
Leveraging Few-Shot In-Context Learning for Scaling Railway Log
Anomaly Detection

Quentin Possamaı̈1, Rajesh Bonangi2, Alexandre Trilla3, Ossee Josepha Charlesia Yiboe4, Kenza Saiah4, and Nenad
Mijatovic4

1 Alstom, Villeurbanne, 69100, France
quentin.possamai@alstomgroup.com

2 Alstom, Bengaluru, 560005, India
rajesh.bonangi@alstomgroup.com

3 Alstom, Santa Perpètua de Mogoda, 08130, Spain
alexandre.trilla@alstomgroup.com

4 Alstom, Saint-Ouen, 93070, France
ossee-josepha-charlesia.yiboe@alstomgroup.com

kenza.saiah@alstomgroup.com
nenad.mijatovic@alstomgroup.com

ABSTRACT

This paper presents a scalable, data-driven approach for
anomaly detection in railway signaling logs using Large Lan-
guage Models (LLMs) and in-context learning. By classi-
fying log keys — the structural templates of log messages
— instead of individual messages, the method dramatically
reduces the number of required model calls, thereby lower-
ing computational costs (in terms of energy or monetary re-
sources). Expert-labeled log keys are incorporated into LLM
prompts to help the models differentiate between normal and
abnormal log messages. Multiple state-of-the-art LLMs are
evaluated on this task, revealing that performance increases as
more labeled examples are added to the prompt, although the
improvement gain diminishes with each additional label. Fur-
ther analysis indicates that GPT-4.1 offers the best balance of
monetary cost, response time, and F1 score for this applica-
tion. The study highlights both the advantages and limitations
of in-context learning for railway log anomaly detection, no-
tably its ability to leverage expert-labeled examples without
additional model training, but also its sensitivity to data im-
balance and exclusion of parameter values. It further dis-
cusses avenues for future improvement, such as model fine-
tuning, prompt enrichment with additional contextual infor-
mation, and the potential use of Retrieval-Augmented Gener-

Quentin Possamaı̈ et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

ation (RAG) or self-feedback strategies to enhance classifica-
tion performance.

1. INTRODUCTION

Railway signaling is a critical component of systems designed
to manage railway traffic and ensure the safety and efficiency
of transportation services. One of the main implementations
of a signaling solution is the train control system, which su-
pervises and manages trains by collecting data from the tracks
and transmitting it to wayside processing units for real-time
decision-making as presented in (European Rail Traffic Man-
agement System, 2018).

In the event of a system failure, time is of the essence, as
service is disrupted and penalties may be incurred. A dedi-
cated team of expert troubleshooters is then deployed to de-
bug the railway computer. Moreover, as the system grows in
functionality and complexity, the diagnosis team often faces
a wide range of potential root causes interspersed with mil-
lions of textual messages produced sequentially by the Train
Control system also referred to as logs (Ding, Yang, Hu, &
Liu, 2017; Klumpenhouwer & Shalaby, 2022; Mohamad,
Hashim, Abdul Hamid, & Ismail, 2021; Mannhardt & Land-
mark, 2019). In those records, the most recent events within
a defined historical window are archived and sent for trou-
bleshooting. As a consequence, the distribution of the stud-
ied time series of logs is consistently influenced by abnormal

1



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

system behavior. Moreover, their sheer volume challenges the
time and effort required to identify the root cause of a failure.

Our paper introduces a data-driven approach to efficiently
identify the most abnormal events from real-world production
logs, thereby narrowing the search space and reducing inves-
tigation time. By harnessing the embedded knowledge of pre-
trained machine learning models and their in-context learning
abilities, we assess the effectiveness and cost-efficiency of
large language models for scalable anomaly detection. Our
method minimizes the number of required queries by group-
ing structurally similar events and leveraging feedback from
previously human-labeled examples, as illustrated in figure 1.
Initially, log groups are identified through log parsing. These
groups — referred to as log keys — are first partially labeled
by expert troubleshooters, with the classification process then
extended using an LLM via in-context learning. Our empir-
ical results show that including more labeled log keys in the
prompt enhances performance, though the improvement in F1

score diminishes as more labels are added.

