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Title: Improving Virtual Metrology Predictions via Parameter-Based Transfer Learning and 

Active Learning 

Abstract  

Unlike traditional metrology in semiconductor manufacturing, it uses physical methods to 

measure wafers that are both resource-intensive and time-consuming, increasing possibilities of 

causing defects to production of wafers. Virtual metrology (VM) predicts wafer measurements 

using sensor data, enabling real-time, non-intrusive monitoring of process performance in 

semiconductor manufacturing. In this study, we utilize sensor data collected from a Seagate 

manufacturing facility to validate our approach. Our study introduces a advanced approach to 

VM by combining regression modeling with transfer learning to enhance model generalization 

under varying manufacturing conditions. The framework proposed Virtual Metrology Transfer 

and Active Learning-driven Adaptation (VM-TALA) consists of two stages: first we fine-tuning 

a base model using a limited amount of labeled data from the target domain, then followed with 

iterative refinement via active learning (AL) in which the most uncertain predictions are 

identified and incorporated into the training set. This method improves prediction in the target 

domain, especially in cases where standalone models do not perform well. Experimental results 

demonstrate proposed framework significantly outperforms models trained solely on target 

domain data. The significant improvement of refined model achieves 62.90% in Root Mean 

Squared Error (RMSE) and 78.92% in Mean Absolute Error (MAE) across all evaluated 

contexts. AL helps to select the most appropriate sample for labelling to reduce the need for 

extensive datasets. The proposed method is advantageous in high-mix, low-volume (HMLV) 

manufacturing industry settings, where some stage or products are produced in lesser amounts. 

This innovative approach to VM aims to streamline semiconductor manufacturing, minimize 

defects, and optimize resource utilization by delivering strong, adaptable predictive capabilities. 
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1.Introduction  

The rapid scaling of semiconductor manufacturing, with production volumes reaching 

thousands of wafers per day, demands highly automated, cost-effective, and responsive process 

control systems. Central to this challenge is the metrology infrastructure, which ensures wafer 

quality through detailed inspection across multiple processing stages. Traditional physical 

metrology, while accurate, is increasingly unsustainable at such volumes due to prohibitive costs, 

cycle time penalties, and inspection bottlenecks. Multiple metrology steps are required for the 

inspection of finished products in semiconductor manufacturing (Maitra, V., et al. 2024). 

VM is the process of predicting quality of product without direct measurement, enabling 

faster decision-making and reduce the need for exhaustive physical measurement.VM is the 

process of predicting quality of product without direct measurement, enabling faster decision-

making and reduce the need for exhaustive physical measurement. The proliferation of Industry 

4.0 has established Virtual Metrology as an indispensable technology for intelligent 

manufacturing, particularly within the exacting domain of semiconductor fabrication. Industry 

4.0 is characterized by the convergence of advanced analytics, cyber-physical systems, cloud 

computing, and the Industrial Internet of Things (IIoT), enabling real-time monitoring, predictive 

maintenance, and data-driven optimization of production processes (Bai et al., 2020; Soori, M., 

et al. 2023). These capabilities are transforming manufacturing operations by enhancing 

flexibility, improving product quality, and reducing downtime and waste. This makes VM an 

ideal fit for high-precision, high-throughput environments like semiconductor fabs. VM involves 

the estimation of a product's critical quality characteristics, such as line width, hole diameter and 

film thickness, by leveraging high dimensional sensor data collected in situ during the 

manufacturing process (Shim & Kang, 2022). This approach circumvents the significant costs, 

throughput limitations, and extended cycle-time associated with physical metrology, enabling 

real-time, wafer-to-wafer quality monitoring and advanced process control. 

The efficacy of data-driven VM is fundamentally undermined by two persistent and 

intertwined challenges which are process drift and data scarcity (Guha et al.,2023). In high-mix, 

low-volume (HMLV) manufacturing, frequent changes in recipes, tooling, and equipment 

conditions cause domain shifts, making static VM models quickly outdated and less accurate. At 

the same time, collecting new labeled data is expensive and impractical, especially as new 

products are introduced regularly. This creates a cycle where models must adapt to new domains 

with limited data, but retraining robust models for each domain is not feasible. The key research 

challenge is to develop VM models that can quickly and accurately adapt to changing processes 

while minimizing the need for costly labeled data. 

