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ABSTRACT 

This study proposes a system of systems (SoS) architecture 
for efficient aircraft health management (AHM) in civil 
aviation from the perspective of an aircraft manufacturer and 
formulates AHM as a multi-objective optimization problem. 
First, the SoS architecture is described to capture the 
interrelationship of the strategic capabilities required among 
the relevant stakeholders including airline customers, and the 
regulatory authority by using the Unified Architecture 
Framework (UAF). Parameters to measure strategic 
capabilities and operational activities are identified and the 
relationships between them are defined using parametric 
causal correlation. Next, AHM performance, effect, and 
amount of required data are formulated in terms of the 
identified variables in the SoS architecture description. 
Quantification enables the maximization of the effectiveness 
of AHM implementation by formulating it as a multi 
objective optimization problem, which allows for the 
quantitative assessment of the relationships between the 
context of AHM implementation and strategic capabilities. 
This formulation makes it possible to evaluate AHM 
effectiveness quantitatively, improving upon our previously 
proposed SoS architecture model, which only evaluated the 
relationship between stakeholders qualitatively. 

1. INTRODUCTION 

Civil aviation passenger demand is predicted to 
approximately double over the next 20 years (Japan Aircraft 
Development Corporation [JADC], 2024.). Meanwhile, the 
domestic shortage of mechanics in Japan has been forecasted 
as a critical challenge (Ministry of Land, Infrastructure, 
Transport and Tourism, 2025). To address the mechanics 
shortage and accommodate future increases in aviation 

passenger demand, enhancing the efficiency of civil aircraft 
maintenance is essential. This requires improving the 
efficiency of maintenance planning through the 
implementation of Aircraft Health Monitoring (AHM) 
(International Aircraft Development Fund [IADF], 2014), 
including predictive maintenance capabilities. For instance, 
according to an IATA report (IATA, 2023), AHM 
implementation could reduce annual operational costs by 
over $3 billion. Additionally, operational and maintenance 
DX is positioned as part of JAXA's aircraft lifecycle DX 
technology, with a vision that by 2050, predictive 
maintenance will be conducted systematically and efficiently 
for all systems, and scheduled maintenance will be optimized 
(Aoyama, Mizobuchi, & Hashimoto, 2024). 

However, AHM adoption in civil aviation remains limited 
due to challenges including prediction complexity, safety and 
certification issues, implementation costs, impact estimation 
difficulties, and data availability and quality concerns 
(Teubert, Pohya, & Gorospe, 2023.). 

Numerous studies on AHM have been reported. In data-
driven aerospace engineering (Brunton, Nathan, Manohar, 
Aravkin, Morgansenet al., 2021), it is proposed that effective 
utilization of data provides significant opportunities for 
improvement and optimization of aircraft maintenance. 
AHM is classified into data-driven, model-based, and 
knowledge-based types (Kordestani, Orchard, Khorasani, & 
Saif, 2023), and it has been shown that technical challenges 
such as real-time implementation, uncertainty management, 
and system-level prediction remain. 

Regarding economic evaluation, reports have been made on 
methods that enable optimization including multifaceted 
objectives such as environmental burden in addition to 
conventional economic indicators, using the case of an A320 
tire pressure monitoring system (Meissner, Meyer & Wicke, 
2021). According to this, AHM implementation can achieve 
significant cost reduction and realize substantial reduction in 
environmental burden. On the other hand, it has also been 
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shown that high error rates in failure prediction may cause 
deterioration in the lifecycle cost-effectiveness of AHM 
(Hölzel & Gollnick, 2015). 

Regarding AHM system design, the necessity of being user 
requirement-driven rather than enabling technology or 
solution technology-driven has been shown (Hu, Miao, Si, 
Pan & Zio, 2022). Systems engineering approaches have 
been applied to AHM design, revealing that effective PHM 
systems depend on the integration of both functional and 
physical architectures (Kunche, Chen, & Pecht, 2012). These 
studies focus on "detection" and "analysis" among AHM 
functions. However, since AHM includes comprehensive 
functions of "sense", "acquisition", "transfer," "analysis", and 
"action" (IATA, 2023) and is a complex system involving 
multiple stakeholders, it is considered effective to 
comprehensively evaluate AHM through integrated analysis 
using a System of Systems (SoS) approach. 

SoS architecture can be described using UAF (Unified 
Architecture Framework) (The Object Management Group 
[OMG], 2022). Regarding describing maintenance as 
architecture, practical examples of applying UAF to examine 
the compatibility between tactical needs and maintenance 
capabilities in military aviation have been reported (Olsson, 
Funk, Candell, Sohlberg, & Karim, 2021). It has also been 
reported that applying UAF to maintenance planning for 
offshore oil and gas systems can achieve risk visualization, 
improved traceability, and effective information exchange 
(Jensen, Dan, Kihlström, Altamiranda, & Hause, 2024). 

