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ABSTRACT

This study proposes a system of systems (SoS) architecture
for efficient aircraft health management (AHM) in civil
aviation from the perspective of an aircraft manufacturer and
formulates AHM as a multi-objective optimization problem.
First, the SoS architecture is described to capture the
interrelationship of the strategic capabilities required among
the relevant stakeholders including airline customers, and the
regulatory authority by using the Unified Architecture
Framework (UAF). Parameters to measure strategic
capabilities and operational activities are identified and the
relationships between them are defined using parametric
causal correlation. Next, AHM performance, effect, and
amount of required data are formulated in terms of the
identified variables in the SoS architecture description.
Quantification enables the maximization of the effectiveness
of AHM implementation by formulating it as a multi
objective optimization problem, which allows for the
quantitative assessment of the relationships between the
context of AHM implementation and strategic capabilities.
This formulation makes it possible to evaluate AHM
effectiveness quantitatively, improving upon our previously
proposed SoS architecture model, which only evaluated the
relationship between stakeholders qualitatively.

1. INTRODUCTION

Civil aviation passenger demand is predicted to
approximately double over the next 20 years (Japan Aircraft
Development Corporation [JADC], 2024.). Meanwhile, the
domestic shortage of mechanics in Japan has been forecasted
as a critical challenge (Ministry of Land, Infrastructure,
Transport and Tourism, 2025). To address the mechanics
shortage and accommodate future increases in aviation
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passenger demand, enhancing the efficiency of civil aircraft
maintenance is essential. This requires improving the
efficiency of maintenance planning through the
implementation of Aircraft Health Monitoring (AHM)
(International Aircraft Development Fund [IADF], 2014),
including predictive maintenance capabilities. For instance,
according to an IATA report (IATA, 2023), AHM
implementation could reduce annual operational costs by
over $3 billion. Additionally, operational and maintenance
DX is positioned as part of JAXA's aircraft lifecycle DX
technology, with a vision that by 2050, predictive
maintenance will be conducted systematically and efficiently
for all systems, and scheduled maintenance will be optimized
(Aoyama, Mizobuchi, & Hashimoto, 2024).

However, AHM adoption in civil aviation remains limited
due to challenges including prediction complexity, safety and
certification issues, implementation costs, impact estimation
difficulties, and data availability and quality concerns
(Teubert, Pohya, & Gorospe, 2023.).

Numerous studies on AHM have been reported. In data-
driven aerospace engineering (Brunton, Nathan, Manohar,
Aravkin, Morgansenet al., 2021), it is proposed that effective
utilization of data provides significant opportunities for
improvement and optimization of aircraft maintenance.
AHM is classified into data-driven, model-based, and
knowledge-based types (Kordestani, Orchard, Khorasani, &
Saif, 2023), and it has been shown that technical challenges
such as real-time implementation, uncertainty management,
and system-level prediction remain.

Regarding economic evaluation, reports have been made on
methods that enable optimization including multifaceted
objectives such as environmental burden in addition to
conventional economic indicators, using the case of an A320
tire pressure monitoring system (Meissner, Meyer & Wicke,
2021). According to this, AHM implementation can achieve
significant cost reduction and realize substantial reduction in
environmental burden. On the other hand, it has also been
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shown that high error rates in failure prediction may cause
deterioration in the lifecycle cost-effectiveness of AHM
(Holzel & Gollnick, 2015).

Regarding AHM system design, the necessity of being user
requirement-driven rather than enabling technology or
solution technology-driven has been shown (Hu, Miao, Si,
Pan & Zio, 2022). Systems engineering approaches have
been applied to AHM design, revealing that effective PHM
systems depend on the integration of both functional and
physical architectures (Kunche, Chen, & Pecht, 2012). These
studies focus on "detection" and "analysis" among AHM
functions. However, since AHM includes comprehensive
functions of "sense", "acquisition", "transfer," "analysis", and
"action" (IATA, 2023) and is a complex system involving
multiple stakeholders, it is considered effective to
comprehensively evaluate AHM through integrated analysis
using a System of Systems (SoS) approach.

