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ABSTRACT

In an integrated steelmaking process, equipment failures can
significantly impact overall operations. Therefore, predictive
detection and prevention of failures are critical. In this study,
A three-layer hierarchical predictive detection system has
been developed in order to utilize large-scale, multivariate
operational data. This system is designed to identify overall
trends by leveraging big data, detect correlation breakdowns
through domain knowledge, and detect shifts in single-signal
levels. The effectiveness of the proposed system has been
confirmed through its application to actual operational data
from the steel manufacturing process. In addition, general
anomaly detection models, including our system, rely on
quantifying deviations from a normal state as an anomaly
score. In manufacturing settings, data drift often occurs due
to factors such as equipment part replacements or changes in
operational conditions. When data drift occurs, it becomes
necessary to redefine the normal state. However, in
manufacturing  environments, temporary runs  or
experimental operations mean that the data following a drift
is not necessarily guaranteed to normal data. Therefore, it is
necessary to evaluate whether the data distribution is normal
before and after the drift on a case-by-case basis. Current
approaches do not provide a quantitative means to make this
decision, leading to the issue that model updates depend on
the judgment of experts. To address this, we propose a
method that utilizes similar equipment conditions to guide the
timing and procedure for model updates. By applying
Jensen—Shannon divergence to measure differences among
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four data distributions—derived from two machines and two
distinct periods— we provide appropriate guidance for
model construction based on a table of potential anomalies.
Through validation using real data from two adjacent
continuous casters, we confirmed that identifying abnormal
equipment and time periods enables us to propose appropriate
normal operating windows. These validation results indicate
that the proposed system allows for comprehensive
predictive maintenance, integrating domain knowledge and
thereby contributing to stable operations in steelmaking
facilities.

1. INTRODUCTION

Data-driven approaches have become increasingly important
in steel manufacturing, enabled by the availability of large-
scale process data. Among these, predictive maintenance is a
major application. Monitoring techniques for steelmaking
have particularly focused on detecting breakout events—
failures in which molten steel leaks from the mold—and
various approaches have been proposed to address this issue
(Zhang & Dudzic, 2006; Ansari et al., 2022). In the hot rolling
process, a variety of anomaly detection methods have been
proposed, targeting specific equipment such as the rolling
drive systems (Naruse, Midorikawa, and Tanaka, 2012;
Akechi, Midorikawa, & Kobayashi, 2012), hydraulic servo
systems (Kitamura et al., 1991; Nozaki, 2010), and motor
current monitoring for table rolls used in steel transport
(Naruse et al., 2017; Hirata, Hachiya, & Suzuki, 2021). While
these methods are effective for individual equipment units,
the large number of wunits in steel plants makes
comprehensive monitoring and management across all
equipment increasingly complex. Consequently, recent years
have seen the introduction of systems capable of monitoring
multiple signals in the steelmaking process using general or
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integrated approaches (Kato, Hangai, & Fukami, 2023; Inoue,
2024; Sarda et al., 2021; Jakubowski et al., 2021). In this
study, we developed and implemented a hierarchical anomaly
sign detection system, which leverages large-scale data to
monitor multiple equipment units in a layered monitoring
framework (Hirata, Matsushita, lizuka, & Suzuki, 2021). The
system integrates multiple complementary monitoring
approaches, including an entire monitoring of large data sets,
domain-informed analysis and basic statistical methods.

On the other hand, when operating many anomaly detection
models, a new problem of model management arises. This is
because normal data frequently drifts due to equipment
upgrades, component replacements, and changes in operating
conditions, rendering the predefined normal range invalid.
The most common approach to this data drift issue is to detect
distribution changes using statistical measures, followed by
model updates (Lai, 1995; Chu, Stinchcombe & White, 1996).
More recently, sequential model update methods based on
online learning have been proposed (Watte & Heinrichs,
2024). As a specific application, a model update method
utilizing a dedicated drift detector has been proposed for
collaborative robots (Kermonov, Nabissi, Longhi & Bonci,
2023). However, in the steelmaking process, parts are
frequently repaired and reused, and components following
routine maintenance are not necessarily in optimal condition.
Although drift may be detected, a unique challenge lies in
determining what truly constitutes a normal state. As an
example of an approach to a similar issue, a method that
switches between historical models has been proposed
(Agate, Drago, Ferraro, & Re, 2022). However, when
numerous models exist, their number may increase further,
complicating management. To address this issue, this study
proposes a method that compares similar equipment and
provides a detailed explanation of the approach. While
Harada, Hirata, Matsushita, Eto & Sato (2023) provided only
an overview of the proposed method, this paper offers a
comprehensive description of its technical details, specific
application results, and a discussion.