Regarding the application of system dynamics methodology 
(Sterman, 2000), causal relationship analysis using this 
method has been conducted for repair costs of aviation 
equipment, showing that reliability improvement through 
failure rate reduction is the most effective cost reduction 
measure (Liu, & Huang, 2015). Furthermore, there are 
examples where conventional preventive maintenance and 
condition-based maintenance (CBM) in aircraft maintenance 
were compared and analyzed using system dynamics models, 
showing that CBM implementation reduces unplanned 
removals and improves aircraft availability (Hussain, Burrow, 
Henson & Keogh, 2016). 

Regarding aircraft maintenance optimization, a theoretical 
foundation is proposed to optimize strategy for multi-stage 
maintenance of aircraft structures and the possibility of 
advanced maintenance through integration with Structural 
Health Monitoring (SHM) systems was demonstrated (Ito, 
2013). In scheduling optimization, Sriram and Haghani 
(2003) formulated maintenance scheduling and aircraft 
reassignment as an integrated mixed-integer programming 
problem, demonstrating practical solutions for heterogeneous 
aircraft fleets. In military aviation, Verhoeff et al. (2015) 
developed a model that maximizes operational readiness by 
integrating availability, serviceability, and sustainability 
considerations. 

Recent advances focus on predictive maintenance technology 
integration. Wang et al. (2024) proposed a real-time 
maintenance framework based on Remaining Useful Life 
(RUL) prediction, while Vianna and Yoneyama (2018) 
achieved significant cost reductions in redundant systems. 
Rodrigues et al. (2015) enabled efficient maintenance 
planning considering system-wide interdependencies through 
their S-RUL approach, which integrates PHM systems with 
system architecture information. These research trends 
demonstrate evolution from theoretical foundations to 
practical implementation, from single-objective to multi-
objective approaches, from component-level to system 
integration, and from scheduled to predictive maintenance, 
indicating that aircraft maintenance is evolving into a 
strategic operational management system. 

However, there are no examples of systematically optimizing 
AHM implementation in commercial aircraft by combining 
SoS architecture description and system dynamics. 

To structurally address these complex AHM-related issues, 
the authors previously proposed a method for analyzing 
AHM implementation context by describing it as a SoS 
architecture involving passengers, airlines, aircraft 
manufacturers (OEMs: Original Equipment Manufacturers), 
certification authorities, and suppliers as stakeholders, and 
evaluating implementation effectiveness (Koizumi, & 
Kogiso, 2024a). The authors also evaluated AHM 
implementation effects by focusing on trade-offs between 
Measures of Effectiveness (MoE) among elements 
constituting the SoS architecture for civil passenger aircraft 
maintenance including AHM (Koizumi, & Kogiso, 2024b). 

This paper utilizes these research findings to address the 
structural problems affecting AHM implementation progress. 
Civil aviation maintenance AHM implementation is 
conceptualized as an SoS architecture involving passengers, 
airlines, OEMs, maintenance repair and operations providers 
(MROs), and regulatory authorities as stakeholders, 
evaluating how AHM implementation affects stakeholder 
objectives. Airline and OEM strategy and operations views 
are described using the UAF, and structural causal 
relationships are extracted in the form of causal loop 
diagrams using system dynamics methodology. Based on this 
framework, the effects of AHM implementation on 
stakeholders are formulated as MoE interrelationships. Using 
these formulations, two AHM operational patterns are 
comparatively evaluated using Delta Air Lines' 2023 data 
from the publicly available U.S. DOT Form 41(U.S. 
Department of Transportation [U.S. DOT], 2024), which the 
U.S. Department of Transportation requires American 
airlines to report. Subsequently, multi-objective optimization 
of AHM adoption rates is performed with the objective of 
maximizing airline benefit through AHM by maximizing 
operational reliability and maintenance technician reduction 
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rates, while minimizing the data communication volume 
required for AHM implementation. 

2. SOS ARCHITECTURE OF AHM IN CIVIL AVIATION 

The scope of this SoS architecture addresses AHM 
implementation in civil aircraft maintenance. In this context, 
an OEM serves multiple airlines as customers and provides 
AHM as a solution to improve aircraft operations and 
maintenance efficiency by utilizing aircraft and airline 
information. It is projected that aviation passenger demand 
will double from the present to the future, while maintenance 
technician candidates are expected to decrease in Japan. 
Under this scenario, the strategies that OEMs and airlines 
should adopt and how they can improve operations through 
AHM implementation are described. 