SoS architecture can be described using UAF (Unified
Architecture Framework) (The Object Management Group
[OMG], 2022). Regarding describing maintenance as
architecture, practical examples of applying UAF to examine
the compatibility between tactical needs and maintenance
capabilities in military aviation have been reported (Olsson,
Funk, Candell, Sohlberg, & Karim, 2021). It has also been
reported that applying UAF to maintenance planning for
offshore oil and gas systems can achieve risk visualization,
improved traceability, and effective information exchange
(Jensen, Dan, Kihlstrom, Altamiranda, & Hause, 2024).

Regarding the application of system dynamics methodology
(Sterman, 2000), causal relationship analysis using this
method has been conducted for repair costs of aviation
equipment, showing that reliability improvement through
failure rate reduction is the most effective cost reduction
measure (Liu, & Huang, 2015). Furthermore, there are
examples where conventional preventive maintenance and
condition-based maintenance (CBM) in aircraft maintenance
were compared and analyzed using system dynamics models,
showing that CBM implementation reduces unplanned
removals and improves aircraft availability (Hussain, Burrow,
Henson & Keogh, 2016).

Regarding aircraft maintenance optimization, a theoretical
foundation is proposed to optimize strategy for multi-stage
maintenance of aircraft structures and the possibility of
advanced maintenance through integration with Structural
Health Monitoring (SHM) systems was demonstrated (Ito,
2013). In scheduling optimization, Sriram and Haghani
(2003) formulated maintenance scheduling and aircraft
reassignment as an integrated mixed-integer programming
problem, demonstrating practical solutions for heterogeneous
aircraft fleets. In military aviation, Verhoeff et al. (2015)
developed a model that maximizes operational readiness by
integrating availability, serviceability, and sustainability
considerations.

Recent advances focus on predictive maintenance technology
integration. Wang et al. (2024) proposed a real-time
maintenance framework based on Remaining Useful Life
(RUL) prediction, while Vianna and Yoneyama (2018)
achieved significant cost reductions in redundant systems.
Rodrigues et al. (2015) enabled efficient maintenance
planning considering system-wide interdependencies through
their S-RUL approach, which integrates PHM systems with
system architecture information. These research trends
demonstrate evolution from theoretical foundations to
practical implementation, from single-objective to multi-
objective approaches, from component-level to system
integration, and from scheduled to predictive maintenance,
indicating that aircraft maintenance is evolving into a
strategic operational management system.

However, there are no examples of systematically optimizing
AHM implementation in commercial aircraft by combining
SoS architecture description and system dynamics.

To structurally address these complex AHM-related issues,
the authors previously proposed a method for analyzing
AHM implementation context by describing it as a SoS
architecture  involving passengers, airlines, aircraft
manufacturers (OEMs: Original Equipment Manufacturers),
certification authorities, and suppliers as stakeholders, and
evaluating implementation effectiveness (Koizumi, &
Kogiso, 2024a). The authors also evaluated AHM
implementation effects by focusing on trade-offs between
Measures of Effectiveness (MoE) among elements
constituting the SoS architecture for civil passenger aircraft
maintenance including AHM (Koizumi, & Kogiso, 2024b).

This paper utilizes these research findings to address the
structural problems affecting AHM implementation progress.
Civil aviation maintenance AHM implementation is
conceptualized as an SoS architecture involving passengers,
airlines, OEMs, maintenance repair and operations providers
(MROs), and regulatory authorities as stakeholders,
evaluating how AHM implementation affects stakeholder
objectives. Airline and OEM strategy and operations views
are described using the UAF, and structural causal
relationships are extracted in the form of causal loop
diagrams using system dynamics methodology. Based on this
framework, the effects of AHM implementation on
stakeholders are formulated as MoE interrelationships. Using
these formulations, two AHM operational patterns are
comparatively evaluated using Delta Air Lines' 2023 data
from the publicly available U.S. DOT Form 41(U.S.
Department of Transportation [U.S. DOT], 2024), which the
U.S. Department of Transportation requires American
airlines to report. Subsequently, multi-objective optimization
of AHM adoption rates is performed with the objective of
maximizing airline benefit through AHM by maximizing
operational reliability and maintenance technician reduction
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rates, while minimizing the data communication volume
required for AHM implementation.