Our paper is organized as follows: Section 2 reviews related
work in log parsing and various log analysis methods used to
detect root causes or anomalies. Section 3 describes the pro-
posed methodology: parsing the logs, constructing a human-
labeled dataset, and conducting experiments to classify log
keys. Section 4 presents classification performance as a func-
tion of labeled input, and compares model costs. Finally, Sec-
tion 5 discusses the implications of the findings, our method
limitations, and suggests directions for improvement.

2. RELATED WORK

This section reviews the main approaches to automatic log
analysis.

Log Parsing — System logs are structured with a fixed pat-
tern and variable parameters (e.g. IP addresses, memory
pointers...). Several studies (Yu, He, Chen, & Wu, 2023; Du
& Li, 2016) aim to separate them for following analysis such
as grouping logs by their common pattern and analyzing pe-
culiar parameters. A parser benchmark in (He, Zhu, He, Li, &
Lyu, 2016; Zhu et al., 2019) tests them on various log datasets
coming from operating systems or popular applications.

Normal Log Sequence Modeling — A popular log anomaly
detection method models the evolution of log keys and pa-
rameters over time while the system behaves normally, lever-
aging prediction error when an abnormal event occurs (Du,
Li, Zheng, & Srikumar, 2017). However, according to our
domain knowledge, the nature of the studied logs differs as
anomalies are not sequence-based but instead depend solely
on the semantics of the message.

Causal Graphs — Another area of research aims to auto-
matically discover causal graphs from event sequences to
determine potential root causes as presented in (Kobayashi,

Identified log keys 𝑇! + 𝑇"

Log messages

Log parser

Labeled log keys 𝑇! Unlabeled log keys 𝑇"

Labeled log keys 𝑇"

LLM

Expert troubleshooter

Enriching prompt

Figure 1. Log keys labeling workflow merging human and
large language model classification

Otomo, Fukuda, & Esaki, 2018). It first uses log parsers to
extract log keys and uses the Peter-Clark (PC) algorithm on a
sequence of templates to identify a causal graph described in
(Spirtes, Glymour, & Scheines, 2001). However, the number
of log keys exceeds the number of failure occurrences by an
order of magnitude which decreases the identifiability of the
graph. Furthermore, this method is prone to false positives
and does not leverage the semantics of the message.

Semantic-based anomaly detection — The combination of
the log message semantic with modeling the normal system
behavior has been studied in (Meng et al., 2019) and (Huang
et al., 2020). The latter uses a pre-trained Bidirectional En-
coder Representations from Transformers (BERT) model, as
in (Devlin, Chang, Lee, & Toutanova, 2019), to extract the se-
mantic meaning of the log messages. It then chooses a trans-
former model that takes sequences of embedded templates
and parameters for anomaly classification.

Large scale multimodal models — While a lot of bench-
marks evaluate LLMs on reasoning, coding, and natural lan-
guage understanding tasks as in (Hendrycks et al., 2020), sev-
eral works evaluate LLMs on parsing, mining, anomaly de-
tection, event prediction, and summarization on system logs
as in (Y. Liu et al., 2024) and in (Mudgal & Wouhaybi, 2024).
The latter empirically shows strong performances on log pars-
ing but is limited to other tasks. Both use GPT 3.5 Turbo but
do not consider the costs of calling a large language model
for each (or a batch of) log messages.

In-context learning — Other work demonstrated that LLMs
can learn to perform and improve on tasks by adding a few
examples of the task and its solution in the prompt (Brown et
al., 2020). The model can get increased performances for the
task without any additional weight updates. This is particu-

2



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

larly useful for tasks where labeled data is scarce, expensive
to obtain, or with few computational resources compared with
fine-tuning or Low-Rank Adaptation (LoRA) as in (Hu et al.,
2021).