2. HIERARCHICAL ANOMALY DETECTION SYSTEM

Figure 1 illustrates the structure of the developed hierarchical
anomaly sign detection system. The steelmaking process is
characterized by a diverse array of machinery and equipment
organized in a hierarchical configuration. Accordingly,
monitoring is conducted at three levels: the entire process, the
equipment, and the instruments. At each level, appropriate
methods are applied to ensure effective anomaly detection.
This multi-layered approach enables comprehensive and
precise monitoring from multiple perspectives. Furthermore,
the adoption of flexible and broadly applicable monitoring
techniques facilitates rapid and seamless deployment across
various processes and plants. Another key feature of the
system is its ability to visualize anomaly scores for each
monitoring item using a heat map, thereby enabling efficient
and comprehensive oversight of many monitored points.

Figure 2 presents the system configuration and user interface.
The interface displays the monitoring targets along the y-axis
and time along the x-axis, with colors indicating computed
anomaly levels for each cell. When the user clicks any cell, a
pop-up window appears, providing detailed information. An
additional function automatically generates a report that
summarizes anomaly detection trends. This screen is
accessible via the web from control rooms or office
environments, contributing to the rapid diagnosis of
anomalies.
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Figure 1. Outline of hierarchical anomaly detection system
using a continuous casting machine.
Adapted from: Harada et al. (2023), Fig.1.
Copyright (2025) The Iron and Steel Institute of Japan
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Figure 2. System configuration of hierarchical anomaly
detection system

2.1. Monitoring methods at each level

At the highest Entire level, where the number of variables
considered exceeds several hundred, Lasso regression
(Tibshirani, 1996) is utilized, as shown in Figure 3(a). Lasso
regression sets the coefficients of less influential variables to
zero, thereby providing a significant reduction in unnecessary
explanatory variables from a large set. At the intermediate
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Equipment level, as shown in Figure 3(b), the primary
method introduced is to monitor inter-variable correlations
using data-driven models (DBM: Data-Based Models). This
method targets systems where multiple data points change
simultaneously. When a new measurement is obtained, it
computes the distance to the previously registered normal
data. This distance is regarded as the degree of deviation from
the normal state. If it exceeds a threshold, the system is
judged to be anomalous. Regardless of whether the
relationships among variables are linear or nonlinear, if
equipment exhibits a definable correlation, it becomes a
candidate for this monitoring approach. In continuous casting
machines, the focus is on flowmeters in the cooling system
and on drive rolls. At the lower Instrument level, as shown in
Figure 3(c), statistical methods or predefined thresholds are
employed for upper and lower limit control. The data handled
at this level consists of relatively simple indicators, such as
motor vibration values, temperature, and roll gap.
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(a) Entire level monitoring: Detecting structural breaks in
correlational data using Lasso regression
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Figure 3. Overview of monitoring methods at each
hierarchical level

2.2. Detection example

As an example of mid-level equipment monitoring, we focus
on the secondary cooling spray in a continuous casting
machine. In this process, molten steel is continuously cast and
cooled to form steel slabs, while the secondary cooling zone
utilizes water sprays for slab cooling. It is well established
that the relationship between the spray’s flow rate and
pressure can be modeled using a quadratic function. Figure 4
presents a time-series chart of anomaly scores for the
secondary cooling zone, indicating that the scores gradually
increased over several days and decreased following pipe
cleaning. Figure 5 presents a scatter plot comparing the model
data (representing the normal distribution) with the actual
data from three days before and after the cleaning. During the
period immediately preceding the cleaning, when anomaly
scores were elevated, the distribution shifted upward and to
the left relative to the model data. This suggests that higher
pressure was required to achieve the same flow rate,
indicating possible clogging of the spray nozzles. Following
the cleaning, the distribution returned to a state closely
matching the model, indicating that normal operating
conditions had been restored.
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Figure 4. Time-series chart of anomaly scores for the
secondary cooling zone spray.
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Figure 5. Scatter plot showing the relationship between flow
rate and pressure in the secondary cooling zone spray.
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3. MODEL UPDATING METHOD