Current research has addressed these challenges through two primaries, yet largely 

isolated, avenues. TL has been employed to mitigate domain shift by adapting a model pre-

trained on a data-rich source domain to a data-scarce target domain. Concurrently, AL has been 

utilized to combat data scarcity by intelligently querying the most informative unlabeled samples 

for annotation, thereby maximizing model performance for a given labeling budget (Sharath et 

https://www.sciencedirect.com/science/article/pii/S095741742400424X
https://linkinghub.elsevier.com/retrieve/pii/S0925527320301559
https://doi.org/10.1016/j.dsm.2023.10.006
https://doi.org/10.1016/j.dsm.2023.10.006
https://www.sciencedirect.com/science/article/pii/S0166361521001792
https://www.egr.msu.edu/~kdeb/papers/c2023009.pdf
https://ieeexplore.ieee.org/document/10427050
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al.,2024). However, a significant research gap exists at the intersection of these paradigms in 

VM. TL methodologies typically presume the availability of a small, labeled target dataset 

without specifying how to acquire it efficiently, while AL strategies, though data-efficient, are 

not inherently designed for domain adaptation. This gap is further deepened at a methodological 

level. The true frontier lies not merely in combining TL and AL, but in synergizing their most 

advanced and mutually enabling sub-disciplines. 

 Parameter-based or parameter-efficient fine-tuning (PEFT) which adapts only a small 

subset of parameters has been shown to be more effective and less prone to overfitting in few-

shot scenarios than conventional full-model fine-tuning. However, its potential remains largely 

unexplored in this context (Wang et al.,2025) . The efficiency of such methods, which can adapt 

to a model with as few as five to ten samples, fundamentally alters the cost-benefit analysis of 

AL, making it a highly feasible and impactful strategy. This symbiotic relationship, where the 

extreme data efficiency of parameter-based TL unlocks the full potential of uncertainty-driven 

AL, has not systematically investigated VM as current approaches in virtual metrology lack an 

integrated framework that simultaneously incorporates a principled uncertainty-based AL 

module with a parameter-efficient adaptation mechanism. While recent advances in AL have 

demonstrated the effectiveness of uncertainty estimation in prioritizing informative samples for 

annotation, few systems align this with lightweight, transferable learning architectures capable of 

adapting to rapidly evolving process domains. 

To address the gaps, this paper proposes a novel, integrated framework that 

synergistically combines parameter-based transfer learning and uncertainty-driven active 

learning to create a highly accurate, data-efficient, and adaptive VM system. The central 

hypothesis is that by creating a closed loop where an uncertainty-driven AL engine strategically 

selects a minimal set of high-value wafers for labeling, which are then used by a parameter-based 

TL module for rapid and robust model adaptation, it is possible to achieve superior predictive 

performance in dynamic manufacturing environments with drastically reduced metrology 

overhead. 

The key contributions of this work are: 

• The design and implementation of a two-stage framework that first leverages TL for 

rapid, data-efficient initial model deployment and subsequently uses AL for continuous, 

cost-effective model refinement and adaptation. 

• Integration of Random Forest Regression with transfer learning is showing how an 

ensemble-based non-parametric model can be adapted across domains by reusing tree 

structures and fine-tuning on limited target labels. 

• Show improvement in both regression accuracy for predicting wafer quality parameters 

and classification performance for detecting abnormal wafers, thereby directly addressing 

key industrial objectives of yield enhancement and cost reduction. 

In this paper, the performance of different transfer learning tasks including cross factory, cross 

stage, and cross measurement is evaluated with a focus on the key parameters of successful 

https://ieeexplore.ieee.org/document/10427050
https://link.springer.com/article/10.1007/s10462-025-11236-4
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strategies. The data used for our numerical experiments was obtained from Seagate’s industrial 

semiconductor wafer manufacturing operations (Kaitwanidvilai et al., 2025). 

