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ABSTRACT 

In an integrated steelmaking process, equipment failures can 

significantly impact overall operations. Therefore, predictive 

detection and prevention of failures are critical. In this study, 

A three-layer hierarchical predictive detection system has 

been developed in order to utilize large-scale, multivariate 

operational data. This system is designed to identify overall 

trends by leveraging big data, detect correlation breakdowns 

through domain knowledge, and detect shifts in single-signal 

levels. The effectiveness of the proposed system has been 

confirmed through its application to actual operational data 

from the steel manufacturing process. In addition, general 

anomaly detection models, including our system, rely on 

quantifying deviations from a normal state as an anomaly 

score. In manufacturing settings, data drift often occurs due 

to factors such as equipment part replacements or changes in 

operational conditions. When data drift occurs, it becomes 

necessary to redefine the normal state. However, in 

manufacturing environments, temporary runs or 

experimental operations mean that the data following a drift 

is not necessarily guaranteed to normal data. Therefore, it is 

necessary to evaluate whether the data distribution is normal 

before and after the drift on a case-by-case basis. Current 

approaches do not provide a quantitative means to make this 

decision, leading to the issue that model updates depend on 

the judgment of experts. To address this, we propose a 

method that utilizes similar equipment conditions to guide the 

timing and procedure for model updates. By applying 

Jensen–Shannon divergence to measure differences among 

four data distributions—derived from two machines and two 

distinct periods— we provide appropriate guidance for 

model construction based on a table of potential anomalies. 

Through validation using real data from two adjacent 

continuous casters, we confirmed that identifying abnormal 

equipment and time periods enables us to propose appropriate 

normal operating windows. These validation results indicate 

that the proposed system allows for comprehensive 

predictive maintenance, integrating domain knowledge and 

thereby contributing to stable operations in steelmaking 

facilities. 

1. INTRODUCTION 

Data-driven approaches have become increasingly important 

in steel manufacturing, enabled by the availability of large-

scale process data. Among these, predictive maintenance is a 

major application. Monitoring techniques for steelmaking 

have particularly focused on detecting breakout events—

failures in which molten steel leaks from the mold—and 

various approaches have been proposed to address this issue 

(Zhang & Dudzic, 2006; Ansari et al., 2022). In the hot rolling 

process, a variety of anomaly detection methods have been 

proposed, targeting specific equipment such as the rolling 

drive systems (Naruse, Midorikawa, and Tanaka, 2012; 

Akechi, Midorikawa, & Kobayashi, 2012), hydraulic servo 

systems (Kitamura et al., 1991; Nozaki, 2010), and motor 

current monitoring for table rolls used in steel transport 

(Naruse et al., 2017; Hirata, Hachiya, & Suzuki, 2021). While 

these methods are effective for individual equipment units, 

the large number of units in steel plants makes 

comprehensive monitoring and management across all 

equipment increasingly complex. Consequently, recent years 

have seen the introduction of systems capable of monitoring 

multiple signals in the steelmaking process using general or 
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integrated approaches (Kato, Hangai, & Fukami, 2023; Inoue, 

2024; Sarda et al., 2021; Jakubowski et al., 2021). In this 

study, we developed and implemented a hierarchical anomaly 

sign detection system, which leverages large-scale data to 

monitor multiple equipment units in a layered monitoring 

framework (Hirata, Matsushita, Iizuka, & Suzuki, 2021).  The 

system integrates multiple complementary monitoring 

approaches, including an entire monitoring of large data sets, 

domain-informed analysis and basic statistical methods. 

On the other hand, when operating many anomaly detection 

models, a new problem of model management arises. This is 

because normal data frequently drifts due to equipment 

upgrades, component replacements, and changes in operating 

conditions, rendering the predefined normal range invalid. 
The most common approach to this data drift issue is to detect 

distribution changes using statistical measures, followed by 

model updates (Lai, 1995; Chu, Stinchcombe & White, 1996). 
More recently, sequential model update methods based on 

online learning have been proposed (Watte & Heinrichs, 

2024). As a specific application, a model update method 

utilizing a dedicated drift detector has been proposed for 

collaborative robots (Kermonov, Nabissi, Longhi & Bonci, 

2023). However, in the steelmaking process, parts are 

frequently repaired and reused, and components following 

routine maintenance are not necessarily in optimal condition. 