2. SOS ARCHITECTURE OF AHM IN CIVIL AVIATION

The scope of this SoS architecture addresses AHM
implementation in civil aircraft maintenance. In this context,
an OEM serves multiple airlines as customers and provides
AHM as a solution to improve aircraft operations and
maintenance efficiency by utilizing aircraft and airline
information. It is projected that aviation passenger demand
will double from the present to the future, while maintenance
technician candidates are expected to decrease in Japan.
Under this scenario, the strategies that OEMs and airlines
should adopt and how they can improve operations through
AHM implementation are described.

UAF provides an appropriate framework for SoS architecture
description (Martin, 2025). UAF is an integrated architecture
framework that complies with ISO/EC/IEEE 42010:2011
"Systems and Software Engineering - Architecture
Description" (International Standards Organization [ISO],
2011) and is applicable to SoS description in both military
and civilian contexts. This research references UAF's domain
metamodel (OMG, 2022) that defines UAF framework and
element relationships but does not employ UAF Modeling

Language (UAFML) provided as UAF's description language.

For the SoS architecture description, the structure creation
tool Balus (Levii Inc., 2023) (Miura, & Sakamoto, 2023),
provided by Levii Corporation was utilized.

2.1. Ontology of SoS Architecture

Elements used for the views are selected from UAF's domain
metamodel to capture stakeholder concerns. The causal loop
view is used in addition to the views defined by UAF. Causal
loops are defined in system dynamics methodology as a
method for describing correlational relationships between
parameters. A method (Koizumi, Morino, Hara & Aoyama,
2025) that combines UAF views with causal loop views from
system dynamics is employed. This research describes the
SoS Architecture using three views: (1) strategic view, (2)
operational view, and (3) causal loop view. The elements
used for the views and the relationships between elements
(ontology of SoS description) are shown in Figure 1.

(1) Strategic motivation and goal view: Describes the
capabilities which are required to achieve goals in a
certain phase, linking them with drivers as motivation.
Furthermore, it describes how effects brought about by
capabilities ultimately lead to outcomes.

(2) Stakeholder context view: Describes the stakeholders
and the exchange items between them.

(3) Operational process view: Describes the operational
activities among stakeholders and the exchange items
between activities.

Table 1. Stakeholder Concerns

Concern

As aviation demand is expected to double over
Social 20 years, securing adequate aviation
transportation capacity is essential.

While aviation demand presents a favorable
business opportunity, expanding transportation
capacity through cost-effective  methods
(including AHM) with high return on investment
is desired.

Implementing measures to address mechanic
shortage (including AHM) is also necessary
Although airline aircraft demand expansion
represents a positive business opportunity,
avoiding increased aircraft manufacturing fixed
costs is preferred.

Monetizing new service opportunities (including
AHM) associated with increased flight hours is
also sought.
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Figure 1. Ontology of SoS Architecture Description

(4) Parametric causal loop view: Describes major causal
relationships of MoE brought about by capabilities, and
shows the relationship with MoP (Measure of
Performance) that measures operational results. The
system dynamics methodology is applied for describing
causal loops.
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Figure 2. View (1) Strategic Motivation and Goal View

The SoS architecture is described to capture stakeholder
concerns which are shown in Table 1. Based on the
architectural description from strategic and operational
viewpoints, major causal relationships between parameters
constituting the architecture are defined in the causal loop
view. Next, the causal relationships of parameters through the
causal loop view are formulated. Using the formulated results
the architecture is evaluated, and the major parameters of the
architecture are multi-objective optimized.

£

2.2. Strategic Motivation and Goal View

Figure 2 shows the OEM, airline, and social strategic
motivations and goals using View (1). It describes that while
the OEM and airlines have different respective goals, they
share the common social goal of satisfying passenger demand
that will double by 2045. The OEM aims to ensure aircraft
safety and quality, increase aircraft production numbers, and
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Figure 3. View (2) Stakeholder Context
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Figure 4. View (3) Operational Process

enhance profits, in addition to increasing after-service sales
revenue. Airlines aim to maintain operational safety and
quality, increase flight operations, and enhance profits. In

addition to those, they address mechanic workforce reduction.

The increase in aviation demand is shown to be a common
driver for the OEM's goal of increasing aircraft production
numbers and airlines' goal of increasing flight operations.
Additionally, the decrease in mechanic candidates is shown
to be a common driver for the OEM's after-service sales
revenue increase and airlines' required mechanic reduction.

The capabilities that can influence these drivers are described.