Thus far, detection methods and examples of the hierarchical
anomaly detection system have been introduced. However, as
the number of monitoring models grows, managing the
models themselves becomes increasingly challenging. For
instance, in a continuous casting machine, hundreds of
models may be employed, each requiring a defined normal
operational range. Nevertheless, the more models there are,
the harder it becomes to continuously and appropriately
update each one. In most cases, model updates follow these
steps:

(1) Focus on models with relatively elevated anomaly scores
that remain below the detection threshold, as these may still
indicate potential anomalies.

(2) Investigate recent trends to hypothesize the reasons
behind the elevated scores and examine the values of the
relevant variables.

(3) Based on the identified cause, decide whether to update
the model by treating the current values as normal, or to
regard the state as abnormal and refrain from updating.

Steps (1) and (2) can be partially automated, but for step (3),
an engineer with in-depth field knowledge must rely on
experience and insights, which presents a significant
challenge to full automation. Expert engineers often gather
supporting evidence by comparing the current state with
similar existing equipment. The proposed method was
developed with a focus on facilitating decision-making
process.

3.1. Proposal method

Figure 6 presents a schematic diagram of the proposed
method, which estimates normal data by comparing similar
equipment across different time periods. First, assuming that
the time periods correspond to pre- and post-repair or regular
maintenance phases, equipment A and B are divided into
Time Periods 1 and 2, resulting in distributions labeled Al,
A2, Bl, and B2. Next, the differences among the four
distribution pairs — (1) A vs. Az, (2) Bivs. B2; (3) A1 vs. By
and (4) A, vs. Bo—are evaluated using the Jensen—Shannon
divergence, and a threshold is applied to determine statistical
significance. Finally, as summarized in Table 1, the
appropriate distribution to be used as normal data is selected
for each case. However, for Cases 4 and 13, identifying
whether Equipment A or B represents the normal condition
may be infeasible, making it difficult to narrow down the
possibilities. Subsequently, after evaluating each signal, the
period determined to represent a ‘“normal distribution” is
designated as the new normal period for the model associated
with that signal, and the model’s normal values are updated
accordingly. For instance, in a model utilizing signals from
Case 5 (where B and B; are normal) and Case 14 (where A,
and B, are normal), B)—recognized as normal by both
signals—is adopted as the updated normal data. This

approach enables flexible adaptation even in scenarios where
multiple signals exhibit drift.

Period 1 Period 2

4 |4,

Equipment A

Equipment B

Fig.6 Comparison of data distributions for Equipment A and
B across two periods.
Adapted from: Harada et al. (2023), Fig.3.
Copyright (2025) The Iron and Steel Institute of Japan

Table 1. Normal distribution judgment table based on
four conditions.

Condition o
Case Ololele Normal distribution
1 O | O | O | O | Nothing
2 O 10 |O |- Az, Bz
3 OO |- O | A, B:
4 O |0 |- - A1, A2 or By, Bz
5 O |- O | O | BB
6 O |- O |- | A,B1, B2
7 o l- |- O | A1,B1, B2
8 Ol- |- |- |B,B:
9 - O 1O |O | ALA
10 - O |0 |- |ALALB:
11 - O |- O | A1, A2, By
12 - O |- - | AL A
13 - - O | O | A1, AyorBy, B2
14 - - O |- Az, B2
15 N O | AL B
16 - |- |- |- lan

