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Abstract

Unlike traditional metrology in semiconductor manufacturing, it uses physical methods to
measure wafers that are both resource-intensive and time-consuming, increasing possibilities of
causing defects to production of wafers. Virtual metrology (VM) predicts wafer measurements
using sensor data, enabling real-time, non-intrusive monitoring of process performance in
semiconductor manufacturing. In this study, we utilize sensor data collected from a Seagate
manufacturing facility to validate our approach. Our study introduces a advanced approach to
VM by combining regression modeling with transfer learning to enhance model generalization
under varying manufacturing conditions. The framework proposed Virtual Metrology Transfer
and Active Learning-driven Adaptation (VM-TALA) consists of two stages: first we fine-tuning
a base model using a limited amount of labeled data from the target domain, then followed with
iterative refinement via active learning (AL) in which the most uncertain predictions are
identified and incorporated into the training set. This method improves prediction in the target
domain, especially in cases where standalone models do not perform well. Experimental results
demonstrate proposed framework significantly outperforms models trained solely on target
domain data. The significant improvement of refined model achieves 62.90% in Root Mean
Squared Error (RMSE) and 78.92% in Mean Absolute Error (MAE) across all evaluated
contexts. AL helps to select the most appropriate sample for labelling to reduce the need for
extensive datasets. The proposed method is advantageous in high-mix, low-volume (HMLV)
manufacturing industry settings, where some stage or products are produced in lesser amounts.
This innovative approach to VM aims to streamline semiconductor manufacturing, minimize
defects, and optimize resource utilization by delivering strong, adaptable predictive capabilities.
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1.Introduction

The rapid scaling of semiconductor manufacturing, with production volumes reaching
thousands of wafers per day, demands highly automated, cost-effective, and responsive process
control systems. Central to this challenge is the metrology infrastructure, which ensures wafer
quality through detailed inspection across multiple processing stages. Traditional physical
metrology, while accurate, is increasingly unsustainable at such volumes due to prohibitive costs,
cycle time penalties, and inspection bottlenecks. Multiple metrology steps are required for the
inspection of finished products in semiconductor manufacturing (Maitra, V., et al. 2024).

VM is the process of predicting quality of product without direct measurement, enabling
faster decision-making and reduce the need for exhaustive physical measurement.VM is the
process of predicting quality of product without direct measurement, enabling faster decision-
making and reduce the need for exhaustive physical measurement. The proliferation of Industry
4.0 has established Virtual Metrology as an indispensable technology for intelligent
manufacturing, particularly within the exacting domain of semiconductor fabrication. Industry
4.0 is characterized by the convergence of advanced analytics, cyber-physical systems, cloud
computing, and the Industrial Internet of Things (IIoT), enabling real-time monitoring, predictive
maintenance, and data-driven optimization of production processes (Bai et al., 2020; Soori, M.,
et al. 2023). These capabilities are transforming manufacturing operations by enhancing
flexibility, improving product quality, and reducing downtime and waste. This makes VM an
ideal fit for high-precision, high-throughput environments like semiconductor fabs. VM involves
the estimation of a product's critical quality characteristics, such as line width, hole diameter and
film thickness, by leveraging high dimensional sensor data collected in situ during the
manufacturing process (Shim & Kang, 2022). This approach circumvents the significant costs,
throughput limitations, and extended cycle-time associated with physical metrology, enabling
real-time, wafer-to-wafer quality monitoring and advanced process control.

The efficacy of data-driven VM is fundamentally undermined by two persistent and
intertwined challenges which are process drift and data scarcity (Guha et al.,2023). In high-mix,
low-volume (HMLV) manufacturing, frequent changes in recipes, tooling, and equipment
conditions cause domain shifts, making static VM models quickly outdated and less accurate. At
the same time, collecting new labeled data is expensive and impractical, especially as new
products are introduced regularly. This creates a cycle where models must adapt to new domains
with limited data, but retraining robust models for each domain is not feasible. The key research
challenge is to develop VM models that can quickly and accurately adapt to changing processes
while minimizing the need for costly labeled data.

