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ABSTRACT

Industry 4.0 requires a shift from traditional maintenance to
Condition-Based Maintenance (CBM) and Predictive
Maintenance. Indeed, unlike traditional maintenance
operations, for which interventions are carried out according
to a fixed maintenance schedule, regardless of the health
status of the system, CBM relies on this state to decide on
intervention actions. Moreover, in the case of predictive
maintenance, the current state is projected into the future to
predict future maintenance actions.

In the field of radar systems, Thales Group is sensitive to
customer needs for maintenance. In that sense, Maintenance
Digitalization is playing a key role in our business services.
By integrating loT technologies, advanced analytics, and Al-
driven tools into our maintenance services, we help our
customers shift from reactive maintenance to a model that
actively supports performance, predictability, and asset
reliability. This transformation is critical in today’s
environment, where risk mitigation must go hand-in-hand
with the OEM, the customers, and the end-users.

In this paper, we propose the application of a CBM strategy
for two case studies of radar systems. Attention is paid to
combining physical knowledge and a data-driven approach to
assess the health of radar equipments. Technically speaking,
a methodology for anomaly detection tailored to radar
systems is addressed by handling the inherent challenge of
limited labeled data and the ambiguity surrounding the
definition of anomalies.
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medium, provided the original author and source are credited.

1. INTRODUCTION

CBM is a concept initiated by the U.S. Department of
Defense, initially for the aeronautical industry. It was
associated with the monitoring, detection, and diagnostic
tasks. This concept then evolved into CBM®* with the
integration of tasks for predicting the health status of the
system (Jennions, 2013). These tasks, as well as the data
derived from them, are used to manage the health status of
the system. It should be noted that the implementation of
such a concept is called "Health Monitoring System". This
wording is quite common in the civil aeronautical industry,
while in the defense industry, the HUMS designation "Health
& Usage Monitoring System™ is commonly used.

HUMS is the crossroads of engineering disciplines, data
science, and logistical support, with the aim of transforming
technological blocks into a service delivery for the customer
and for the OEM needs.

In practical settings, and especially in complex systems like
radar platforms, sensor data can be partial, noisy, or missing
altogether—whether due to sensor failures, intermittent
system operation, or logging constraints. This makes it
difficult to build purely statistical models or to assign simple
health status labels with confidence. Given this challenge, our
goal is to develop a robust anomaly detection framework
tailored to the specificities of radar systems. Rather than
addressing the system as a whole, we focus our work on two
particular subsystems: the Drive Mechanisms and the
Antenna Mast.

The proposed approach has been applied to real sensor data
collected from multiple radar units. For confidentiality, the
data have been anonymized. Experimental results
demonstrate that the method effectively highlights features
responsible for anomalies.
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2. ARCHITECTURE REFERENCE MODEL

From a systems architecture perspective, we use I1SO 13374
[ISO] to build the HUMS functional blocks, as shown in
Figure 1. Using these functional blocks as the architecture
reference model, we manage a common understanding of the
developed function and establish a collaborative framework
with the customers.

In the present paper, we have focused on the development of
the HUMS function within the Data Acquisition, Data
Manipulation, and State Detection blocks.

The Data Acquisition block is an add-on logger integrated
within radars with the purpose of collecting multi-physics
sensors data integrated within the sub-systems of interest. It
has the advantage of capturing both high and low dynamic
behavior from the sensor. Time series datasets are stored for
a certain amount of time. Then, they are transferred to the
back office in order to be analyzed (Data Manipulation, and
State Detection blocks).

This function uses the information generated from the AG to institute actions
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Figure 1. ISO 13374 Functional blocks for CBM systems —
Reference Model [1SO]

3. CASES STUDY

In this section, we describe the two case studies addressed in

the development of the HUMS function.

3.1 Case N1

The drive mechanism is a mechanism design where the force
or torque from a prime mover is transmitted to rotate the

antenna and contribute to the functional operation of the radar.

This subsystem plays a key role for radar function.
Electromechanical drive failures may be caused by rolling
bearing damage, which can lead to high costs because of
downtimes. Thus, high-risk applications push us to aesses the
health of the bearing elements. Detection of bearing damage
is monitored by vibration analysis using accelerometer
Sensors.