Although drift may be detected, a unique challenge lies in 

determining what truly constitutes a normal state. As an 

example of an approach to a similar issue, a method that 

switches between historical models has been proposed 

(Agate, Drago, Ferraro, & Re, 2022). However, when 

numerous models exist, their number may increase further, 

complicating management. To address this issue, this study 

proposes a method that compares similar equipment and 

provides a detailed explanation of the approach. While 

Harada, Hirata, Matsushita, Eto & Sato (2023) provided only 

an overview of the proposed method, this paper offers a 

comprehensive description of its technical details, specific 

application results, and a discussion. 

2. HIERARCHICAL ANOMALY DETECTION SYSTEM 

Figure 1 illustrates the structure of the developed hierarchical 

anomaly sign detection system. The steelmaking process is 

characterized by a diverse array of machinery and equipment 

organized in a hierarchical configuration. Accordingly, 

monitoring is conducted at three levels: the entire process, the 

equipment, and the instruments. At each level, appropriate 

methods are applied to ensure effective anomaly detection. 

This multi-layered approach enables comprehensive and 

precise monitoring from multiple perspectives. Furthermore, 

the adoption of flexible and broadly applicable monitoring 

techniques facilitates rapid and seamless deployment across 

various processes and plants. Another key feature of the 

system is its ability to visualize anomaly scores for each 

monitoring item using a heat map, thereby enabling efficient 

and comprehensive oversight of many monitored points. 

Figure 2 presents the system configuration and user interface. 
The interface displays the monitoring targets along the y-axis 

and time along the x-axis, with colors indicating computed 

anomaly levels for each cell. When the user clicks any cell, a 

pop-up window appears, providing detailed information. An 

additional function automatically generates a report that 

summarizes anomaly detection trends. This screen is 

accessible via the web from control rooms or office 

environments, contributing to the rapid diagnosis of 

anomalies. 

 

Figure 1. Outline of hierarchical anomaly detection system 

using a continuous casting machine. 
Adapted from: Harada et al. (2023), Fig.1.  

Copyright (2025) The Iron and Steel Institute of Japan 

 

 

Figure 2. System configuration of hierarchical anomaly 

detection system 

2.1. Monitoring methods at each level 

At the highest Entire level, where the number of variables 

considered exceeds several hundred, Lasso regression 

(Tibshirani, 1996) is utilized, as shown in Figure 3(a). Lasso 

regression sets the coefficients of less influential variables to 

zero, thereby providing a significant reduction in unnecessary 

explanatory variables from a large set.  At the intermediate 
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Equipment level, as shown in Figure 3(b), the primary 

method introduced is to monitor inter-variable correlations 

using data-driven models (DBM: Data-Based Models). This 

method targets systems where multiple data points change 

simultaneously. When a new measurement is obtained, it 

computes the distance to the previously registered normal 

data. This distance is regarded as the degree of deviation from 

the normal state. If it exceeds a threshold, the system is 

judged to be anomalous. Regardless of whether the 

relationships among variables are linear or nonlinear, if 

equipment exhibits a definable correlation, it becomes a 

candidate for this monitoring approach. In continuous casting 

machines, the focus is on flowmeters in the cooling system 

and on drive rolls. At the lower Instrument level, as shown in 

Figure 3(c), statistical methods or predefined thresholds are 

employed for upper and lower limit control. The data handled 

at this level consists of relatively simple indicators, such as 

motor vibration values, temperature, and roll gap. 

 

 

(a) Entire level monitoring: Detecting structural breaks in 

correlational data using Lasso regression 

 

(b) Equipment level monitoring: Monitor anomalies based 

on the distance from the normal distribution 

 

(c) Instrument level monitoring: Statistical Process Control 

Figure 3. Overview of monitoring methods at each 

hierarchical level 

2.2. Detection example 

As an example of mid-level equipment monitoring, we focus 

on the secondary cooling spray in a continuous casting 

machine. In this process, molten steel is continuously cast and 

cooled to form steel slabs, while the secondary cooling zone 

utilizes water sprays for slab cooling. It is well established 

that the relationship between the spray’s flow rate and 

pressure can be modeled using a quadratic function. Figure 4 

presents a time-series chart of anomaly scores for the 

secondary cooling zone, indicating that the scores gradually 

increased over several days and decreased following pipe 

cleaning. Figure 5 presents a scatter plot comparing the model 

data (representing the normal distribution) with the actual 

data from three days before and after the cleaning. During the 

period immediately preceding the cleaning, when anomaly 

scores were elevated, the distribution shifted upward and to 

the left relative to the model data. This suggests that higher 

pressure was required to achieve the same flow rate, 

indicating possible clogging of the spray nozzles. Following 

the cleaning, the distribution returned to a state closely 

matching the model, indicating that normal operating 

conditions had been restored. 