UAF provides an appropriate framework for SoS architecture 
description (Martin, 2025). UAF is an integrated architecture 
framework that complies with ISO/EC/IEEE 42010:2011 
"Systems and Software Engineering - Architecture 
Description" (International Standards Organization [ISO], 
2011) and is applicable to SoS description in both military 
and civilian contexts. This research references UAF's domain 
metamodel (OMG, 2022) that defines UAF framework and 
element relationships but does not employ UAF Modeling 
Language (UAFML) provided as UAF's description language. 
For the SoS architecture description, the structure creation 
tool Balus (Levii Inc., 2023) (Miura, & Sakamoto, 2023), 
provided by Levii Corporation was utilized. 

2.1. Ontology of SoS Architecture 

Elements used for the views are selected from UAF's domain 
metamodel to capture stakeholder concerns. The causal loop 
view is used in addition to the views defined by UAF. Causal 
loops are defined in system dynamics methodology as a 
method for describing correlational relationships between 
parameters. A method (Koizumi, Morino, Hara & Aoyama, 
2025) that combines UAF views with causal loop views from 
system dynamics is employed. This research describes the 
SoS Architecture using three views: (1) strategic view, (2) 
operational view, and (3) causal loop view. The elements 
used for the views and the relationships between elements 
(ontology of SoS description) are shown in Figure 1.  

(1) Strategic motivation and goal view: Describes the 
capabilities which are required to achieve goals in a 
certain phase, linking them with drivers as motivation. 
Furthermore, it describes how effects brought about by 
capabilities ultimately lead to outcomes. 

(2) Stakeholder context view: Describes the stakeholders 
and the exchange items between them. 

(3) Operational process view: Describes the operational 
activities among stakeholders and the exchange items 
between activities. 

(4) Parametric causal loop view: Describes major causal 
relationships of MoE brought about by capabilities, and 
shows the relationship with MoP (Measure of 
Performance) that measures operational results. The 
system dynamics methodology is applied for describing 
causal loops. 

Table 1. Stakeholder Concerns  
 

Type Concern 

Social 
As aviation demand is expected to double over 
20 years, securing adequate aviation 
transportation capacity is essential. 

Airline 

While aviation demand presents a favorable 
business opportunity, expanding transportation 
capacity through cost-effective methods 
(including AHM) with high return on investment 
is desired. 
Implementing measures to address mechanic 
shortage (including AHM) is also necessary 

OEM 

Although airline aircraft demand expansion 
represents a positive business opportunity, 
avoiding increased aircraft manufacturing fixed 
costs is preferred. 
Monetizing new service opportunities (including 
AHM) associated with increased flight hours is 
also sought. 

 

Figure 1. Ontology of SoS Architecture Description 
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The SoS architecture is described to capture stakeholder 
concerns which are shown in Table 1. Based on the 
architectural description from strategic and operational 
viewpoints, major causal relationships between parameters 
constituting the architecture are defined in the causal loop 
view. Next, the causal relationships of parameters through the 
causal loop view are formulated. Using the formulated results, 
the architecture is evaluated, and the major parameters of the 
architecture are multi-objective optimized. 

2.2. Strategic Motivation and Goal View 

Figure 2 shows the OEM, airline, and social strategic 
motivations and goals using View (1). It describes that while 
the OEM and airlines have different respective goals, they 
share the common social goal of satisfying passenger demand 
that will double by 2045. The OEM aims to ensure aircraft 
safety and quality, increase aircraft production numbers, and 

Figure 3. View (2) Stakeholder Context 

Figure 2. View (1) Strategic Motivation and Goal View 
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enhance profits, in addition to increasing after-service sales 
revenue. Airlines aim to maintain operational safety and 
quality, increase flight operations, and enhance profits. In 
addition to those, they address mechanic workforce reduction. 
The increase in aviation demand is shown to be a common 
driver for the OEM's goal of increasing aircraft production 
numbers and airlines' goal of increasing flight operations. 
Additionally, the decrease in mechanic candidates is shown 
to be a common driver for the OEM's after-service sales 
revenue increase and airlines' required mechanic reduction. 
The capabilities that can influence these drivers are described. 
Furthermore, the ultimate outcomes obtained through the 
effects brought about by capabilities are shown. Those are 
increased number of operating aircraft, improved operational 
reliability, reduced required mechanics, and increased 
aviation transportation volume. This explicitly describes how 
the drivers related to goals act as inputs to the SoS 
architecture and the outcomes act as outputs. 

2.3. Operational Process View 

Figure 3 shows the static context of stakeholders in civil 
aircraft aviation operation and maintenance using View (2). 
It describes relationships between stakeholders: 
passengers/shippers, airlines, OEMs, MROs, suppliers, and 
regulatory authorities. 