Based on the drive mechanical architecture, we collect

vibration data at a high sampling frequency:

e Three accelerometers are installed on the drive bearing
elements.

3.2Case N2

The antenna mast is the mechanical structure that connects
the equipped platform to the fixed part of the drive
mechanism on which the antenna is mounted. Its role is to
raise and lower the antenna between multiple predefined
configurations, depending on the operational needs.

The mast can be in one of the following positions:

e Position 0: The antenna is fully folded down. It is in a
non-operational state, fully retracted for transport or
storage. Both the drive actuator and the telescopic
actuators are retracted.

e Position 1: The antenna is raised just above the shelter
roof, allowing access for maintenance or operation. The
drive actuator is deployed, while the telescopic actuators
remain retracted.

e Position 2: The antenna is fully deployed. In this
configuration, the telescopic actuators are deployed, and
the drive actuator is retracted.

Based on the mast’s mechanical architecture, we collect the
following data:

e Pressure values from two
(actuator_1 and actuator_2).
Pressure from the drive actuator (actuator_3).

Oil temperature from the hydraulic tank.

Binary indicators reflecting the current position of the
antenna mast (positions 0, 1, or 2).

telescopic  actuators

4, HEALTH MONITORING METHODOLOGY

Most studies in the field of health monitoring rightfully focus
on reasoning approaches in determining state-of-health
during state detection, health assessment, and prognostic
processes. Health monitoring functions require robust
reasoning algorithms that identify trends in system
performance and make inferences about the current and
future state of health of the target subsystems. The various
reasoning techniques available can be broadly categorized
into model-based, data-driven, and hybrid approaches,
Ranasinghe et al. (2022).

In our proposed methodology, we are using hybrid
approaches. On one hand, physical reasoning allows us to
extract compliant engineering features from the raw data. On
the other hand, data-driven methods are used to build models
that classify health states from anomalies. The following sub-
sections describe in details the proposed methodology.

4.1 Data Pre-processing

The preprocessing of the raw data is defined as follows:



e Remove NaN values from the dataset.

e An outlier x is identified and removed if: |x —u| < a -
o with a setto afixed value.

e Removed values are then interpolated to maintain
continuity in the time series.

e The datasets are split into two parts: a training set, taken
from a period considered representative of normal
behavior and a test set, covering the remaining data,
useful for evaluation (inference step).

4.2 Feature extraction

The feature extraction step plays a key role in anomaly
detection. Based on our prior knowledge of the case studies,
pre-processed datasets are transformed into features based on
time and frequency domains.

4.3 Normality models

As discussed in the introduction, the lack of sufficient labeled
failure data makes supervised learning unsuitable. We instead
adopt an unsupervised anomaly detection approach based on
two methods devoted respectively to cases N1 & N<2. These
methods are fed by steps 4.1 and 4.2.

4.3.1 Random Forest

A Random Forest is an ensemble machine learning model
that combines multiple decision trees, Liu (2008). Each tree
in the forest is trained on a random sample of the data
(bootstrap sampling) and considers only a random subset of
features when making splits (feature randomization).

For classification tasks, the forest predicts by majority voting
among trees, while for regression tasks, it averages the
predictions. The model’s strength comes from its "wisdom of
crowds" approach —while individual trees might make errors,
the collective decision-making process tends to average out
these mistakes and arrive at more reliable predictions.

4.3.2 Fully connected autoencoder

Autoencoders are neural networks trained to reconstruct their

input. When trained only on normal data, they can later

identify anomalies by measuring reconstruction errors.

An autoencoder consists of two functions, Basora et al.

(2021), Ahmad (2020), Malhotra (2016).

e The encoder, which maps an input vector x € R* to a
hidden (latent) representation y € R", through a non-
linear transformation:

y=g(W - s+b)
e The decoder, which reconstructs the original input from
the latent representation:
E=gW' y+b)

In our case:

d corresponds to the input dimension after flattening a
sequence (i.e. sequence_length - n_features).

e  h corresponds to the size of the latent space, i.e., the most
compact representation of the sequence.

e g(-) isanon-linear activation function, used to introduce
non-linearity into the model. We use ReLU (Rectified
Linear Unit) in the hidden layers to enable the model to
capture complex patterns and sparsity in the
representation. A Sigmoid activation is used in the final
layer to ensure the outputs remain within a stable
numeric range [0, 1], compatible with normalized input
data.