 

Figure 4. Time-series chart of anomaly scores for the 

secondary cooling zone spray. 

 

Figure 5. Scatter plot showing the relationship between flow 

rate and pressure in the secondary cooling zone spray.  
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3. MODEL UPDATING METHOD 

Thus far, detection methods and examples of the hierarchical 

anomaly detection system have been introduced. However, as 

the number of monitoring models grows, managing the 

models themselves becomes increasingly challenging. For 

instance, in a continuous casting machine, hundreds of 

models may be employed, each requiring a defined normal 

operational range. Nevertheless, the more models there are, 

the harder it becomes to continuously and appropriately 

update each one. In most cases, model updates follow these 

steps: 

(1) Focus on models with relatively elevated anomaly scores 

that remain below the detection threshold, as these may still 

indicate potential anomalies. 

(2) Investigate recent trends to hypothesize the reasons 

behind the elevated scores and examine the values of the 

relevant variables. 

(3) Based on the identified cause, decide whether to update 

the model by treating the current values as normal, or to 

regard the state as abnormal and refrain from updating. 

Steps (1) and (2) can be partially automated, but for step (3), 

an engineer with in-depth field knowledge must rely on 

experience and insights, which presents a significant 

challenge to full automation. Expert engineers often gather 

supporting evidence by comparing the current state with 

similar existing equipment. The proposed method was 

developed with a focus on facilitating decision-making 

process. 

3.1. Proposal method 

Figure 6 presents a schematic diagram of the proposed 

method, which estimates normal data by comparing similar 

equipment across different time periods. First, assuming that 

the time periods correspond to pre- and post-repair or regular 

maintenance phases, equipment A and B are divided into 

Time Periods 1 and 2, resulting in distributions labeled A1, 

A2, B1, and B2. Next, the differences among the four 

distribution pairs — (1) A1 vs. A2; (2) B1 vs. B2; (3) A1 vs. B1; 

and (4) A2 vs. B2—are evaluated using the Jensen–Shannon 

divergence, and a threshold is applied to determine statistical 

significance. Finally, as summarized in Table 1, the 

appropriate distribution to be used as normal data is selected 

for each case. However, for Cases 4 and 13, identifying 

whether Equipment A or B represents the normal condition 

may be infeasible, making it difficult to narrow down the 

possibilities. Subsequently, after evaluating each signal, the 

period determined to represent a “normal distribution” is 

designated as the new normal period for the model associated 

with that signal, and the model’s normal values are updated 

accordingly. For instance, in a model utilizing signals from 

Case 5 (where B1 and B2 are normal) and Case 14 (where A2 

and B2 are normal), B2—recognized as normal by both 

signals—is adopted as the updated normal data. This 

approach enables flexible adaptation even in scenarios where 

multiple signals exhibit drift. 

 

Fig.6 Comparison of data distributions for Equipment A and 

B across two periods.  
Adapted from: Harada et al. (2023), Fig.3.  

Copyright (2025) The Iron and Steel Institute of Japan 

 

 

3.2. Evaluation method 

The verification was conducted by analyzing the actual 

current data of the pinch rolls, obtained from a continuous 

caster during normal operations. The continuous caster 

distributes molten steel from a single tundish to two molds, 

Table 1. Normal distribution judgment table based on 

four conditions. 

 

Case 
Condition 

Normal distribution 
(1) (2) (3) (4) 