Furthermore, the ultimate outcomes obtained through the
effects brought about by capabilities are shown. Those are
increased number of operating aircraft, improved operational
reliability, reduced required mechanics, and increased
aviation transportation volume. This explicitly describes how
the drivers related to goals act as inputs to the SoS
architecture and the outcomes act as outputs.

2.3. Operational Process View

Figure 3 shows the static context of stakeholders in civil
aircraft aviation operation and maintenance using View (2).
It describes relationships  between  stakeholders:
passengers/shippers, airlines, OEMs, MROs, suppliers, and
regulatory authorities.

Figure 4 shows the dynamic context between airlines and
OEMs using View (3). It describes how AHM is
implemented within the context of civil aviation operation
and maintenance consisting of passengers/shippers, airlines,
OEMs, MROs, suppliers, and regulatory authorities.

In operation/maintenance activities, airlines provide
transportation services to passengers and shippers through
aircraft operations, while OEMs provide aircraft after-
services as well as design improvements and maintenance
program enhancements to maintain/improve operational
quality (Koizumi, 2023). Parts delivery results from suppliers
are utilized by OEMs as component reliability information.
Regulatory authorities approve applications related to airline
airworthiness and OEM type certification.

Two operational process patterns are described for AHM
implementation in aircraft operations activities.

Operational Pattern 1 shows the process where prognostic
detection before failure occurrence by AHM is completed
within the aircraft, and detection results are transmitted from
the aircraft to the ground.

Operational Pattern 2 shows the process where prognostic
detection before failure occurrence by AHM is conducted on
the ground using information transmitted from the aircraft to
the ground. In this case, OEMs collect and transmit aircraft
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health data, maintenance-related data, aircraft conditions, and
maintenance work results as AHM data, and notify proactive
maintenance based on prognostic detection before failure
occurrence (JADC, 2024) (IADF, 2014). The AHM data
collected is also used for medium- to long-term
improvements of maintenance programs (IADF, 2014). Data
transmission routes include two pathways: air-to-ground and
ground routes, where data used for immediate failure
notification utilizes the air-to-ground route, and data related
to prognostic detection before failure occurrence utilizes the
ground route. The transmission of AHM data utilizes IT
platforms provided by specialized companies (Collins
Aerospace, 2021).

AHM functions are distributed across OEMs, airlines, and IT
platform providers, and multiple operational patterns beyond
the two presented patterns are conceivable.

2.4. Causal Loop View

The relationship between the effects and outcomes desired by
the capabilities constituting civil aviation and the goals of
society, OEMs, and airlines, as well as the relationship
between MoE and MoP, which are the operational effects
obtained through AHM implementation, are shown using
View (4). Table 2 shows the relationship between goals,
outcomes, effects, and MoE. Figure 5 hows the causal loops

between MoEs on the left side, and shows the relationship
between AHM activities and MoP on the right side. The
causal loops are composed of reinforcing loops where
parameter structures strengthen each other and balancing
loops that converge. As shown in Figure 5 left, this causal
loop consists of three reinforcing loops (R1-R3) and seven
balancing loops (B1-B7) described below.

R1: As revenue transportation increases, operational revenue
and benefit increase, leading to increased operational
investment. This increases the number of operational aircraft
and transportation supply capacity, resulting in a reinforcing
loop that increases revenue transportation.

R2: As the number of manufactured aircraft increases, OEM
benefit increases, forming a reinforcing loop that expands
manufacturing capacity.

R3: The increase in the number of operational aircraft
increases after-service sales, which increases OEM benefit
and, like R2, forms a reinforcing loop that increases the
number of manufactured aircraft.

B1: As transportation supply capacity increases, downtime
due to scheduled maintenance increases, forming a balancing
loop that reduces transportation supply capacity.

B2: As transportation supply capacity increases, unplanned
downtime (delays and cancellations) due to unscheduled
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maintenance caused by aircraft failures increases, forming a
balancing loop that reduces transportation supply capacity.

B3: As transportation supply capacity increases, unplanned
downtime (delays and cancellations) and unscheduled
maintenance due to aircraft failures increases, reducing
operational reliability and forming a balancing loop where
customer satisfaction decreases, leading to reduced load
factors.

B4: Increased manufacturing capacity leads to increased
fixed costs, which pressures OEM profit. This becomes a
balancing loop that inhibits the R2 reinforcing loop.