Moreover, (Lewis et al., 2020) introduces the RAG frame-
work, which combines a retriever and a generator to improve
the performance of LLMs on knowledge-intensive tasks by
enriching the prompt for text generation with relevant in-
formation from a large corpus of documents. Leveraging
RAG, some works propose a log anomaly detection method
that combines a log parser with a context-aware RAG knowl-
edge database to enrich the prompt of a text generation model
(Zhang et al., 2025) and (Pan, Liang, & Yidi, 2024). RAG is
especially useful when the prompt reaches the maximum con-
text size by retrieving the most pertinent knowledge.

3. METHOD

As presented in figure 1, due to the semi-structured nature of
the logs, the method presented in this document proposes to
build the anomaly detection system by first applying a log
parser to group messages by their longest common struc-
ture, known as the log key, while ignoring associated pa-
rameters. Expert troubleshooters then classify each log key
as either normal or abnormal, thereby constructing a labeled
dataset. Finally, a pre-trained LLM is deployed to discrimi-
nate anomalous log key patterns. To this end, several LLMs
are benchmarked on the anomaly classification task using a
subset of labeled log keys to enrich the prompt and another
subset as ground truth for a test set in a cross-validation con-
figuration. While smaller LLMs have been tested, only Gen-
erative Pre-trained Transformer (GPT) neural networks —
GPT-4.1, GPT-4o, GPT-o1, and GPT-o1-mini — are included
in the study due to having enough output structure stability.
At the time of the experiments, other competitive models such
as Gemini or Claude were not available in the company’s en-
vironment.

3.1. Log Parsing

Since the method classifies templates rather than unique mes-
sages, it reduces the number of expensive calls to the model
by several orders of magnitude.

Each event includes a timestamp and a textual message.
The events follow the RFC 5424 Syslog protocol, similar
to Linux system logs (Gerhards, 2009). Logs are gener-
ated using a hard-coded sequence of words with varying
parameters. For example, Start education on UDP
{IP}:{port} {IP mask1}<=>{IP mask2} where the
IP, port, and IP masks are parameters and the rest constitute
the true log key.

To identify log keys, the literature proposes several unsuper-
vised algorithms for automatically extracting the fixed struc-

ture. The following work (Yu et al., 2023) introduces a new
log parser called Brain, which achieves strong performance
on the LogPAI log parser benchmark (He et al., 2016; Zhu et
al., 2019).

In the Brain algorithm, a word is defined as a sequence of
characters separated by a whitespace, and the position of a
word is its index in the log message. A pattern is a sequence
of word-position pairs shared across a group of logs. The al-
gorithm groups logs based on the longest common pattern and
then refines it using constant words. Once finished we found
the patterns of the identified log keys. Each log key is con-
verted to a regular expression to match new logs. Grouping is
performed on a training set and evaluated on unseen data to
count unmatched logs. This method tends to cluster logs that
share common (word, position) pairs. To improve log key
quality and interpretability, frequent irrelevant words — such
as isolated pipes |, info, warning . . . — are removed for
grouping.

3.2. Log Key Human Labeling

One advantage of using log keys for classification is their
interpretability by domain experts. The removed param-
eters are replaced by a wildcard, <*>, at their respec-
tive positions; for example, Start education on UDP
<*>:<*> <*><=><*>.

Human feedback was collected via a custom web application,
allowing expert troubleshooters to label a subset of the log
keys as either normal or abnormal, along with textual justi-
fications. These labeled log keys are subsequently used for
enriching the prompt and evaluating the classifier.

3.3. Log Key Classification

Log key classification is performed by prompting the LLM
and parsing its output to obtain the predicted class. The
prompt is composed of two sequential parts. The first is a
labeled set in which each entry consists of the index, the log
key, the expert explanation, and the ground truth label (abnor-
mal or not). The second is a test set where each entry includes
only the index and the log key. The prompt concludes with an
instruction asking the LLM to generate a list of predictions,
each containing the index and a boolean indicating whether
the corresponding test log key is abnormal.