2.Related Work  

2.1 Virtual Metrology in Manufacturing 

Virtual Metrology has emerged as a cost-effective and time-efficient alternative to 

physical metrology in advanced manufacturing. By leveraging sensor signals, process 

parameters, and machine learning models, VM predicts product quality without direct physical 

measurements. Recent studies have shown that VM significantly reduces downtime and 

increases throughput, especially in semiconductor fabrication and precision machining 

environments. However, VM’s predictive accuracy heavily depends on data quality and the 

generalizability of the chosen model across different production scenarios. 

2.2 Transfer learning and active learning 

Transfer learning has become an increasingly prominent approach in manufacturing 

research due to its ability to mitigate the challenges associated with scarce labeled data and 

variations between source and target domains. By reusing knowledge from prior models and 

adapting it to new tasks, TL offers a pathway to reduce training time, enhance predictive 

capability, and maintain model relevance under changing process conditions. 

Transfer learning methodologies are broadly categorized based on how knowledge is 

transferred between domains which included instance-based, feature-based, or parameter-based. 

Instance-based transfer learning focuses on reusing or reweighting data samples from the source 

domain to enhance learning in the target domain. Feature-based transfer learning methods aim to 

learn a common feature representation that bridges the gap between source and target domains. 

Such approaches transform or map data from both domains into a shared feature space where 

their distributions are more aligned, thereby enabling effective knowledge transfer.  Parameter-

based transfer learning involves transferring model parameters, such as weights, layers, or 

hyperparameters, from a source domain model to a target domain model. The pre-trained source 

model serves as an initial starting point, and its parameters are subsequently fine-tuned using 

data from the target domain. 

TL applications evolved toward hybrid and physics-informed strategies. (Semitela et 

al.,2024) explored TL for surface defect detection in manufacturing inspection, achieving higher 

classification accuracy by transferring features from pre-trained vision models to sensor-based 

quality control tasks. Liang et al.,2025 combined convolutional and recurrent neural architectures 

with incremental TL for fault diagnosis in machining, enabling seamless adaptation to shift in 

operating conditions. (Zhu et al.,2025)  integrated TL with physics-informed neural networks 

(TLE-PINN) for selective laser melting, allowing physical process constraints to guide melt pool 

morphology predictions. 

A notable recent contribution is the Generative-FewShot-Active Virtual Metrology 

(GFA-VM) framework. This framework unifies large-scale generative modeling with few-shot 

fine-tuning and uncertainty-driven active sampling for adaptive process control in semiconductor 

manufacturing (Lin et al., 2025). It demonstrates the ability to recalibrate models with only 1-5 

critical labeled samples, underscoring the extreme data efficiency achievable through such 

integrated approaches. A critical consideration for effective PTL, as highlighted in the literature, 

https://www.mdpi.com/1424-8220/25/2/527
https://www.mdpi.com/1424-8220/25/2/527
https://www.sciencedirect.com/science/article/pii/S0166361525000272
https://www.elspub.com/papers/j/1799796481847033856.html
https://www.researchgate.net/publication/391590545_Large_Pre-Trained_Models_and_Few-Shot_FineTuning_for_Virtual_Metrology_A_Framework_for_Uncertainty-Driven_Adaptive_Process_Control_in_Semiconductor_Manufacturing
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is the necessity for congruence between the source and target domains. The industrial processes 

in both domains must exhibit similar features or tasks to ensure effective knowledge transfer. 

This implies that while TL is powerful, its effectiveness can be limited if the source and target 

domains are too dissimilar, potentially leading to negative transfer. This highlights the need for 

careful source selection or advanced domain adaptation for disparate manufacturing processes. 

AL helps reduce labeling costs by allowing models to choose which data points should be 

labeled next. It identifies examples that are expected to contribute the most to learning, which 

improves model accuracy using fewer annotations. The most common strategy is uncertainty 

sampling, where the model queries instances it is least confident about. This includes techniques 

such as entropy scoring, margin-based selection, and least-confidence sampling. Another widely 

used method is Query-by-Committee (QBC), which relies on prediction disagreement across 

multiple models to identify informative samples (Shoghi et al.,2024) A third strategy, known as 

expected model change, selects data points likely to have the largest impact on the model if 

labeled. These methods have shown strong results in real-world tasks. When combined with 

transfer learning, AL can refine pre-trained models with minimal additional data.  