Current research has addressed these challenges through two primaries, yet largely
isolated, avenues. TL has been employed to mitigate domain shift by adapting a model pre-
trained on a data-rich source domain to a data-scarce target domain. Concurrently, AL has been
utilized to combat data scarcity by intelligently querying the most informative unlabeled samples
for annotation, thereby maximizing model performance for a given labeling budget (Sharath et
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al.,2024). However, a significant research gap exists at the intersection of these paradigms in
VM. TL methodologies typically presume the availability of a small, labeled target dataset
without specifying how to acquire it efficiently, while AL strategies, though data-efficient, are
not inherently designed for domain adaptation. This gap is further deepened at a methodological
level. The true frontier lies not merely in combining TL and AL, but in synergizing their most
advanced and mutually enabling sub-disciplines.

Parameter-based or parameter-efficient fine-tuning (PEFT) which adapts only a small
subset of parameters has been shown to be more effective and less prone to overfitting in few-
shot scenarios than conventional full-model fine-tuning. However, its potential remains largely
unexplored in this context (Wang et al.,2025) . The efficiency of such methods, which can adapt
to a model with as few as five to ten samples, fundamentally alters the cost-benefit analysis of
AL, making it a highly feasible and impactful strategy. This symbiotic relationship, where the
extreme data efficiency of parameter-based TL unlocks the full potential of uncertainty-driven
AL, has not systematically investigated VM as current approaches in virtual metrology lack an
integrated framework that simultaneously incorporates a principled uncertainty-based AL
module with a parameter-efficient adaptation mechanism. While recent advances in AL have
demonstrated the effectiveness of uncertainty estimation in prioritizing informative samples for
annotation, few systems align this with lightweight, transferable learning architectures capable of
adapting to rapidly evolving process domains.

To address the gaps, this paper proposes a novel, integrated framework that
synergistically combines parameter-based transfer learning and uncertainty-driven active
learning to create a highly accurate, data-efficient, and adaptive VM system. The central
hypothesis is that by creating a closed loop where an uncertainty-driven AL engine strategically
selects a minimal set of high-value wafers for labeling, which are then used by a parameter-based
TL module for rapid and robust model adaptation, it is possible to achieve superior predictive
performance in dynamic manufacturing environments with drastically reduced metrology
overhead.

The key contributions of this work are:

e The design and implementation of a two-stage framework that first leverages TL for
rapid, data-efficient initial model deployment and subsequently uses AL for continuous,
cost-effective model refinement and adaptation.

e Integration of Random Forest Regression with transfer learning is showing how an
ensemble-based non-parametric model can be adapted across domains by reusing tree
structures and fine-tuning on limited target labels.

e Show improvement in both regression accuracy for predicting wafer quality parameters
and classification performance for detecting abnormal wafers, thereby directly addressing
key industrial objectives of yield enhancement and cost reduction.

In this paper, the performance of different transfer learning tasks including cross factory, cross
stage, and cross measurement is evaluated with a focus on the key parameters of successful
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strategies. The data used for our numerical experiments was obtained from Seagate’s industrial
semiconductor wafer manufacturing operations (Kaitwanidvilai et al., 2025).

2.Related Work

2.1 Virtual Metrology in Manufacturing

Virtual Metrology has emerged as a cost-effective and time-efficient alternative to
physical metrology in advanced manufacturing. By leveraging sensor signals, process
parameters, and machine learning models, VM predicts product quality without direct physical
measurements. Recent studies have shown that VM significantly reduces downtime and
increases throughput, especially in semiconductor fabrication and precision machining
environments. However, VM’s predictive accuracy heavily depends on data quality and the
generalizability of the chosen model across different production scenarios.

2.2 Transfer learning and active learning

Transfer learning has become an increasingly prominent approach in manufacturing
research due to its ability to mitigate the challenges associated with scarce labeled data and
variations between source and target domains. By reusing knowledge from prior models and
adapting it to new tasks, TL offers a pathway to reduce training time, enhance predictive
capability, and maintain model relevance under changing process conditions.