4. RESULTS

For log parsing, 468 log keys were discovered among ap-
proximately five million logs. The parser was then tested on
around two million unseen logs to estimate the number of un-
groupable messages. With only 0.41% of messages unable to
be matched due to a new log structure appearing, we assume
parsing to be acceptable. Then, out of 468 log keys, 212 were
labeled by expert troubleshooters.

3



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Regarding anomaly classification, GPT-4.1 (2025-04-14),
GPT-4o (2024-05-13), GPT-o1 (2024-12-17), and GPT-o1-
mini (2024-09-12) are benchmarked to classify log keys as
normal or abnormal. The dates in parentheses indicate the
models’ release. GPTs are multimodal text generation mod-
els achieving strong performances on massive multitask lan-
guage understanding (MMLU), biology, physics, chemistry
(GPQA), maths (MATH and MGSM), code generation (Hu-
manEVAL), and complex question reasoning (DROP) bench-
marks as presented in (OpenAI et al., 2024; OpenAI, 2025,
2024b, 2024c, 2024a). GPT-4.1 is mainly significantly better
on coding tasks than GPT-4o. GPT-o1 outputs reasoning to-
kens helping itself to generate the answer leading to improved
results on MMLU. Finally, GPT-o1-mini is smaller than o1
and is designed for cost-efficiency.

4.1. Experiments

Due to the stochastic nature of LLMs, the binary classifi-
cation experiment is repeated using four random seeds for
splitting the data. For each seed, a 5-fold cross-validation
(80/20%) is applied to a total of 212 labeled log keys, which
are split into prompt and test sets. Prompt set sizes are lin-
early varied from 0 to 170 in 21 steps. For each model, 420
generations are performed (21 prompts × 5 folds × 4 seeds).
Each model receives the same prompt and test set for a given
seed, fold, and prompt size.

The model predicts a log key either being abnormal (posi-
tive) or normal (negative). The true positives (TP) are log
keys correctly classified as abnormal, while false positives
(FP) are normal log keys incorrectly classified as abnormal.
Conversely, true negatives (TN) are normal log keys correctly
classified as normal, and false negatives (FN) are abnormal
log keys incorrectly classified as normal. The precision shows
the portion of the correct positive predictions, while the recall
shows the portion of the truly positive cases that are correctly
detected. They are defined as

precision =
TP

TP + FP
, recall =

TP

TP + FN
(1)

Classification performance is evaluated using the F1 score, a
suitable metric for imbalanced datasets, as only 8% of labeled
log keys are abnormal. The F1 score is the harmonic mean of
the precision and recall and is calculated as

F1 =
2

1/precision + 1/recall
(2)

With a value between 0 and 1, the higher the score the bet-
ter. The baseline is set at 0.14 and corresponds to a model
that always predicts ”abnormal” (positive class) which is the
model that maximizes the F1 score with a random decision.
A model always predicting ”normal” (negative class) does not
yield a valid F1 score, as it would result in a division by zero
for the precision.

The results are shown in figure 2. While first increasing as
more labels are added, starting from 125 labeled log keys in
the prompt, GPT-4.1, GPT-4o, and GPT-o1 appear to plateau
at an F1 score of approximately 0.6. The GPT-o1-mini model
does not benefit from in-context learning for this task and
shows no significant improvement as more labels are added
to the prompt.

The F1 score distributions of all models have a high vari-
ance. One model can perform well on one fold and poorly
on another, even more so with an imbalanced dataset. Conse-
quently, the averaged F1 score shows only a trend and not a
strong correlation with the number of labels in the prompt.

Table 1 shows the evolution of recall and precision across
models when given the maximum number of labels in the
prompt. While GPT-4.1 and GPT-o1 balance the two, GPT-4o
and GPT-o1-mini favor recall over precision, leading to many
false positives but fewer missed anomalies.