Figure 4 shows the dynamic context between airlines and 
OEMs using View (3). It describes how AHM is 
implemented within the context of civil aviation operation 
and maintenance consisting of passengers/shippers, airlines, 
OEMs, MROs, suppliers, and regulatory authorities. 

In operation/maintenance activities, airlines provide 
transportation services to passengers and shippers through 
aircraft operations, while OEMs provide aircraft after- 
services as well as design improvements and maintenance 
program enhancements to maintain/improve operational 
quality (Koizumi, 2023). Parts delivery results from suppliers 
are utilized by OEMs as component reliability information. 
Regulatory authorities approve applications related to airline 
airworthiness and OEM type certification. 

Two operational process patterns are described for AHM 
implementation in aircraft operations activities. 

Operational Pattern 1 shows the process where prognostic 
detection before failure occurrence by AHM is completed 
within the aircraft, and detection results are transmitted from 
the aircraft to the ground. 

Operational Pattern 2 shows the process where prognostic 
detection before failure occurrence by AHM is conducted on 
the ground using information transmitted from the aircraft to 
the ground. In this case, OEMs collect and transmit aircraft   

Figure 4. View (3) Operational Process 
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health data, maintenance-related data, aircraft conditions, and 
maintenance work results as AHM data, and notify proactive 
maintenance based on prognostic detection before failure 
occurrence (JADC, 2024) (IADF, 2014). The AHM data 
collected is also used for medium- to long-term 
improvements of maintenance programs (IADF, 2014). Data 
transmission routes include two pathways: air-to-ground and 
ground routes, where data used for immediate failure 
notification utilizes the air-to-ground route, and data related 
to prognostic detection before failure occurrence utilizes the 
ground route. The transmission of AHM data utilizes IT 
platforms provided by specialized companies (Collins 
Aerospace, 2021). 

AHM functions are distributed across OEMs, airlines, and IT 
platform providers, and multiple operational patterns beyond 
the two presented patterns are conceivable.  

2.4. Causal Loop View 

The relationship between the effects and outcomes desired by 
the capabilities constituting civil aviation and the goals of 
society, OEMs, and airlines, as well as the relationship 
between MoE and MoP, which are the operational effects 
obtained through AHM implementation, are shown using 
View (4). Table 2 shows the relationship between goals, 
outcomes, effects, and MoE. Figure 5 hows the causal loops 

between MoEs on the left side, and shows the relationship 
between AHM activities and MoP on the right side. The 
causal loops are composed of reinforcing loops where 
parameter structures strengthen each other and balancing 
loops that converge. As shown in Figure 5 left, this causal 
loop consists of three reinforcing loops (R1-R3) and seven 
balancing loops (B1-B7) described below. 

R1: As revenue transportation increases, operational revenue 
and benefit increase, leading to increased operational 
investment. This increases the number of operational aircraft 
and transportation supply capacity, resulting in a reinforcing 
loop that increases revenue transportation. 

R2: As the number of manufactured aircraft increases, OEM 
benefit increases, forming a reinforcing loop that expands 
manufacturing capacity. 

R3: The increase in the number of operational aircraft 
increases after-service sales, which increases OEM benefit 
and, like R2, forms a reinforcing loop that increases the 
number of manufactured aircraft. 

B1: As transportation supply capacity increases, downtime 
due to scheduled maintenance increases, forming a balancing 
loop that reduces transportation supply capacity. 

B2: As transportation supply capacity increases, unplanned 
downtime (delays and cancellations) due to unscheduled 

Figure 5. View (4) Parametric Causal Loop 
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maintenance caused by aircraft failures increases, forming a 
balancing loop that reduces transportation supply capacity. 

B3: As transportation supply capacity increases, unplanned 
downtime (delays and cancellations) and unscheduled 
maintenance due to aircraft failures increases, reducing 
operational reliability and forming a balancing loop where 
customer satisfaction decreases, leading to reduced load 
factors. 

B4: Increased manufacturing capacity leads to increased 
fixed costs, which pressures OEM profit. This becomes a 
balancing loop that inhibits the R2 reinforcing loop. 

B5: As transportation supply capacity increases, operational 
costs increase. This becomes a balancing loop that inhibits 
the R1 reinforcing loop. 

B6: The increase in transportation supply capacity leads to an 
increase in the number of required scheduled and 
unscheduled maintenance tasks, the number of mechanics, 
and increased operational costs. This becomes a balancing 
loop that inhibits the R1 reinforcing loop. 

B7: As unplanned downtime increases, indirect costs 
associated with delays and cancellations increase, leading to 
increased operational costs. This becomes a balancing loop 
that inhibits the R1 reinforcing loop. 