Transfer learning methodologies are broadly categorized based on how knowledge is
transferred between domains which included instance-based, feature-based, or parameter-based.
Instance-based transfer learning focuses on reusing or reweighting data samples from the source
domain to enhance learning in the target domain. Feature-based transfer learning methods aim to
learn a common feature representation that bridges the gap between source and target domains.
Such approaches transform or map data from both domains into a shared feature space where
their distributions are more aligned, thereby enabling effective knowledge transfer. Parameter-
based transfer learning involves transferring model parameters, such as weights, layers, or
hyperparameters, from a source domain model to a target domain model. The pre-trained source
model serves as an initial starting point, and its parameters are subsequently fine-tuned using
data from the target domain.

TL applications evolved toward hybrid and physics-informed strategies. (Semitela et
al.,2024) explored TL for surface defect detection in manufacturing inspection, achieving higher
classification accuracy by transferring features from pre-trained vision models to sensor-based
quality control tasks. Liang et al.,2025 combined convolutional and recurrent neural architectures
with incremental TL for fault diagnosis in machining, enabling seamless adaptation to shift in
operating conditions. (Zhu et al.,2025) integrated TL with physics-informed neural networks
(TLE-PINN) for selective laser melting, allowing physical process constraints to guide melt pool
morphology predictions.

A notable recent contribution is the Generative-FewShot-Active Virtual Metrology
(GFA-VM) framework. This framework unifies large-scale generative modeling with few-shot
fine-tuning and uncertainty-driven active sampling for adaptive process control in semiconductor
manufacturing (Lin et al., 2025). It demonstrates the ability to recalibrate models with only 1-5
critical labeled samples, underscoring the extreme data efficiency achievable through such
integrated approaches. A critical consideration for effective PTL, as highlighted in the literature,
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is the necessity for congruence between the source and target domains. The industrial processes
in both domains must exhibit similar features or tasks to ensure effective knowledge transfer.
This implies that while TL is powerful, its effectiveness can be limited if the source and target
domains are too dissimilar, potentially leading to negative transfer. This highlights the need for
careful source selection or advanced domain adaptation for disparate manufacturing processes.

AL helps reduce labeling costs by allowing models to choose which data points should be
labeled next. It identifies examples that are expected to contribute the most to learning, which
improves model accuracy using fewer annotations. The most common strategy is uncertainty
sampling, where the model queries instances it is least confident about. This includes techniques
such as entropy scoring, margin-based selection, and least-confidence sampling. Another widely
used method is Query-by-Committee (QBC), which relies on prediction disagreement across
multiple models to identify informative samples (Shoghi et al.,2024) A third strategy, known as
expected model change, selects data points likely to have the largest impact on the model if
labeled. These methods have shown strong results in real-world tasks. When combined with
transfer learning, AL can refine pre-trained models with minimal additional data.

2.3 Problem Formulation: Transfer and Active Learning for Virtual Metrology

Let a source domain be denoted as Dy = {XS,P(XS)}Where X, = {x1, %9, %3, X4, e, X }

is the feature space and P(X,) is the marginal probability distribution of these features.

The source learning task T; = {y; f;(.)} where y; is the label space and f;(.) is the predictive
function mapping features to labels.

For a given sample i:, Yy = fs (xl(i)_xz(i), x3(8) 2 (@), ..., x4m(i)) +€
where € represents noise or modeling error.
and a target domain
Dr = {X,P(Xr)}
with its target learning task

Tr = {ys,fT(- )}

The objective of transfer learning is to improve the learning of the target predictive function
fr () in Dy by exploiting knowledge from Dg and Ts , where Ds # Dy .

A domain D = {X, P(X)} consists of a feature space X (e.g., process sensor readings) and a
marginal probability distribution P(X) over instances x; € X The condition D; # Dy holds if
either X; # Xy or P(X;) # P(Xp).

From the Virtual Metrology perspective, a task T = {y, f(.)} consists of a label space y and a
predictive functionf (. ) modeling the conditional distribution P(Y | X ).