4.2. Costs

With standard pricing, the cost of using language models is
linear with the number of tokens in the prompt, output, and
cache. Cached tokens are a subset of current prompt tokens
that were previously used and can be reused to reduce com-
putation and cost. The public model cost is defined as

cost = a1 × prompt + a2 × output− a3 × cached, (3)

where the cost per token coefficients ai are strictly positive
real numbers.

The GPT-o1, GPT-4o, and GPT-4.1 models use the same to-
kenizer resulting in similar token counts across prompts and
outputs. In contrast, GPT-o1-mini tokenizes text differently,
producing approximately 2% more tokens on average among
all experiments. However, the ai coefficients differ signifi-
cantly across models (see table 2).

While GPT-4.1 and GPT-4o produce similar output lengths,
GPT-o1 and GPT-o1-mini generate verbose responses with
additional reasoning. On average, GPT-o1-mini produces
15.8 times more output tokens, and GPT-o1 produces 22.8
times more than the others. Ignoring cost savings from
cached tokens (which depend on previous queries), the cost

Model Recall % Precision % Cost per TP C
GPT-4.1 65 65 0.013
GPT-4o 79 57 0.020
GPT-o1 61 62 0.333
GPT-o1-mini 83 31 0.017

Table 1. The recall, precision, and cost per true positive for
each model when given the maximum number of labels in the
prompt.

4



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Figure 2. Average F1 score as a function of the number of
labels in the prompt for the task of classifying log keys as ab-
normal like an expert troubleshooter. The standard deviation
of each signal is around 0.15.

Table 2. Cost per token coefficients for the different models
(in 10−7 C/token) as of April 2025.

Model a1 (Prompt) a2 (Output) a3 (Cached)
GPT-4.1 20 80 15
GPT-4o 25 100 12.5
GPT-o1 150 600 75
GPT-o1-mini 11 44 6.05

of 420 queries is estimated at 12.34C for GPT-4.1, 15.37C
for GPT-4o, 238.14C for GPT-o1, and 14.17C for GPT-o1-
mini. Moreover, GPT-o1 queries can take several minutes to
complete, whereas the others typically respond within a few
seconds. Therefore, GPT-4.1 appears to be the most suitable
model for this task, offering the best trade-off between per-
formance, cost, and response time. However, for applications
where recall is prioritized over precision, GPT-o1-mini may
be a more cost-effective choice despite its lower F1 score.

In table 1, for each model, the cost per true positive (TP) is
calculated by averaging over all experiments the ratio of the
total cost of queries to the number of true abnormal template
detected. Also note that the cost for classifying template is
fixed and does not depend on the number of logs processed,
as long as they are parsed into the same number of log keys.

5. DISCUSSION

The approach is highly energy efficient: initial log parsing
relies on a trained set of regular expressions, which operate
solely on CPUs. Subsequently, resource-intensive neural net-
works running on GPUs are applied to groups of logs rather
than individual messages, further reducing computational de-
mands. In-context learning delivers substantial performance

improvements while requiring only a small number of labeled
log keys. This is especially advantageous for railway logs,
where expert labeling demands deep domain knowledge and
can be both time-consuming and costly. The method also en-
ables quick adaptation to new log keys without the need for
extensive retraining or fine-tuning of the model.

However, while the results provide a comparative analysis of
different LLMs, the comparison is based on a specific task
and cannot be generalized to the overall performance of these
models. Moreover, one limitation of the method is that it
does not consider the anomalous values that log parameters
may take. Furthermore, it achieves a relatively low F1 score,
with a significant number of false positives, especially warn-
ings which represent 40% of the false positives for GPT-o1-
mini. In this industrial application, avoiding false negatives
is of paramount importance — that is, we aim not to miss
any bugs. It is acceptable to include irrelevant information
for finding the root cause but critical events must not be over-
looked. The dataset is highly imbalanced, and false positives
are less critical in this context than in domains such as medi-
cal diagnostics or fraud detection.