2.3 Problem Formulation: Transfer and Active Learning for Virtual Metrology 

Let a source domain be denoted as 𝐷𝑠 =  {𝑋𝑠,𝑃(𝑋𝑠)}where 𝑋𝑠 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, … , 𝑥𝑚} 

is the feature space and 𝑃(𝑋𝑠) is the marginal probability distribution of these features.  

The source learning task 𝑇𝑠 =  {𝑦𝑠,𝑓𝑠(. )} where 𝑦𝑠 is the label space and 𝑓𝑠(. ) is the predictive 

function mapping features to labels. 

For a given sample 𝑖 :, 𝑌𝑠  = 𝑓𝑠  (𝑥1(𝑖),𝑥2(𝑖), 𝑥3(𝑖),4𝑥(𝑖),… , 𝑥4𝑚(𝑖))+∈  

where ∈  represents noise or modeling error. 

and a target domain 

𝐷𝑇 =  {𝑋𝑠,𝑃(𝑋𝑇)}  

with its target learning task  

𝑇𝑇 =  {𝑦𝑠,𝑓𝑇(. )}.  

The objective of transfer learning is to improve the learning of the target predictive function 

𝑓𝑇(. ) in 𝐷𝑇 by exploiting knowledge from 𝐷𝑠 and 𝑇𝑠 , where 𝐷𝑠 ≠ 𝐷𝑇 . 

A domain 𝐷 = {𝑋, 𝑃(𝑋)} consists of a feature space 𝑋  (e.g., process sensor readings) and a 

marginal probability distribution 𝑃(𝑋) over instances 𝑥𝑖  ∈  𝑋 The condition 𝐷𝑠   ≠  𝐷𝑇 holds if 

either 𝑋𝑠  ≠  𝑋𝑇 or 𝑃(𝑋𝑠)  ≠  𝑃(𝑋𝑇).  

From the Virtual Metrology perspective, a task 𝑇  =  {𝑦, 𝑓(. )} consists of a label space 𝑦 and a 

predictive function𝑓(. ) modeling the conditional distribution 𝑃(𝑌 ∣ 𝑋 ). 

2.4 Combining Transfer Learning and Active Learning 

The integration of transfer learning and active learning is emerging as a promising 

approach in manufacturing, offering both rapid model initialization and efficient refinement with 
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minimal labeled data. TL can leverage prior models to provide a strong predictive baseline, as 

demonstrated in studies employing domain adaptation and transfer boosting to address domain 

discrepancies in industrial robotics and manufacturing processes (Ye et al., 2023). AL used 

selectively queries the most informative samples, thereby reducing measurement costs an 

especially critical factor in virtual metrology, where data acquisition can be expensive and time-

consuming. Recent work on ML-based VM pipelines has shown the feasibility of integrating TL 

for high-dimensional sensor data with limited measurements (Guha et al., 2023). Despite these 

advances, the combined application of TL and AL for VM prediction remains largely 

unexplored, representing a significant research gap in adapting predictive models to dynamic 

manufacturing environments with frequent process drifts. 

3. Materials and methods 

3.1. Base Model: Random Forest Regression 

In this work, the predictive function 𝑓(. ) from Section 2 is instantiated as a Random Forest 

Regressor. Given a feature vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]⊤, the Random Forest model 𝑓𝑅𝐹(⋅) consists 

of 𝑀  individual regression trees  {ℎ𝑚(⋅)}𝑚=1
𝑀  . Each tree is trained on a bootstrap sample of the 

source domain data 𝐷𝑆 , and at each split, a random subset of features is considered. 

The prediction for an input 𝑋  is given by: 

 𝑦
∧ = 𝑓𝑅𝐹(𝑥) =

1

𝑀
∑ ℎ𝑚(𝑥)
𝑀
𝑚=1   

where ℎ𝑚(𝑥) is the prediction of the 𝑚 − 𝑡ℎ  regression tree. 