2.4 Combining Transfer Learning and Active Learning

The integration of transfer learning and active learning is emerging as a promising
approach in manufacturing, offering both rapid model initialization and efficient refinement with
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minimal labeled data. TL can leverage prior models to provide a strong predictive baseline, as
demonstrated in studies employing domain adaptation and transfer boosting to address domain
discrepancies in industrial robotics and manufacturing processes (Ye et al., 2023). AL used
selectively queries the most informative samples, thereby reducing measurement costs an
especially critical factor in virtual metrology, where data acquisition can be expensive and time-
consuming. Recent work on ML-based VM pipelines has shown the feasibility of integrating TL
for high-dimensional sensor data with limited measurements (Guha et al., 2023). Despite these
advances, the combined application of TL and AL for VM prediction remains largely
unexplored, representing a significant research gap in adapting predictive models to dynamic
manufacturing environments with frequent process drifts.

3. Materials and methods

3.1. Base Model: Random Forest Regression

In this work, the predictive function f(.) from Section 2 is instantiated as a Random Forest
Regressor. Given a feature vector x = [Xy, X3, ..., X, ] T, the Random Forest model fzg(-) consists
of M individual regression trees {h,,(-)}¥_,. Each tree is trained on a bootstrap sample of the
source domain data Ds , and at each split, a random subset of features is considered.

The prediction for an input X is given by:

b= far () = = XMy hyn (x)

where h,, (x) is the prediction of the m — th regression tree.

3.2. Transfer Learning Implementation

The proposed strategy operates in two principal phases which are pre-training and fine-
tuning. In the first phase, a Random Forest model is trained using extensive, high-quality
historical measurements from the source domain. This model, denoted as f; , consists of an
ensemble of B Bidecision trees, each producing a separate prediction. The overall model output
is obtained as:

where f;(x) = 3 52 T, (),

is the prediction from the T, (x) decision tree, and B While f; achieves high accuracy in the
source domain, direct application to the target domain Dy. The fine-tuning process follows an
active learning paradigm. The source-trained model is applied to the target domain to produce
preliminary predictions. Samples exhibiting high prediction uncertainty are identified using
variance-based measures across trees in the ensemble. This active selection of informative
samples accelerates domain adaptation while minimizing labeling costs.

Following the formulation in Section 2, the goal is to improve f7(+) in the target domain
Drusing knowledge from f; () trained in the source domain Dy . In the Random Forest setting,
this is done by:

Seagate Internal


https://doi.org/10.1016/j.ymssp.2023.110547
https://www.tandfonline.com/doi/full/10.1080/10426914.2023.2220487

1. Training f;(.) on Dg = {X, Y;}
2. Initializing f7(-) with the structure and learned splits from f;(-).
3. Fine-tuning tree parameters with the limited labeled target domain data Drlabeled.

Mathematically: fr(-) « Adapt(f;(-), D-abeled)

3.3. Active Learning—Based Refinement
To enhance the performance of f-(-) when Y7 is scarce, we employ uncertainty sampling. The
variance of predictions across all trees in the ensemble is computed:

M
u) =2 (An() ~FG))

m=1

Samples with the largest u(x) are selected for labeling and added to the training set. The refined
model is then: ff2"e4(-) = Retrain(fr(-), DF*#* U DF*¥){) where DJ*" are the newly labeled

high-uncertainty samples.
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Figurel: Workflow for virtual metrology prediction using enhanced transfer learning with
adaptation and active learning

The transfer learning architecture in this study is implemented in two main stages:
adaptation and refinement. In the first stage, a base regression model is pre-trained using
historical sensor data from the source domain, which may include multiple factories, process
stages, and measurement types. This pre-trained model is then adapted to the target domain by
fine-tuning with a limited set of labeled data specific to the target context. The adapted model
leverages knowledge from the source domain to improve generalization and predictive accuracy
under new manufacturing conditions. In the second stage, the adapted model undergoes iterative
refinement through active learning. During each iteration, the model identifies the most uncertain
predictions within the target domain and incorporates these samples into the training set. This
targeted refinement enables the model to focus on challenging cases, further enhancing its
accuracy and robustness. By combining adaptation and active learning-driven refinement, the
proposed architecture ensures strong predictive performance even in data-scarce and highly
variable manufacturing environments.

