the effectiveness of combining temporal
dependencies with global classification insights for more
accurate failure predictions in engine prognostics. The
comparison of precision and recall for each of the engines in
testing is depicted in Figure 3 and Figure 4 for FPA using the
sm-pre-Istm(Smoothened Precision of LSTM), sm-pre-
cla(Smoothened Precision of Classification), sm-recall-
cla(Smoothened Recall of Classification), sm-recall-
Istm(Smoothened Recall of LSTM). The average
improvement in precision and recall is mentioned in Table 1.

—e&—sm-pre-Istm —e— sm-pre-cla

seseseeee Linear (sm-pre-Istm)

Linear (sm-pre-cla)
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Figure 3. Engine-wise comparison of precision on FPA data.

—e—sm-recall-cla ==sm-recall-lstm e Lincar (sm-recall-cla) - Lincar (sm-recall-Istm)

Engines --

Figure 4. Engine-wise comparison of recall on FPA data.

Table 1 with Figure 5 and Figure 6 using sm-cl-
pre(Smoothened  Classification  Precision), sm-lstm-

pre(Smoothened LSTM Precision), sm-cl-
recall(Smoothened  Classification  Recall), sm-Istm-
recall(Smoothened LSTM Recall) also mentions how our
methodology works on the C-MAPPS dataset. The graphs
and tables clearly indicate the improvement in the
performance after using hybrid model we proposed.
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Figure 5. Engine-wise comparison of precision on C-
MAPPS data.
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Figure 6. Engine-wise comparison of recall on C-MAPPS
data.

5. CONCLUSION

Temporal dependencies are crucial for accurate prognostics
of components in diesel engines. Ignoring these dependencies
can lead to unnecessary repairs and increased unplanned
downtime costs. The hybrid model we proposed enhances
prognostic accuracy by 30% and doubles the precision,
significantly reducing the risk of false positives that would
have occurred without it. While the recall has shown
improvement, it can be further optimized with additional
input from domain experts.

Table 1. Comparison between FPA and C-MAPPS with and without using our hybrid model.

FPA data — without | FPA data — with the | C-MAPPS data — | C-MAPPS data — with
Parameters/Dataset | the proposed | proposed without the proposed | the proposed
methodology methodology methodology methodology
Average Precision | 0.32 0.75 0.32 0.68
Average Recall 0.72 0.75 0.78 0.79
Average F1-score 0.44 0.74 0.46 0.62
Average Accuracy | 0.66 0.81 0.76 0.77
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