3.2. Transfer Learning Implementation 

The proposed strategy operates in two principal phases which are pre-training and fine-

tuning. In the first phase, a Random Forest model is trained using extensive, high-quality 

historical measurements from the source domain. This model, denoted as 𝑓𝑠 , consists of an 

ensemble of 𝐵 ￼decision trees, each producing a separate prediction. The overall model output 

is obtained as:  

where 𝑓𝑠(𝑥) =
1

𝐵
∑ 𝑇𝑏
𝐵
𝑏=1 (𝑥),  

is the prediction from the 𝑇𝑏(𝑥) decision tree, and 𝐵 While 𝑓𝑠  achieves high accuracy in the 

source domain, direct application to the target domain 𝐷𝑇. The fine-tuning process follows an 

active learning paradigm. The source-trained model is applied to the target domain to produce 

preliminary predictions. Samples exhibiting high prediction uncertainty are identified using 

variance-based measures across trees in the ensemble.  This active selection of informative 

samples accelerates domain adaptation while minimizing labeling costs. 
  Following the formulation in Section 2, the goal is to improve  𝑓𝑇(⋅) in the target domain 

𝐷𝑇using knowledge from 𝑓𝑠(⋅) trained in the source domain 𝐷𝑠 . In the Random Forest setting, 

this is done by: 

https://doi.org/10.1016/j.ymssp.2023.110547
https://www.tandfonline.com/doi/full/10.1080/10426914.2023.2220487
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1. Training 𝑓𝑠(. ) on 𝐷𝑠 = {𝑋𝑠,𝑌𝑠} 

2. Initializing  𝑓𝑇(⋅) with the structure and learned splits from 𝑓𝑠(⋅). 
3. Fine-tuning tree parameters with the limited labeled target domain data 𝐷𝑇𝑙𝑎𝑏𝑒𝑙𝑒𝑑. 

Mathematically: 𝑓𝑇(⋅) ← 𝐴𝑑𝑎𝑝𝑡(𝑓𝑠(⋅), 𝐷𝑇
𝑙 𝑎𝑏𝑒𝑙𝑒𝑑) 

3.3. Active Learning–Based Refinement 
To enhance the performance of 𝑓𝑇(⋅) when 𝑌𝑇 is scarce, we employ uncertainty sampling. The 

variance of predictions across all trees in the ensemble is computed: 

𝑢(𝑥) =
1

𝑀
∑ (ℎ𝑚(𝑥) − ℎ(𝑥))

2
𝑀

𝑚=1

 

Samples with the largest 𝑢(𝑥) are selected for labeling and added to the training set. The refined 

model is then:𝑓𝑇
refined(⋅) = Retrain(𝑓𝑇(⋅), 𝐷𝑇

labeled ∪ 𝐷𝑇
new)┤)  where  𝐷𝑇

new are the newly labeled 

high-uncertainty samples. 
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Figure1: Workflow for virtual metrology prediction using enhanced transfer learning with 

adaptation and active learning 

The transfer learning architecture in this study is implemented in two main stages: 

adaptation and refinement. In the first stage, a base regression model is pre-trained using 

historical sensor data from the source domain, which may include multiple factories, process 

stages, and measurement types. This pre-trained model is then adapted to the target domain by 

fine-tuning with a limited set of labeled data specific to the target context. The adapted model 

leverages knowledge from the source domain to improve generalization and predictive accuracy 

under new manufacturing conditions. In the second stage, the adapted model undergoes iterative 

refinement through active learning. During each iteration, the model identifies the most uncertain 

predictions within the target domain and incorporates these samples into the training set. This 

targeted refinement enables the model to focus on challenging cases, further enhancing its 

accuracy and robustness. By combining adaptation and active learning-driven refinement, the 

proposed architecture ensures strong predictive performance even in data-scarce and highly 

variable manufacturing environments. 

3.4 Experiment Setting 

3.4.1. Design of Experiments 

To evaluate the effectiveness of transfer learning and active learning in virtual metrology 

modeling, we designed experiments encompassing cross-factory, cross-stage, and cross-

measurement adaptation scenarios. Sensor datasets were collected from multiple Seagate 

semiconductor wafer manufacturing facilities, representing diverse process stages and 

measurement types. For cross-factory adaptation, data from one factory was used as the source 

domain, while data from another factory served as the target domain, with particular attention 

given to cases where the target domain dataset was limited in size. This setup allows us to assess 

the capability of transfer learning to address data scarcity and domain shift. Similarly, cross-

stage and cross-measurement experiments were conducted by designating specific process stages 

and measurement types as source and target domains, respectively. In each scenario, the adapted 

model was first fine-tuned with limited labeled data from the target domain, followed by iterative 

refinement using active learning to incorporate the most uncertain samples. 