Next, Figure 5 right shows the effect of MoP from AHM 
activities on the causal loops composed of MoE. By 
increasing the AHM adoption rate, the effects of remaining 
useful life, failure detection rate, failure prediction rate, and 
replacing conventional maintenance with AHM are promoted. 
The improvement of remaining useful life through AHM 
implementation strengthens R1, increased failure detection 
rate improves B2, B6, and B7, increased failure prediction 
rate improves B6 and B7, and increased replacement of 
existing maintenance with AHM improves B1, B6, and B7. 
On the other hand, increased AHM adoption rate increases 
AHM operational costs due to increased AHM data volume, 
which adversely affects B5, B6, and B7. Furthermore, 
increased AHM development costs affect R2, which can be 
analytically understood to lead to decreased aircraft 
manufacturing. 

Through these analyses, it was clarified that the causal 
relationships of AHM implementation on transportation 
supply capacity, operational reliability, and the number of 
mechanics can be qualitatively understood. The next section 
presents an example of optimizing AHM implementation 
effects. Note that only the parameters highlighted with red 
frame in Figure 5 are considered in the next section's analysis. 

3. OPTIMIZATION OF AHM ADOPTION 

In this section, AHM implementation in civil aircraft 
maintenance is evaluated and optimized based on the SoS 
architecture described in the previous section.  

In this study, Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) (Deb, Pratap, Agarwal, Meyarivan, 2002) was 
adopted and implemented according to the characteristics of 
the AHM problem. Using the AHM application rates for 
AHM functions that predict failures and notify maintenance 
necessities before failure occurrence and AHM functions that 
notify during failure occurrence (before landing) as variables, 

Table 2. MoE of Strategic Elements. 
 

Type Strategic Element MoE Symbol 
Social 
Goal 

Satisfy transportation 
demand 

Air Transport 
Demand 

- 

Airline 
Goal 

Increase airlines benefit Operational 
Benefit 

OPB 

Increase number of 
flights 

Revenue Ton 
Mile 

RTM 

Reduce number of 
mechanics 

Improvement 
Number of 
Mechanic 

IRMC 

OEM 
Goal 

Increase OEM benefit OEM Benefit  - 

Increase number of 
aircraft 

Manufactured 
Aircraft 
Number 

MACN 

Increase after service After Service 
Sales 

- 

Out 
-come 

Increased Air 
Transportation 

Available Ton 
Mile  

ATM 

Increased Number of 
Operational Aircraft 

Operation 
Aircraft 
Number  

ACN 

Higher Operational 
Reliability 

Operational 
Reliability  

OR 

Required Number of 
Mechanic 

Number of 
Mechanic  

NMC 

Effect Increased Production 
Expansion Investment 

Production 
Expansion 
Investment 

- 

Increased Operational 
Investment 

Operational 
Investment 

- 

Increased 
Manufactured Aircraft 

Manufactured 
Aircraft 
Number 

MACN 

Higher Aircraft 
Reliability 

Amount of 
Aircraft 
Failure 

- 

Less Scheduled 
Maintenance 

Scheduled 
Maintenance 
Task 

- 

Less Unscheduled 
Maintenance 

Unscheduled 
Maintenance 
Task 

- 

Higher Aircraft 
Availability 

Unscheduled 
Downtime  

CDD, 
CCN, 
DIV 

Scheduled 
Downtime 

- 

Higher Labor 
Efficiency of Mechanic 

Labor 
Productivity 

LP 
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optimization is performed with operational reliability, airline 
benefit, mechanic reduction rate, and AHM data volume as 
objective functions. The optimization is conducted for the 
two operational patterns shown in Figure 4. This enables 
comparative evaluation of the effects brought by AHM under 
two operational patterns when aviation transportation 
demand doubles. 

3.1. Formulations 

The relationships between MoE and MoP shown in Figure 5 
are formulated as equations (1) to (11). Table 3 shows the 
MoE as indicators for measuring AHM implementation 
effects, and Table 4 shows the MoP required in the process 
of deriving these indicators. Operational reliability is selected 
as an indicator for measuring AHM implementation effects. 
Conventionally, TDR (Dispatch Reliability) has often been 
used as an indicator for evaluating reliability, but TDR does 
not reflect the maintenance required for aircraft recovery due 
to technical defects, and operational reliability is more 
suitable for determining fleet utilization rate trends (IATA, 
2022a). 

The selection of MoP was premised on using data from U.S. 
DOT Form 41, which the U.S. Department of Transportation 
requires U.S. airlines to report and publishes on its website. 
This database is utilized in the Global Airline Industry 
Program aimed at building a knowledge system to understand 
the development, growth, and competitive advantages of the 
large-scale and complex commercial aviation industry by 
MIT. Additionally, Ueda & Hidaka (2024) have reported 
analysis results of commercial aircraft maintenance cost 
structure using this database. Some numerical values that 
could not be obtained from publicly available information 
were set as assumed values. 