Alternatives — Different models were evaluated to enhance
performance or reduce computational cost. CodeGemma
(Zhao et al., 2024), optimized for code generation; LLaVA-
LLaMA3 (H. Liu, Li, Li, & Lee, 2024), a multimodal model
for natural language understanding and generation; as well as
GPT-3.5 Turbo 8k, LLaMA 3.1:8B (Grattafiori et al., 2024),
Phi 3.5, and Phi 4, which are designed for general-purpose
reasoning and language comprehension. The primary advan-
tage of these models lies in their relatively small size, en-
abling deployment on systems with limited computational re-
sources. However, none demonstrated sufficient output struc-
ture stability to be viable for this specific task and were there-
fore excluded from the study. In this study, only in-context
learning was leveraged. Alternatively, the dataset could be
used for fine-tuning or for low-rank adaptation (i.e., training
newly inserted weights) on a pre-trained LLM. However, the
available labeled data is extremely limited with only 212 log
keys in the context, and for each, a ”True” or a ”False” con-
verts to approximately 1000 tokens output. Especially facing
the scale of the evaluated models which for some exceeds 600
billion parameters.

Improving Performance — Several strategies could be ex-
plored to improve performance. First, model performance is
largely influenced by its training data, which — in the case
of GPT models — is proprietary, though claimed to be large
and diverse. A model specifically trained for log and code
understanding, while retaining strong reasoning capabilities,
may yield better performance.

All enriched prompts remained within the context window
of the evaluated models, so retrieval-augmented generation
(RAG) was not required in our experiments. However, pro-

5



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

viding additional contextual information about the logs in the
prompt could still be advantageous. If the context were to
exceed the model’s capacity, RAG could then be used to se-
lectively retrieve the most relevant portions to improve the
classification of log keys.

Another potential improvement is to increase the number of
labeled log keys in the prompt without additional human ef-
fort, by auto-regressively reusing model-predicted classifi-
cations in future prompts (a self-feedback loop). However,
given the relatively low F1 score, such an approach risks com-
pounding errors and may degrade in-context learning perfor-
mance.

CONCLUSION

We present a method for scaling anomaly detection in railway
logs by leveraging LLMs and in-context learning. By classi-
fying log keys instead of individual log messages, we signif-
icantly reduce the number of queries to the model, thereby
decreasing computational load and costs. Our empirical re-
sults demonstrate that LLMs can effectively classify log keys
as normal or abnormal, with performance improving as more
labeled log keys are included in the prompt. However, the
method’s performance is limited by the imbalanced dataset
and the exclusion of parameters from classification. Fu-
ture work could explore alternative models, fine-tuning tech-
niques, and additional data sources to enhance performance.

REFERENCES

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., . . . Amodei, D. (2020). Language Models
are Few-Shot Learners. In Advances in Neural Infor-
mation Processing Systems. Curran Associates, Inc.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding. In North American
Chapter of the Association for Computational Linguis-
tics.

Ding, X., Yang, X., Hu, H., & Liu, Z. (2017, April). The
safety management of urban rail transit based on oper-
ation fault log. Safety Science.

Du, M., & Li, F. (2016, December). Spell: Streaming Pars-
ing of System Event Logs. In 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM).

Du, M., Li, F., Zheng, G., & Srikumar, V. (2017, Octo-
ber). DeepLog: Anomaly Detection and Diagnosis
from System Logs through Deep Learning. In Pro-
ceedings of the 2017 ACM CCS Conference on Com-
puter and Communications Security. Association for
Computing Machinery.

European Rail Traffic Management System. (2018). European
Union Agency for Railways.

Gerhards, R. (2009, March). The Syslog Protocol. Internet

Engineering Task Force.
Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,

A., Al-Dahle, A., . . . Ma, Z. (2024, November). The
Llama 3 Herd of Models. arXiv.

He, P., Zhu, J., He, S., Li, J., & Lyu, M. R. (2016, June).
An Evaluation Study on Log Parsing and Its Use in
Log Mining. In 2016 46th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works (DSN).