1 ○ ○ ○ ○ Nothing 

2 ○ ○ ○ - A2, B2 

3 ○ ○ - ○ A1, B1 

4 ○ ○ - - A1, A2 or B1, B2 

5 ○ - ○ ○ B1, B2 

6 ○ - ○ - A2, B1, B2 

7 ○ - - ○ A1, B1, B2 

8 ○ - - - B1, B2 

9 - ○ ○ ○ A1, A2 

10 - ○ ○ - A1, A2, B2 

11 - ○ - ○ A1, A2, B1 

12 - ○ - - A1, A2 

13 - - ○ ○ A1, A2 or B1, B2 

14 - - ○ - A2, B2 

15 - - - ○ A1, B1 

16 - - - - All 
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producing two slabs simultaneously. Of the two production 

lines, one is designated as Equipment A, and the other as 

Equipment B. The transport pinch rolls, which consist of 

motor-driven rolls spaced at regular intervals, are used to 

extract the slab, which has solidified externally. Period 1 was 

defined as approximately one week prior to regular 

maintenance, while Period 2 corresponded to approximately 

one week following maintenance. The continuously collected 

data, converted into per-slab values, were used as 

representative indicators. Additionally, the calculation of the 

JS divergence was performed under the assumption that the 

distributions follow a normal distribution. When the 

distribution is normal, the JS divergence can be derived 

analytically. All conditions (1) through (4) were tested using 

a threshold of 0.3 to determine significant differences 

between distributions. 

3.3. Evaluation results 

Table 2 presents the evaluation results for drive rolls #1 

through #4, while the corresponding histograms are shown in 

Figure 7.  Each histogram overlays the four distributions: A1, 

A2, B1, and B2. For Roll #1, all distributions were classified 

as normal, and Figure 7(a) illustrates that the distributions 

overlap.  For Roll #2, all distributions except A1 were 

considered normal, and Figure 7(b) confirms that the mean 

value of A1 is lower than those of the others.  For Roll #3, all 

distributions except B2 were judged to be normal, and Figure 

7(c) shows that the mean of B2 is higher than the other 

distributions. Although B1 also differs in mean and variance 

compared to A1 and A2, its overall distribution remains 

within a reasonable range, suggesting that it does not 

significantly deviate from expected behavior. As part of an 

actual operational improvement initiative, adjustments were 

made to the operation in response to the observation that the 

values of B2 exceeded the expected normal range. For Roll 

#4, either A or B was determined to represent the normal 

distribution, and Figure 7(d) reveals a marked difference 

between the distributions of Equipment A and Equipment B.  

 

 

 

Figure 7. Histograms of distributions for A1, A2, B1, and 

B2 across Rolls #1 to #4. 

3.4. Discussion 

There remains scope for further exploration regarding the 

method used to compare distributions. In this study, we 

employed JS divergence, considering its computational 

efficiency and symmetrical properties, but alternative 

approaches such as the Wasserstein distance, Kullback-

Leibler divergence, or custom drift detection algorithms 

could also be considered. Furthermore, it may be beneficial 

to introduce a custom penalty function that assigns penalties 

to distributions exceeding the equipment’s operational limits, 

based on historical failure data. 

Similarly, determining the appropriate threshold values for 

drift detection warrants further consideration. In our 

verification, a uniform threshold of 0.3 was applied to all 

conditions (1) through (4); however, in practical applications, 

thresholds should be tailored to the characteristics of each 

specific piece of equipment. Moreover, by assigning distinct 

thresholds to conditions (1) through (4), designers can 

flexibly determine during the design phase whether to 

prioritize inter-equipment variability or temporal changes. 

In this trial, we conducted verification on the drive rolls of 

adjacent strands; however, the proposed method is also 

applicable to other types of equipment. In steelmaking 

processes, it could be applied to mold temperature monitoring 

in the steelmaking process or to motor behavior analysis on 

hot run tables in the hot rolling process. Moreover, the 

method can be generalized to any manufacturing domain 

involving multiple pieces of equipment. 

4. CONCLUSION 

In this study, a hierarchical anomaly detection framework 

was implemented in a continuous casting machine, which is 

an important process in steelmaking, and its detection 

Table 2. Results of JS divergence and estimated normal 

distributions for Drive Rolls #1 to #4. 

 

Roll 
JS divergence Case and estimated 

normal distribution (1) (2) (3) (4) 

#1 0.07 0.02 0.01 0.01 16: All 

#2 0.69 0.02 0.40 0.05 6: A2, B1, B2 

#3 0.12 1.64 0.01 0.89 11: A1, A2, B1 

#4 1.17 0.72 0.10 0.02 4: A1, A2 or B1, B2 
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results were presented. To address data drift issues in 

anomaly detection systems that rely on numerous models, a 

method was devised to identify representative normal data 

by comparing the distributions of similar equipment. To 

validate the approach, we applied the technique to the drive 

rolls of the continuous casting machine and confirmed its 

practical viability. 
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