Equation (1) shows the relationship between operational 
reliability and delay, cancellation, and diversion rates. 
Equation (2) shows the improvement rate of operational 
reliability resulting from improvements in delays and 
cancellations due to AHM implementation. Equation (3) 
shows the improvement amount of delay time as the product 
of the total of airline-caused delay time and subsequent flight 
delay time and the AHM application rate. Equation (4) shows 
the improvement amount of cancellation time as the product 
of airline-caused cancellation time and the AHM application 
rate. Equation (5) calculates the profit obtained from AHM 
implementation as the sum of increased operational profit and 
the cost reduction effect of indirect costs due to delays and 
cancellations. Equation (6) shows the number of mechanics 
reduced due to AHM implementation, calculated from the 
mechanic constraint time during improved delay and 
cancellation occurrences and the annual working hours per 
mechanic. Equation (7) shows the total cost that can be spent 
on AHM as the product of the ratio between the total profit 
obtained by multiplying the profit from AHM 
implementation by the average aircraft lifetime and the 

number of manufactured aircraft of the AHM development 
target model. Equations (8) and (9) are used to calculate 
parameters included in equations (1) and (2), respectively. 
Equation (10) shows the air-to-ground data transmission 
volume, and equations (11)-1 and (11)-2 show the ground-to-
ground data transmission volumes for operational patterns 1 
and 2, respectively. Equation (10) is common to both patterns. 

 

OR = 1 −
1

FLT
(CDD + CCN + DIV) + I୓ୖ − I୓ୖ౦

 (1) 

Iைோ = ൬
IAHୈ

DFୈ
+

IAHେ

DFେ
൰ ×

1

FLT
 (2) 

IAHୈ = ൬CDDH +  
LAD ×   CDDH

DDH − LAD
൰ 

                   ×
 𝛾(𝑎𝛼஽  +  𝑏𝛽஽) 

1 − 𝛾(𝑎𝛼஽  +  𝑏𝛽஽)
 

(3) 
 
 

IAHେ = ൬CCN ×  DFC
𝛾(𝑎𝛼େ  +  𝑏𝛽େ)

1 − 𝛾(𝑎𝛼େ  +  𝑏𝛽େ)
൰ (4) 

AHM୆ = (OPୖ − OP୉)
IAHୈ  +  IAHେ

AH
  

                   + ൬IAHୈ  × CFୈ +  
IAHେ

DFେ
CFେ൰  

 

(5) 
 
 

Iୖ୑େ = ቊ
CDDH  𝛾(𝑎𝛼஽  +  𝑏𝛽஽)

1 − 𝛾(𝑎𝛼஽  +  𝑏𝛽஽)
 +  IAHେቋ 

                    ×
1

NMC × YWH × LP
 

(6) 

AHMେ = AHM୆   
M୅େ୒

ACN
 AAL (7) 

CCD =
CDDH × DD

DDH
 (8) 

DFୈ =
DDH

DD
  (9) 

AOD୅୍ୖ = NOF × (𝛼஼ + 𝛼஽) × AFR × AH (10) 

AODୋ୒ୈ_ଵ = NOF × (𝛽஼ + 𝛽஽) × AFR × AH (11-1) 

AODୋ୒ୈ_ଶ = NOF × (𝛽஼ + 𝛽஽) × AH × SR (11-2) 
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3.2. Parameters 

For calculating AHM implementation effects, the 2023 Delta 
Air Lines data shown in Table 5 and the predicted values for 

Table 3. MoE of AHM implementation 
 

MoE Symbol 

Improvement of OR  IOR 

Improvement of OR (Present) IOR_P 

Improvement of Air Hour by Cancel IAH C 

Improvement of Air Hour by Delay IAH D 

AHM Benefit ($B) AHMB 

AHM Cost Limitation AHMC 

Improvement Number of Maintenance Crew INMC 

Improvement Rate of Maintenance Crew IRMC 

 