3.2. Evaluation method

The verification was conducted by analyzing the actual
current data of the pinch rolls, obtained from a continuous
caster during normal operations. The continuous caster
distributes molten steel from a single tundish to two molds,
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producing two slabs simultaneously. Of the two production
lines, one is designated as Equipment A, and the other as
Equipment B. The transport pinch rolls, which consist of
motor-driven rolls spaced at regular intervals, are used to
extract the slab, which has solidified externally. Period 1 was
defined as approximately one week prior to regular
maintenance, while Period 2 corresponded to approximately
one week following maintenance. The continuously collected
data, converted into per-slab values, were used as
representative indicators. Additionally, the calculation of the
JS divergence was performed under the assumption that the
distributions follow a normal distribution. When the
distribution is normal, the JS divergence can be derived
analytically. All conditions (1) through (4) were tested using
a threshold of 0.3 to determine significant differences
between distributions.

3.3. Evaluation results

Table 2 presents the evaluation results for drive rolls #1
through #4, while the corresponding histograms are shown in
Figure 7. Each histogram overlays the four distributions: Aj,
Az, By, and B,. For Roll #1, all distributions were classified
as normal, and Figure 7(a) illustrates that the distributions
overlap. For Roll #2, all distributions except A; were
considered normal, and Figure 7(b) confirms that the mean
value of A; is lower than those of the others. For Roll #3, all
distributions except B> were judged to be normal, and Figure
7(c) shows that the mean of B, is higher than the other
distributions. Although B1 also differs in mean and variance
compared to Al and A2, its overall distribution remains
within a reasonable range, suggesting that it does not
significantly deviate from expected behavior. As part of an
actual operational improvement initiative, adjustments were
made to the operation in response to the observation that the
values of B2 exceeded the expected normal range. For Roll
#4, either A or B was determined to represent the normal
distribution, and Figure 7(d) reveals a marked difference
between the distributions of Equipment A and Equipment B.

Table 2. Results of JS divergence and estimated normal
distributions for Drive Rolls #1 to #4.

JS divergence Case and estimated

Roll

M | @) |3 | &) | normaldistribution
#1 0.07 | 0.02 | 0.01 | 0.01 | 16: Al
#2 0.69 | 0.02 | 0.40 | 0.05 6: A2, B1, B2
#3 | 0.12]1.64 [ 0.01 | 0.89 [ 11: A;, A2, B

#4 1.17 | 0.72 | 0.10 | 0.02 4: A1, Az or By, B2
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Figure 7. Histograms of distributions for A1, A2, B1, and
B2 across Rolls #1 to #4.

3.4. Discussion

There remains scope for further exploration regarding the
method used to compare distributions. In this study, we
employed JS divergence, considering its computational
efficiency and symmetrical properties, but alternative
approaches such as the Wasserstein distance, Kullback-
Leibler divergence, or custom drift detection algorithms
could also be considered. Furthermore, it may be beneficial
to introduce a custom penalty function that assigns penalties
to distributions exceeding the equipment’s operational limits,
based on historical failure data.

Similarly, determining the appropriate threshold values for
drift detection warrants further consideration. In our
verification, a uniform threshold of 0.3 was applied to all
conditions (1) through (4); however, in practical applications,
thresholds should be tailored to the characteristics of each
specific piece of equipment. Moreover, by assigning distinct
thresholds to conditions (1) through (4), designers can
flexibly determine during the design phase whether to
prioritize inter-equipment variability or temporal changes.

In this trial, we conducted verification on the drive rolls of
adjacent strands; however, the proposed method is also
applicable to other types of equipment. In steelmaking
processes, it could be applied to mold temperature monitoring
in the steelmaking process or to motor behavior analysis on
hot run tables in the hot rolling process. Moreover, the
method can be generalized to any manufacturing domain
involving multiple pieces of equipment.

4. CONCLUSION
In this study, a hierarchical anomaly detection framework

was implemented in a continuous casting machine, which is
an important process in steelmaking, and its detection
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results were presented. To address data drift issues in
anomaly detection systems that rely on numerous models, a
method was devised to identify representative normal data
by comparing the distributions of similar equipment. To
validate the approach, we applied the technique to the drive
rolls of the continuous casting machine and confirmed its
practical viability.
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