The model is trained to minimize the reconstruction loss
between the input x and the output x, using the mean squared
error (MSE) loss:

N
1
MSE(6,%) = ) llx - 2
i=1

The architecture is symmetric, composed of three dense
layers in both encoder and decoder (Figure 2). The layer
dimensions are defined as:
e diml = sequence_length - n_features
e dim2 = 0.7-diml
e dim3 = 0.7 -dim2
o nf = 0.7 -dim3
Dim1 Dim1

Input Output

Dim2 Dim2

Dim3 Compressed Dim3

representation

nf

Encoder Decoder
Figure 2. Fully connected autoencoder

5. RESULTS DISCUSSIONS

5.1 Case N<1: Drive Mechanisms

In this section, we present the results related to the drive
mechanism, i.e., the inference model versus the normality
model over a horizon of time. Figure 3 depicts the results: the
green part is related to the normality model built from the
random forest method, while the other part is related to the



inference model. One can see that, within a certain time
horizon, the inference model exceeds the threshold, which
indicates an anomaly within the drive.

Now that an anomaly is detected, one area of interest is to
assess which bearing elements have the most significant
scoring contribution. Based on algorithm background, a
scoring is calculated for the different features. Table 1 depicts
that the bearing elements related to sensors #2 and #3 have
the most contribution to the anomaly.

Anomalies
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Figure 3. Results related to case N<1

Table 1. Contribution of the monitored components to
the anomalies.

Sensor #1 11.452
Sensor #2 44,116
Sensor #3 44,432

5.2 Case N<2: Antenna mast

In this section, we present the results related to antenna mast
by plotting the Mahalanobis score alongside the original and
reconstructed signals for each feature from the autoencoder
method. This comprehensive approach allows us to gain a
complete overview of the model's performance and better
understand the relationship between the original and
reconstructed signals.

We observed the following key results (Figure 4):

e No Spikes in the Mahalanobis Score: the spikes
corresponding to the transition phase, which were
previously observed, no longer appear in the analysis.
This indicates that by focusing only on the data collected
when the radar is in its deployed position (position 2),
we have successfully filtered out the anomalies caused
by the transition phase.

e Problemin actuator_1_pressure: The primary issue with
radar Delta from the actuator_1 pressure feature, which
displays a decreasing trend in the signal. This abnormal
behavior, unlike what is observed in other

radar units, contributes to the high Mahalanobis score and
signals an anomaly in the actuator's performance.

During our analysis, we highlighted an abnormal decreasing
pattern in actuator_1 pressure. This aligns with the
decreasing trend observed in the Mahalanobis score,
confirming that the anomaly flagged by the model
corresponds to a real failure event, which could result in
system malfunction if not addressed.

The increasing Mahalanobis score suggests that condition-
based monitoring could be an effective method for detecting
such anomalies in future cases. By continuously tracking
changes in the Mahalanobis score, it may be possible to
identify potential issues early and trigger maintenance
actions before a failure occurs.
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Figure 4. Mahalanobis score, signals and all reconstructed
signals for "Radar Delta"



6. CONCLUSION

Recent progress in the industrial application of CBM in the
context of radar systems was discussed in this paper. The
paper highlighted that the application of data-driven

approaches plays a role in enabling the state detection process.

Two approaches have been applied to radar subsystems,
mainly the drive mechanism and antenna mast. Additionally,
the model faces challenges in characterizing what constitutes
an anomaly. The difficulty arises from the variety of anomaly
types, including outliers and abnormal patterns, which are not

Future exploration should focus on testing the model with
other subsystems. This would provide a broader
understanding of the system’s behavior. Furthermore,
exploring alternative models and fine-tuning their
hyperparameters could lead to improved performance,
although this remains challenging given the uncertainty in
defining anomalies. For future work, we propose to address
the challenge of prognostics.
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