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., & Steinhardt, J. (2020, October). Measuring
Massive Multitask Language Understanding. In Inter-
national Conference on Learning Representations.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., . . . Chen, W. (2021, October). LoRA: Low-Rank
Adaptation of Large Language Models. In Interna-
tional Conference on Learning Representations.

Huang, S., Liu, Y., Fung, C., He, R., Zhao, Y., Yang, H.,
& Luan, Z. (2020, December). HitAnomaly: Hierar-
chical Transformers for Anomaly Detection in System
Log. IEEE Transactions on Network and Service Man-
agement.

Klumpenhouwer, W., & Shalaby, A. (2022, September). Us-
ing Delay Logs and Machine Learning to Support Pas-
senger Railway Operations. Transportation Research
Record.

Kobayashi, S., Otomo, K., Fukuda, K., & Esaki, H. (2018,
March). Mining Causality of Network Events in Log
Data. IEEE Transactions on Network and Service Man-
agement.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., . . . Kiela, D. (2020). Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In
Advances in Neural Information Processing Systems.
Curran Associates, Inc.

Liu, H., Li, C., Li, Y., & Lee, Y. J. (2024, June). Im-
proved Baselines with Visual Instruction Tuning. In
2024 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Liu, Y., Tao, S., Meng, W., Yao, F., Zhao, X., & Yang,
H. (2024, April). LogPrompt: Prompt Engineer-
ing Towards Zero-Shot and Interpretable Log Analy-
sis. In 2024 IEEE/ACM 46th International Confer-
ence on Software Engineering: Companion Proceed-
ings (ICSE-Companion).

Mannhardt, F., & Landmark, A. D. (2019, January). Mining
railway traffic control logs. Transportation Research
Procedia.

Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., . . .
Zhou, R. (2019). LogAnomaly: Unsupervised Detec-
tion of Sequential and Quantitative Anomalies in Un-
structured Logs. In International Joint Conference on
Artificial Intelligence.

Mohamad, N. H., Hashim, H., Abdul Hamid, N. A., & Is-

6



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

mail, M. I. A. (2021, September). Dashboard for ana-
lyzing SCADA data log: A case study of urban railway
in Malaysia. International Journal of Advances in Ap-
plied Sciences.

Mudgal, P., & Wouhaybi, R. (2024). An Assessment of Chat-
GPT on Log Data. In F. Zhao & D. Miao (Eds.), AI-
generated Content. Singapore: Springer Nature.

OpenAI. (2024a, May). Hello GPT-4o.
OpenAI. (2024b, September). Learning to reason with

LLMs.
OpenAI. (2024c, September). OpenAI o1-mini.
OpenAI. (2025, April). Introducing GPT-4.1 in the API.
OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,

Akkaya, I., . . . Zoph, B. (2024, March). GPT-4 Tech-
nical Report. arXiv.

Pan, J., Liang, W. S., & Yidi, Y. (2024, May). RAGLog: Log
Anomaly Detection using Retrieval Augmented Gener-
ation. In IEEE World Forum on Public Safety Technol-
ogy (WFPST).

Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation,
Prediction, and Search. The MIT Press.

Yu, S., He, P., Chen, N., & Wu, Y. (2023, September). Brain:
Log Parsing With Bidirectional Parallel Tree. IEEE
Transactions on Services Computing.

Zhang, L., Jia, T., Jia, M., Wu, Y., Liu, H., & Li, Y.
(2025, February). XRAGLog: A Resource-Efficient
and Context-Aware Log-Based Anomaly Detection
Method Using Retrieval-Augmented Generation. In
AAAI 2025 Workshop on Preventing and Detecting
LLM Misinformation (PDLM).

Zhao, H., Hui, J., Howland, J., Nguyen, N., Zuo, S., Hu, A.,
. . . Huffman, S. (2024, June). CodeGemma: Open
Code Models Based on Gemma. arXiv.

Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., & Lyu,
M. R. (2019, January). Tools and Benchmarks for Au-
tomated Log Parsing. In International Conference on
Software Engineering (ICSE).

7