BS5: As transportation supply capacity increases, operational
costs increase. This becomes a balancing loop that inhibits
the R1 reinforcing loop.

B6: The increase in transportation supply capacity leads to an
increase in the number of required scheduled and
unscheduled maintenance tasks, the number of mechanics,
and increased operational costs. This becomes a balancing
loop that inhibits the R1 reinforcing loop.

B7: As unplanned downtime increases, indirect costs
associated with delays and cancellations increase, leading to
increased operational costs. This becomes a balancing loop
that inhibits the R1 reinforcing loop.

Next, Figure 5 right shows the effect of MoP from AHM
activities on the causal loops composed of MoE. By
increasing the AHM adoption rate, the effects of remaining
useful life, failure detection rate, failure prediction rate, and

replacing conventional maintenance with AHM are promoted.

The improvement of remaining useful life through AHM
implementation strengthens R1, increased failure detection
rate improves B2, B6, and B7, increased failure prediction
rate improves B6 and B7, and increased replacement of
existing maintenance with AHM improves B1, B6, and B7.
On the other hand, increased AHM adoption rate increases
AHM operational costs due to increased AHM data volume,
which adversely affects BS, B6, and B7. Furthermore,
increased AHM development costs affect R2, which can be
analytically understood to lead to decreased aircraft
manufacturing.

Through these analyses, it was clarified that the causal
relationships of AHM implementation on transportation
supply capacity, operational reliability, and the number of
mechanics can be qualitatively understood. The next section
presents an example of optimizing AHM implementation
effects. Note that only the parameters highlighted with red
frame in Figure 5 are considered in the next section's analysis.

3. OPTIMIZATION OF AHM ADOPTION

In this section, AHM implementation in civil aircraft
maintenance is evaluated and optimized based on the SoS
architecture described in the previous section.

Table 2. MoE of Strategic Elements.

Type | Strategic Element MoE Symbol
Social | Satisfy transportation | Air Transport
Goal demand Demand )
Airline | Increase airlines benefit | Operational OPB
Goal Benefit
Increase number of | Revenue Ton
flights Mile RTM
Reduce number of | Improvement
mechanics Number  of | Irmc
Mechanic
OEM Increase OEM benefit OEM Benefit | -
Goal Increase number of | Manufactured
aircraft Aircraft M,cn
Number
Increase after service After Service
Sales )
Out Increased Air | Available Ton ATM
-come | Transportation Mile
Increased Number of | Operation
Operational Aircraft Aircraft ACN
Number
Higher Operational | Operational OR
Reliability Reliability
Required Number of | Number  of
Mechanic Mechanic NMC
Effect | Increased Production | Production
Expansion Investment Expansion -
Investment
Increased Operational | Operational
Investment Investment )
Increased Manufactured
Manufactured Aircraft | Aircraft M, en
Number
Higher Aircraft | Amount  of
Reliability Aircraft -
Failure
Less Scheduled | Scheduled
Maintenance Maintenance -
Task
Less Unscheduled | Unscheduled
Maintenance Maintenance -
Task
Higher Aircraft CDD,
Availability ggiﬁgiﬁed CCN,
DIV
Scheduled
Downtime )
Higher Labor | Labor LP
Efficiency of Mechanic | Productivity

In this study, Non-dominated Sorting Genetic Algorithm II
(NSGA-II) (Deb, Pratap, Agarwal, Meyarivan, 2002) was
adopted and implemented according to the characteristics of
the AHM problem. Using the AHM application rates for
AHM functions that predict failures and notify maintenance
necessities before failure occurrence and AHM functions that
notify during failure occurrence (before landing) as variables,
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optimization is performed with operational reliability, airline
benefit, mechanic reduction rate, and AHM data volume as
objective functions. The optimization is conducted for the
two operational patterns shown in Figure 4. This enables
comparative evaluation of the effects brought by AHM under
two operational patterns when aviation transportation
demand doubles.

3.1. Formulations

The relationships between MoE and MoP shown in Figure 5
are formulated as equations (1) to (11). Table 3 shows the
MoE as indicators for measuring AHM implementation
effects, and Table 4 shows the MoP required in the process
of deriving these indicators. Operational reliability is selected
as an indicator for measuring AHM implementation effects.
Conventionally, TDR (Dispatch Reliability) has often been
used as an indicator for evaluating reliability, but TDR does
not reflect the maintenance required for aircraft recovery due
to technical defects, and operational reliability is more
suitable for determining fleet utilization rate trends (IATA,
2022a).