3.4.2. Evaluation Metrics 

The performance of virtual metrology models was evaluated using three regression metrics: 

mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination 

(R²). These metrics were computed for models trained solely on the target domain, as well as for 

models adapted and refined through transfer learning and active learning. The improvement in 

each metric was calculated as the percentage reduction in error or increase in R², as shown 

below: 

• MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|
𝑛
𝑖=1  
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• RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)2
𝑛
𝑖=1  

• 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

∑𝑖 =1𝑛(𝑦𝑖−𝑦)
2 

 

4. Result and Discussion 

The efficacy of the VM-TALA framework was validated using a large-scale, real-world 

dataset sourced from a Seagate semiconductor manufacturing facility. This dataset includes 

multiple sensors spanning various process stages, measurement types, and factory sites. The 

figures below illustrate changes in MAE, RMSE, and R² for each target context, comparing the 

performance of the Adapted Model and the Refined Model. Three metrics are used to 

comprehensively evaluate model performance across all contexts: mean absolute error (MAE), 

root mean squared error (RMSE), and coefficient of determination (R²). 

Context 

Encoded 

Target 

MAE 

Target 

RMSE 

Targe

t RÂ² 

Adapted 

MAE 

Adapted 

RMSE 

Adapte

d RÂ² 

Refined 

MAE 

Refined 

RMSE 

Refined 

RÂ² 

stage_0_mea

s_C_fac_Y 2.633312 4.653801 

-

1.557

8 

0.23871

9 1.094417 

0.86529

5 0.174198 0.495497 0.972273 

stage_1_mea

s_C_fac_X 18.69353 47.66746 

-

0.069

46 

5.70434

4 24.41296 

0.92108

4 3.940854 18.80294 0.948848 

stage_2_mea

s_C_fac_X 40.52906 51.97169 

-

0.069

82 

13.9822

5 18.85622 0.8873 14.05569 19.28378 0.884428 

stage_3_mea

s_D_fac_X 1338.373 1345.76 

-

92.36

38 

2.96629

9 4.877093 

0.99755

1 3.450357 15.87809 0.971147 

stage_3_mea

s_A_fac_X 58.07634 109.6704 

-

0.129

06 

10.7059

9 22.41142 

0.73511

1 10.05285 25.57469 0.905536 

stage_4_mea

s_B_fac_X 4.775721 11.72476 

-

0.060

63 

0.43577

6 0.755348 

0.97425

2 0.787988 4.218209 0.933157 

stage_4_mea

s_B_fac_Y 11.56094 160.8559 

-

0.149

09 

15.4163

2 119.3902 

0.87210

3 13.70549 115.6785 0.665294 
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stage_5_mea

s_E_fac_X 1.901159 2.870282 

-

0.424

68 0.34821 0.499007 

0.95709

4 0.414709 1.202834 0.917568 

stage_6_mea

s_C_fac_Y 13.89912 163.7359 

-

0.210

43 

3.11130

9 26.00234 

0.73615

3 4.398212 60.87194 0.785499 

Table 1: Model performance metrics for each target context 

Our results shown in Table 1 indicate that the MAE for target models trained only on 

local data is consistently high, reflecting poor predictive performance due to data scarcity and 

domain shift. For example, in stage_3_meas_D_fac_X, the target MAE is over 1300, and in 

stage_1_meas_C_fac_X, it is nearly 19. After domain adaptation, the MAE drops dramatically in 

all contexts. For instance, in stage_0_meas_C_fac_Y, MAE decreases from 2.63 as target to 0.24 

as adapted, and in stage_5_meas_E_fac_X, from 1.90 as target to 0.35 as adapted. This 

demonstrates that leveraging source domain knowledge significantly improves prediction 

accuracy, even when the target domain has limited data. Active refinement further reduces MAE 

in most cases, though the improvement is sometimes modest compared to the jump from target to 

adapted. For example, in stage_3_meas_A_fac_X, MAE drops from 58.08 as target to 10.71 as 

adapted and then to 10.05 as refined. In some contexts, such as stage_4_meas_B_fac_Y, the 

refined MAE at 13.71 is slightly lower than the adapted MAE at 15.42, but both are much higher 

than the target MAE at 11.56. 
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Figure 2: MAE drops dramatically in all contexts after active refinement 
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Figure 3 : Refined model shows indicate better model performance and more reliable predictions. 