Table 4. MoP of AHM implementation 
 

MoP Symbol 

Average Aircraft Life  AAL 

Air Hour AH 

Aircraft Failure Rate AFR 

Amount of Data (AIR) AODAIR 

Amount of Data (GND) of Pattern 1 AODGND_1 

Amount of Data (GND) of Pattern 2 AODGND_2 

Carrier Cancellation Number CCN 

Carrier Departure Delay Number >15min CDD 

Carrier Delay Hour CDDH 

Departure Delay Number >15min DD 

Departure Delay Hour DDH 

Downtime Hour For Cancel DFC 

Downtime Hour For Delay DFD 

Diverted Number DIV 

Number of Flight FLT 

Late Aircraft Delay Hour LAD 

Number of Functions NOF 

Sampling Rate SR 

Yearly Work Hour per crew YWH 

Airlines AHM Adoption Rate γ 

Rate of AHM on-time indication for failure 
cause cancel C 

Rate of AHM on-time indication for failure 
cause delay D 

Rate of AHM failure prediction for failure 
cause cancel C 

Rate of AHM failure prediction for failure 
cause delay D 

Rate of downtime improvement by AHM on-
time failure indication 

a 

Rate of downtime improvement by AHM 
predicted failure indication 

b 

 

Table 5. Data of Delta Airlines of 2023 
 

Symbol 2023 2045 Source 

RTM 2.34E+10 4.68E+10 FORM 41, Air 
Carrier Summary: 
T2: U.S. Air Carrier 
TRAFFIC And 
Capacity Statistics 
by Aircraft Type 
(U.S. DOT, 2024) 

ATM 3.83E+10 7.66E+10* 

FLT 9.85E+05 1.97E+06* FORM41, On-Time: 
Reporting Carrier 
On-Time 
Performance (1987-
present) (U.S. DOT, 
2024) 

AH 2.05E+06 4.11E+06* 

DDH 2.15E+05 4.30E+05* 

CDDH 9.41E+04 1.88E+05* 

LAD 5.45E+04 1.09E+05* 

DD 1.67E+05 3.35E+05* 

CCN 2.17E+03 4.34E+03* 

DIV 2.04E+03 4.08E+03* 

ACN 969 19438* FORM41, Air 
Carrier Financial: 
Schedule B-43 
Inventory (U.S. 
DOT, 2024) 

OPR 58.2 116.4* FORM41, Air 
Carrier Financial: 
Schedule P-1.2 
(U.S. DOT, 2024) 

OPE 51.9 103.8* 

CFD 10 10 IATA (2023) 
(2022b) CFC 100 100 

NMC 9267 18534* FORM41, Air 
Carrier Financial: 
Schedule P-10 (U.S. 
DOT, 2024) 

LP 0.65 0.65 Clark. (2017) 
DFC 6 6 Assumptions 

YWH 1600 1600 

a 0.2 0.2 

b 0.4 0.4 

MACN 3000 3000 

AAL 20 20 

NOF 3000 3000 

AFR 1.0E-05 1.0E-05 

SR 60 60 

* The 2024 values are estimated values for Pattern 1 based on 
the 2023 values. Assumed to increase proportionally to RTM. 
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2045 based on it are used. It is known that Delta Air Lines 
has already implemented AHM since 2017 (Boeing, 2017). 
Therefore, assuming that AHM is already applied. Load 
factors, fleet composition ratio, and unit time cost of 
mechanics are assumed to be constant. The improvement in 
operational reliability of present (IOR_P) due to the partial 
application of AHM's immediate failure notification function 
already implemented, is 1.9%. 

3.3. Optimization  

In this study, five decision variables (γ: Airlines AHM 
Adoption Rate, αC/αD: immediate notification rate, βC/βD: pre-
failure notification rate) and four objective functions (OR: 
operational reliability, AHMB,: AHM benefit, IRMC: 
mechanic reduction rate, AODGND: amount of ground 
transferred data) were set. 

As constraint conditions, following variable range are set. 

0 ≤α
େ

+β
େ

≤ 1 (12) 

0 ≤α
ୈ

+β
ୈ

≤ 1 (13) 

0 ≤ 𝛾 < 1 (14) 

0 < 1 −γቀaα
େ

+ bβ
େ

ቁ (15) 

0 < 1 −γ൫aα
ୈ

+ bβ
ୈ

൯ (16) 

 

To treat all four objective functions uniformly as 
maximization problems, the sign of AODGND was inverted. In 
dominance determination, a dominant relationship was 
recognized when one vector had superiority or inferiority to 
another vector in all objectives and was strictly superior to at 
least one objective. 

Blend Crossover-α (BLX-α) crossover was adopted for 
crossover operations, achieving effective search that 
leverages the continuity of real variables. For mutation, a 
two-stage method was implemented where each gene is 
independently mutated, and constraint correction is 
performed after mutation. Tournament selection was used for 
selection operations, applying selection criteria with rank 
priority and crowding distance as secondary priority. 

In the experiments, population size was set to 50, maximum 
generations to 100, crossover rate to 0.9, mutation rate to 0.1, 
and tournament size to 2. These values were determined 
considering the balance between computational efficiency 
and solution quality. In particular, the population size 
considered the trade-off between appropriate diversity 

maintenance and computational cost in the 5-variable 4-
objective problem. 