The selection of MoP was premised on using data from U.S.
DOT Form 41, which the U.S. Department of Transportation
requires U.S. airlines to report and publishes on its website.
This database is utilized in the Global Airline Industry
Program aimed at building a knowledge system to understand
the development, growth, and competitive advantages of the
large-scale and complex commercial aviation industry by
MIT. Additionally, Ueda & Hidaka (2024) have reported
analysis results of commercial aircraft maintenance cost
structure using this database. Some numerical values that
could not be obtained from publicly available information
were set as assumed values.

Equation (1) shows the relationship between operational
reliability and delay, cancellation, and diversion rates.
Equation (2) shows the improvement rate of operational
reliability resulting from improvements in delays and
cancellations due to AHM implementation. Equation (3)
shows the improvement amount of delay time as the product
of the total of airline-caused delay time and subsequent flight
delay time and the AHM application rate. Equation (4) shows
the improvement amount of cancellation time as the product
of airline-caused cancellation time and the AHM application
rate. Equation (5) calculates the profit obtained from AHM
implementation as the sum of increased operational profit and
the cost reduction effect of indirect costs due to delays and
cancellations. Equation (6) shows the number of mechanics
reduced due to AHM implementation, calculated from the
mechanic constraint time during improved delay and
cancellation occurrences and the annual working hours per
mechanic. Equation (7) shows the total cost that can be spent
on AHM as the product of the ratio between the total profit
obtained by multiplying the profit from AHM
implementation by the average aircraft lifetime and the

number of manufactured aircraft of the AHM development
target model. Equations (8) and (9) are used to calculate
parameters included in equations (1) and (2), respectively.
Equation (10) shows the air-to-ground data transmission
volume, and equations (11)-1 and (11)-2 show the ground-to-
ground data transmission volumes for operational patterns 1
and 2, respectively. Equation (10) is common to both patterns.

1

OR = 1~ == (CDD + CCN + DIV) + Iog — log, (1)
or =\DF, " DF./ " FLT @

IAH, = (CDDH + “AD* CDDH 3
D= ( DDH — LAD ) &)

y(aap + bfp)
1—y(aap + bpp)
y(aac + bfc)

IAH = (CCN x DFC—) 4

¢ 1—y(aac + bfo) @
IAHp + IAH
AHMj = (OPg — OP) —>——C )
IAH.
+ (IAHD X CFp + b CFC)
CDDH y(aap + bBp) }
= + IAH
e { 1—y(aap + bfp) ¢
1 6)
XNMC x YWH x LP
AHM. = AHM, SACN o %)
¢ B ACN
CDDH x DD
= 8
ccb DDH ®
DDH

DFp = oD 9)
AODy g = NOF X (a¢ + ap) X AFR x AH (10)
AODGND_I = NOF X (.BC + BD) X AFR X AH (11-1)
AODGND,Z = NOF X (.BC + BD) X AH X SR (11-2)
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Table 3. MoE of AHM implementation Table 5. Data of Delta Airlines of 2023
MoE Symbol Symbol 2023 2045 Source
Improvement of OR Ior RTM 2.34E+10 4.68E+10 FORM 41, Air
Improvement of OR (Present) Ior p ATM 3.83E+10 7.66E+10* Carrier S.u mmary:
- = T2: U.S. Air Carrier
Improvement of Air Hour by Cancel IAH TRAFFIC And
Improvement of Air Hour by Delay IAH Capacity  Statistics
by Aircraft Type
AHM y yp
AHM Beneﬁt_ (siB). B (U.S. DOT, 2024)
AHM Cost Limitation AHM, FLT 9.85E+05 | 1.97E+06* | FORMA41, On-Time:
Improvement Number of Maintenance Crew Lamc AH 2.05E+06 | 4.11E+06* gepomng Carrier
. n-Time
Improvement Rate of Maintenance Crew Ixme DDH 2.15E+05 4.30E+05* | performance (1987-
CDDH | 9.41E+04 | 1.88E+05* | present) (U.S. DOT,
. . 2024
Table 4. MoP of AHM implementation LAD 5.45E+04 1.09E+05* )
DD 1.67E+05 3.35E+05*
MoP Symbol
C : Yo CCN | 2.17E+03 | 4.34E+03*
Average Aircraft Life AAL DIV 3 04E103 Z08E103%
Air Hour AH -

- - ACN 969 19438* FORM41, Air
Aircraft Failure Rate AFR Carrier  Financial:
Amount of Data (AIR) AOD AR Schedule B-43

Inventory (U.S.