 

Figure 4: Active refinement further boosts R² for most of the context 

Based on the insights drawn from Figure 3, it can be observed that the target models 

exhibit very high RMSE values, reflecting poor accuracy and instability in predictions. For 
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instance, in stage_3_meas_D_fac_X, the target RMSE exceeds 1300, while in 

stage_1_meas_C_fac_X, it approaches 48. Such elevated RMSE values are characteristic of 

data-scarce domains with significant process drift, where models trained solely on local data 

struggle to generalize. Upon applying domain adaptation, RMSE is dramatically reduced across 

all contexts. For example, in stage_0_meas_C_fac_Y, RMSE decreases from 4.65 as target to 

1.09 as adapted, and in stage_5_meas_E_fac_X, from 2.87 as target to 0.50 as adapted. This 

substantial reduction demonstrates that transfer learning effectively leverages source domain 

information to enhance prediction stability and accuracy. Active refinement further reduces 

RMSE in most cases, although the improvement is sometimes incremental compared to the 

initial adaptation. For example, in stage_3_meas_A_fac_X, RMSE decreases from 109.67 as 

target to 22.41 as adapted and then to 25.57 as refined. In other contexts, such as 

stage_0_meas_C_fac_Y, the refined RMSE reaches 0.50, which is lower than both the target and 

adapted RMSE, indicating enhanced model precision. 

A similar trend is observed for the coefficient of determination, R². The target models 

frequently yield negative R² values, indicating poor fit due to data scarcity and domain shift. For 

example, in stage_3_meas_D_fac_X, the target R² is -92.36, highlighting the model’s 

unreliability in that context. Following domain adaptation, R² improves markedly, often 

exceeding 0.7 or even 0.9, signifying that the adapted model can explain most of the variance in 

the target data. For instance, in stage_0_meas_C_fac_Y, R² increases from -1.56 as target to 0.87 

as adapted. Active refinement further boosts R², with the refined model reaching values close to 

1 in several contexts, such as 0.97 as refined in stage_0_meas_C_fac_Y. This progression 

underscores the refined model’s high accuracy and robustness, even in challenging domains. 

 

5.Conclusion 

The results indicate that the proposed transfer learning and active learning framework is effective 

in improving both regression and classification performance in complex, multi-context 

manufacturing environments. Our experiments demonstrate consistently outperforms the 

baseline and adapted models, particularly in challenging contexts with initially poor 

performance. The refined model strategically incorporates additional data samples that exhibit 

high predictive uncertainty, as identified through active learning techniques. By focusing on 

these informative instances, the model can refine its understanding of complex patterns and 

improve generalization across diverse manufacturing contexts.  
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Figure 5: Median Improvement of Refined Model Across Contexts 

  

The proposed VM-TALA architecture demonstrates substantial improvements in predictive 

accuracy and robustness across cross-factory, cross-stage, and cross-measurement scenarios. 

Notably, the refined model achieves a median improvement of 62.90% in RMSE and 78.92% in 

MAE. The refined model achieved its best performance with an R² of 0.97, a RMSE 

improvement of 1639.17%, and a MAE improvement of 99.74% across the evaluated 

contexts. By strategically selecting the most informative samples for model refinement, our 

approach addresses the challenges of data scarcity and limited diversity in target domains, 

enabling rapid and reliable deployment of VM models in high-mix, low-volume manufacturing 

environments. Overall, the VM-TALA framework streamlines the model adaptation process, 

reduces metrology overhead, and supports yield enhancement and cost reduction in dynamic 

industrial settings. Future work may explore the extension of this framework to multi-modal data 

sources and real-time adaptive learning, further enhancing its applicability in dynamic 

production environments. The findings underscore the potential of combining transfer learning 

and active learning to drive innovation in virtual metrology and predictive analytics for smart 

factories.  
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