3.4 Experiment Setting

3.4.1. Design of Experiments

To evaluate the effectiveness of transfer learning and active learning in virtual metrology
modeling, we designed experiments encompassing cross-factory, cross-stage, and cross-
measurement adaptation scenarios. Sensor datasets were collected from multiple Seagate
semiconductor wafer manufacturing facilities, representing diverse process stages and
measurement types. For cross-factory adaptation, data from one factory was used as the source
domain, while data from another factory served as the target domain, with particular attention
given to cases where the target domain dataset was limited in size. This setup allows us to assess
the capability of transfer learning to address data scarcity and domain shift. Similarly, cross-
stage and cross-measurement experiments were conducted by designating specific process stages
and measurement types as source and target domains, respectively. In each scenario, the adapted
model was first fine-tuned with limited labeled data from the target domain, followed by iterative
refinement using active learning to incorporate the most uncertain samples.

3.4.2. Evaluation Metrics

The performance of virtual metrology models was evaluated using three regression metrics:
mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination
(R?). These metrics were computed for models trained solely on the target domain, as well as for
models adapted and refined through transfer learning and active learning. The improvement in
each metric was calculated as the percentage reduction in error or increase in R?, as shown
below:

1 ~
. MAE=I3Rly -3
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4. Result and Discussion

1 ~
RiSE = 151,07 - 5°

R?=1-

Y =902
=1y -y)?

The efficacy of the VM-TALA framework was validated using a large-scale, real-world
dataset sourced from a Seagate semiconductor manufacturing facility. This dataset includes

multiple sensors spanning various process stages, measurement types, and factory sites. The

figures below illustrate changes in MAE, RMSE, and R? for each target context, comparing the
performance of the Adapted Model and the Refined Model. Three metrics are used to
comprehensively evaluate model performance across all contexts: mean absolute error (MAE),
root mean squared error (RMSE), and coefficient of determination (R?).

Context Target [Target |[Targe|Adapted |[Adapted |Adapte |Refined [Refined [Refined
Encoded  |[MAE  [RMSE [tRA*|MAE [RMSE |[dRA> |[MAE [RMSE [RA?

stage 0 mea 1.557} 0.23871 0.86529

s C fac Y [2.633312/4.653801 8 9] 1.094417 5/0.174198]0.495497] 0.972273
stage 1 mea 0.069| 5.70434 0.92108

s C fac X [18.69353|47.66746| 46 4] 24.41296 413.940854]18.80294 0.948848
stage 2 mea 0.069| 13.9822

s C fac X 140.52906|51.97169| 82 5| 18.85622] 0.8873|14.05569]19.28378 0.884428
stage 3 mea 92.36| 2.96629 0.99755

s D fac X |1338.373| 1345.76] 38 91 4.877093 1|3.450357|15.87809] 0.971147
stage 3 mea 0.129] 10.7059 0.73511

s A fac X [58.07634]109.6704, 06 9122.41142 1]10.05285[25.57469] 0.905536
stage 4 mea 0.060] 0.43577 0.97425

s B fac X [4.775721|11.72476[ 63 6] 0.755348 2|0.787988[4.218209| 0.933157
stage 4 mea 0.149] 15.4163 0.87210,

s B fac Y [11.56094]160.8559] 09 2] 119.3902 3|13.70549[115.6785| 0.665294
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stage 5 mea 0.424 0.95709

s E fac X |1.901159[2.870282] 68| 0.34821| 0.499007 40.414709]1.202834] 0.917568
stage 6 mea 0.210] 3.11130 0.73615
s C fac Y |13.89912/163.7359] 43 9] 26.00234 314.398212|60.87194| 0.785499

Table 1: Model performance metrics for each target context

Our results shown in Table 1 indicate that the MAE for target models trained only on
local data is consistently high, reflecting poor predictive performance due to data scarcity and
domain shift. For example, in stage 3 meas D fac X, the target MAE is over 1300, and in
stage 1 meas C fac X, itis nearly 19. After domain adaptation, the MAE drops dramatically in
all contexts. For instance, in stage 0 meas C fac Y, MAE decreases from 2.63 as target to 0.24
as adapted, and in stage 5 meas E fac X, from 1.90 as target to 0.35 as adapted. This
demonstrates that leveraging source domain knowledge significantly improves prediction
accuracy, even when the target domain has limited data. Active refinement further reduces MAE
in most cases, though the improvement is sometimes modest compared to the jump from target to
adapted. For example, in stage 3 meas A fac X, MAE drops from 58.08 as target to 10.71 as
adapted and then to 10.05 as refined. In some contexts, such as stage 4 meas B fac Y, the
refined MAE at 13.71 is slightly lower than the adapted MAE at 15.42, but both are much higher
than the target MAE at 11.56.
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MAE by Context and Step
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Figure 2: MAE drops dramatically in all contexts after active refinement
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RMSE by Context and Step
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Figure 3 : Refined model shows indicate better model performance and more reliable predictions.
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Figure 4: Active refinement further boosts R? for most of the context