Amount of Data (GND) of Pattern 1 AOD 6np_1 DOT, 2024)
Amount of Data (GND) of Pattern 2 AOD 6np 2 OPR 582 116.4% FORM41, Air
Carrier Cancellation Number CCN OPE 31.0 103.8% Carrier  Financial:
Carrier Departure Delay Number >15min CDD (Séhg .d]glg"[’ 20 2P4-)1 2
Carrier Delay Hour CDDH CFD 10 10 IATA (2023)
Departure Delay Number >15min DD CFC 100 100 (2022b)
Departure Delay Hour DDH NMC 9267 18534% FORM41, Air
Downtime Hour For Cancel DFC Carrier ~ Financial:

- Schedule P-10 (U.S.
Downtime Hour For Delay DFD DOT, 2024)
Diverted Number DIV LP 0.65 0.65 Clark. (2017)
Number of Flight FLT DFC 6 6 Assumptions
Late Aircraft Delay Hour LAD YWH 1600 1600
Number of Functions NOF a 0.2 0.2
Sampling Rate SR b 0.4 0.4
Yearly Work Hour per crew YWH MacN 3000 3000
Airlines AHM Adoption Rate Y AAL 20 20
Rate of AHM on-time indication for failure ac NOF 3000 3000
cause cancel
Rate of AHM on-time indication for failure AFR 1.0E-05 1.0E-05
cause delay ap SR 60 60
Rate of AHM failure prediction for failure Bc * The 2024 values are estimated values for Pattern 1 based on
cause cancel . — . the 2023 values. Assumed to increase proportionally to RTM.
Rate of AHM failure prediction for failure
cause delay Ao
Rate of downtime improvement by AHM on- u
time failure indication
Rate of downtime improvement by AHM b 3.2. Parameters
predicted failure indication

For calculating AHM implementation effects, the 2023 Delta
Air Lines data shown in Table 5 and the predicted values for
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2045 based on it are used. It is known that Delta Air Lines
has already implemented AHM since 2017 (Boeing, 2017).
Therefore, assuming that AHM is already applied. Load
factors, fleet composition ratio, and unit time cost of
mechanics are assumed to be constant. The improvement in
operational reliability of present (Ior p) due to the partial
application of AHM's immediate failure notification function
already implemented, is 1.9%.

3.3. Optimization

In this study, five decision variables (y: Airlines AHM
Adoption Rate, ac/op: immediate notification rate, Bc/Pp: pre-
failure notification rate) and four objective functions (OR:
operational reliability, AHMsg,: AHM benefit, Irmc:
mechanic reduction rate, AODgnp: amount of ground
transferred data) were set.

As constraint conditions, following variable range are set.

0<Sa.+B.<1 (12)
0<a +By<1 (13)
0<y<1 (14)
0<1-y(aa +bp) (15)
0<1-vy(aa +bB ) (16)

To treat all four objective functions uniformly as
maximization problems, the sign of AODgnp was inverted. In
dominance determination, a dominant relationship was
recognized when one vector had superiority or inferiority to
another vector in all objectives and was strictly superior to at
least one objective.

Blend Crossover-o (BLX-a) crossover was adopted for
crossover operations, achieving effective search that
leverages the continuity of real variables. For mutation, a
two-stage method was implemented where each gene is
independently mutated, and constraint correction is
performed after mutation. Tournament selection was used for
selection operations, applying selection criteria with rank
priority and crowding distance as secondary priority.

In the experiments, population size was set to 50, maximum
generations to 100, crossover rate to 0.9, mutation rate to 0.1,
and tournament size to 2. These values were determined
considering the balance between computational efficiency
and solution quality. In particular, the population size
considered the trade-off between appropriate diversity

maintenance and computational cost in the 5-variable 4-
objective problem.