To investigate the impact of different calculation methods for 
ground data transmission volume on optimization results, 
experiments were conducted with two operational patterns. 
Operational Pattern 1 adopted equation (11-1), and 
Operational Pattern 2 adopted equation (11-2), with 
optimization executed independently for each. 

To select practical compromise solutions from the obtained 
Pareto optimal solution set, a normalized total score method 
was implemented. After normalizing each objective function 
value to the [0,1] interval, the solution with the maximum 
total score was selected as the compromise solution. 

Table 6 shows the optimization calculation results. Regarding 
decision variables, regardless of pattern, the AHM adoption 
rate by airlines tends to be high. Furthermore, regardless of 
pattern, for failures leading to cancellations, immediate 
notification was higher than preventive notification, while for 
failures leading to delays, the ratio of preventive notification 
tended to be high. Regarding objective functions, regardless 
of pattern, operational reliability and AHM benefit showed 
high improvement rates, but the mechanic reduction rate did 
not improve significantly. 

The largest difference when comparing patterns was the 
ground-to-ground data transmission volume, with a 6 million 
fold difference. This difference is due to Pattern 1 
continuously transmitting health information at a constant 
rate, while Pattern 2 transmits only when failures are 
predicted onboard the aircraft. 

Overall, it was found that by raising the application rate of 
AHM functions that predict failure β_D) to approximately 
85%, benefits on the scale of $1.5B can be achieved. In this 
case, Pattern 1 can be considered realistic from the 
perspective of data transmission volume. 

 

 

Table 6. Optimized Result. 
 

Type Parameter Current Pattern 1 Pattern 2 

Decision 
Valliables 

γ 0.8 0.98 0.97 

αC 1.0 0.75 0.79 

αD 0.67 0.17 0.097 

βC 0.0 0.10 0.031 

βD 0.0 0.83 0.89 

Objective 
Value 

OR 95.3% 95.8% 95.9% 

AHMB $0.49B $1.96B $1.99B 

IRMC 0.55% 0.58% 0.59% 

AODGND 0 1.2E+05 6.8E+11 
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4. CONCLUSION 

In a business environment where passenger demand is 
expected to increase in the future, optimal solutions were 
examined for how OEMs should allocate their limited 
resources to maximize the value (profit, operational 
reliability, mechanic efficiency) that airlines can obtain by 
implementing AHM. 

The implementation of AHM in civil aircraft maintenance 
was described as two patterns of SoS architecture using UAF. 
The relationships between parameters of elements 
constituting the SoS architecture were captured as causal 
loops and formulated. This enabled quantitative evaluation of 
the effects of AHM and impacts on stakeholder goals by 
changing AHM operational patterns and AHM application 
rates, and multi-objective optimization of AHM application 
rates for each AHM operational pattern. 

As a result of optimization, it was found that for optimizing 
AHM implementation rates in both operational patterns, it is 
important to raise the application rate of AHM functions that 
predict failure (βD) to approximately 85%, which can bring 
benefits on the scale of $1.5B. On the other hand, it was found 
that the improvement effect on mechanic reduction rates is 
limited. Furthermore, from the perspective of data 
transmission volume, Pattern 1, which predict failure 
onboard the aircraft, can be considered realistic under current 
conditions. However, it should be noted that adding failure 
prediction functions to aircraft presents the problem of 
enormous development costs compared to ground-based 
responses. 

This study targeted simple differences in operational 
architecture, but it can be applied to more detailed 
architectural differences. Additionally, while this study 
optimized four objectives using five parameters related to 
AHM implementation rates, it can be used for more specific 
requirement considerations necessary for designing AHM 
systems in accordance with the issues shown in Future Work. 

FUTURE WORK 

Future challenges are shown below. 
Matters related to airlines: 
 The current results do not show much effect on mechanic 

reduction. There is a possibility that the relationship 
between the reduction of conventional maintenance 
work due to AHM implementation and the number of 
mechanics employed is not captured, and additional 
investigations such as interviews with airlines are 
necessary. 

 Since the mechanism of data transmission pricing was 
unclear, the objective function was changed from data 
cost to data volume. 

 The variation in AHM implementation effects among 
different types of airlines is not considered. 

 
Matters related to OEMs: 
 The difference in AHM development costs between 

onboard and ground-based failure prediction is not 
considered. 

 The relationship between OEM revenue increase due to 
AHM implementation is unclear and therefore not 
included in the evaluation. 

 
Matters related to AHM technology: 
 The relationship between the amount of data used for 

failure prediction and prediction accuracy is not 
considered. 

 The effect of increased aircraft and component lifespan 
due to AHM implementation is not considered. 

 The limitations of data download volume from aircraft 
on the ground are not considered. 
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