Based on the insights drawn from Figure 3, it can be observed that the target models
exhibit very high RMSE values, reflecting poor accuracy and instability in predictions. For
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instance, in stage 3 meas D fac X, the target RMSE exceeds 1300, while in

stage 1 meas C fac X, it approaches 48. Such elevated RMSE values are characteristic of
data-scarce domains with significant process drift, where models trained solely on local data
struggle to generalize. Upon applying domain adaptation, RMSE is dramatically reduced across
all contexts. For example, in stage 0 meas C fac Y, RMSE decreases from 4.65 as target to
1.09 as adapted, and in stage 5 meas E fac X, from 2.87 as target to 0.50 as adapted. This
substantial reduction demonstrates that transfer learning effectively leverages source domain
information to enhance prediction stability and accuracy. Active refinement further reduces
RMSE in most cases, although the improvement is sometimes incremental compared to the
initial adaptation. For example, in stage 3 meas A fac X, RMSE decreases from 109.67 as
target to 22.41 as adapted and then to 25.57 as refined. In other contexts, such as

stage 0 meas C fac Y, the refined RMSE reaches 0.50, which is lower than both the target and
adapted RMSE, indicating enhanced model precision.

A similar trend is observed for the coefficient of determination, R?. The target models
frequently yield negative R? values, indicating poor fit due to data scarcity and domain shift. For
example, in stage 3 meas D fac X, the target R? is -92.36, highlighting the model’s
unreliability in that context. Following domain adaptation, R? improves markedly, often
exceeding 0.7 or even 0.9, signifying that the adapted model can explain most of the variance in
the target data. For instance, in stage 0 meas C fac Y, R? increases from -1.56 as target to 0.87
as adapted. Active refinement further boosts R?, with the refined model reaching values close to
1 in several contexts, such as 0.97 as refined in stage 0 meas C fac Y. This progression
underscores the refined model’s high accuracy and robustness, even in challenging domains.

5.Conclusion

The results indicate that the proposed transfer learning and active learning framework is effective
in improving both regression and classification performance in complex, multi-context
manufacturing environments. Our experiments demonstrate consistently outperforms the
baseline and adapted models, particularly in challenging contexts with initially poor
performance. The refined model strategically incorporates additional data samples that exhibit
high predictive uncertainty, as identified through active learning techniques. By focusing on
these informative instances, the model can refine its understanding of complex patterns and
improve generalization across diverse manufacturing contexts.
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Median Improvement of Refined Model Across Contexts
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Figure 5: Median Improvement of Refined Model Across Contexts

The proposed VM-TALA architecture demonstrates substantial improvements in predictive
accuracy and robustness across cross-factory, cross-stage, and cross-measurement scenarios.
Notably, the refined model achieves a median improvement of 62.90% in RMSE and 78.92% in
MAE. The refined model achieved its best performance with an R*> 0f 0.97, a RMSE
improvement of 1639.17%, and a MAE improvement of 99.74% across the evaluated

contexts. By strategically selecting the most informative samples for model refinement, our
approach addresses the challenges of data scarcity and limited diversity in target domains,
enabling rapid and reliable deployment of VM models in high-mix, low-volume manufacturing
environments. Overall, the VM-TALA framework streamlines the model adaptation process,
reduces metrology overhead, and supports yield enhancement and cost reduction in dynamic
industrial settings. Future work may explore the extension of this framework to multi-modal data
sources and real-time adaptive learning, further enhancing its applicability in dynamic
production environments. The findings underscore the potential of combining transfer learning

and active learning to drive innovation in virtual metrology and predictive analytics for smart
factories.
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