To investigate the impact of different calculation methods for
ground data transmission volume on optimization results,
experiments were conducted with two operational patterns.
Operational Pattern 1 adopted equation (11-1), and
Operational Pattern 2 adopted equation (11-2), with
optimization executed independently for each.

To select practical compromise solutions from the obtained
Pareto optimal solution set, a normalized total score method
was implemented. After normalizing each objective function
value to the [0,1] interval, the solution with the maximum
total score was selected as the compromise solution.

Table 6 shows the optimization calculation results. Regarding
decision variables, regardless of pattern, the AHM adoption
rate by airlines tends to be high. Furthermore, regardless of
pattern, for failures leading to cancellations, immediate
notification was higher than preventive notification, while for
failures leading to delays, the ratio of preventive notification
tended to be high. Regarding objective functions, regardless
of pattern, operational reliability and AHM benefit showed
high improvement rates, but the mechanic reduction rate did
not improve significantly.

The largest difference when comparing patterns was the
ground-to-ground data transmission volume, with a 6 million
fold difference. This difference is due to Pattern 1
continuously transmitting health information at a constant
rate, while Pattern 2 transmits only when failures are
predicted onboard the aircraft.

Overall, it was found that by raising the application rate of
AHM functions that predict failure p_p) to approximately
85%, benefits on the scale of $1.5B can be achieved. In this
case, Pattern 1 can be considered realistic from the
perspective of data transmission volume.

Table 6. Optimized Result.

Type Parameter | Current Pattern 1 | Pattern 2
Decision v 0.8 0.98 0.97
Valliables e 10 0.75 0.79

ap 0.67 0.17 0.097

Bc 0.0 0.10 0.031

Bo 0.0 0.83 0.89
Objective OR 95.3% 95.8% 95.9%
Value AHM3 $0.49B $1.96B $1.99B

IrmC 0.55% 0.58% 0.59%

AODcxp | O 1.2E+05 | 6.8E+11

10
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4. CONCLUSION

In a business environment where passenger demand is
expected to increase in the future, optimal solutions were
examined for how OEMs should allocate their limited
resources to maximize the value (profit, operational
reliability, mechanic efficiency) that airlines can obtain by
implementing AHM.

The implementation of AHM in civil aircraft maintenance
was described as two patterns of SoS architecture using UAF.
The relationships between parameters of elements
constituting the SoS architecture were captured as causal
loops and formulated. This enabled quantitative evaluation of
the effects of AHM and impacts on stakeholder goals by
changing AHM operational patterns and AHM application
rates, and multi-objective optimization of AHM application
rates for each AHM operational pattern.

As a result of optimization, it was found that for optimizing
AHM implementation rates in both operational patterns, it is
important to raise the application rate of AHM functions that
predict failure (Bp) to approximately 85%, which can bring
benefits on the scale of $1.5B. On the other hand, it was found
that the improvement effect on mechanic reduction rates is
limited. Furthermore, from the perspective of data
transmission volume, Pattern 1, which predict failure
onboard the aircraft, can be considered realistic under current
conditions. However, it should be noted that adding failure
prediction functions to aircraft presents the problem of
enormous development costs compared to ground-based
responses.

This study targeted simple differences in operational
architecture, but it can be applied to more detailed
architectural differences. Additionally, while this study
optimized four objectives using five parameters related to
AHM implementation rates, it can be used for more specific
requirement considerations necessary for designing AHM
systems in accordance with the issues shown in Future Work.

FUTURE WORK

Future challenges are shown below.

Matters related to airlines:

e  The current results do not show much effect on mechanic
reduction. There is a possibility that the relationship
between the reduction of conventional maintenance
work due to AHM implementation and the number of
mechanics employed is not captured, and additional
investigations such as interviews with airlines are
necessary.

e Since the mechanism of data transmission pricing was
unclear, the objective function was changed from data
cost to data volume.

e The variation in AHM implementation effects among
different types of airlines is not considered.

Matters related to OEMs:

e The difference in AHM development costs between
onboard and ground-based failure prediction is not
considered.

e  The relationship between OEM revenue increase due to
AHM implementation is unclear and therefore not
included in the evaluation.

Matters related to AHM technology:

e The relationship between the amount of data used for
failure prediction and prediction accuracy is not
considered.

e The effect of increased aircraft and component lifespan
due to AHM implementation is not considered.

e The limitations of data download volume from aircraft
on the ground are not considered.
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