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ABSTRACT 

Industry 4.0 requires a shift from traditional maintenance to 

Condition-Based Maintenance (CBM) and Predictive 

Maintenance. Indeed, unlike traditional maintenance 

operations, for which interventions are carried out according 

to a fixed maintenance schedule, regardless of the health 

status of the system, CBM relies on this state to decide on 

intervention actions. Moreover, in the case of predictive 

maintenance, the current state is projected into the future to 

predict future maintenance actions. 

In the field of radar systems, Thales Group is sensitive to 

customer needs for maintenance. In that sense, Maintenance 

Digitalization is playing a key role in our business services. 

By integrating IoT technologies, advanced analytics, and AI-

driven tools into our maintenance services, we help our 

customers shift from reactive maintenance to a model that 

actively supports performance, predictability, and asset 

reliability. This transformation is critical in today’s 

environment, where risk mitigation must go hand-in-hand 

with the OEM, the customers, and the end-users. 

In this paper, we propose the application of a CBM strategy 

for two case studies of radar systems. Attention is paid to 

combining physical knowledge and a data-driven approach to 

assess the health of radar equipments. Technically speaking, 

a methodology for anomaly detection tailored to radar 

systems is addressed by handling the inherent challenge of 

limited labeled data and the ambiguity surrounding the 

definition of anomalies. 

1. INTRODUCTION  

CBM is a concept initiated by the U.S. Department of 

Defense, initially for the aeronautical industry. It was 

associated with the monitoring, detection, and diagnostic 

tasks. This concept then evolved into CBM+ with the 

integration of tasks for predicting the health status of the 

system (Jennions, 2013). These tasks, as well as the data 

derived from them, are used to manage the health status of 

the system.  It should be noted that the implementation of 

such a concept is called "Health Monitoring System". This 

wording is quite common in the civil aeronautical industry, 

while in the defense industry, the HUMS designation "Health 

& Usage Monitoring System" is commonly used.   

HUMS is the crossroads of engineering disciplines, data 

science, and logistical support, with the aim of transforming 

technological blocks into a service delivery for the customer 

and for the OEM needs. 

In practical settings, and especially in complex systems like 

radar platforms, sensor data can be partial, noisy, or missing 

altogether—whether due to sensor failures, intermittent 

system operation, or logging constraints. This makes it 

difficult to build purely statistical models or to assign simple 

health status labels with confidence. Given this challenge, our 

goal is to develop a robust anomaly detection framework 

tailored to the specificities of radar systems. Rather than 

addressing the system as a whole, we focus our work on two 

particular subsystems: the Drive Mechanisms and the 

Antenna Mast. 

The proposed approach has been applied to real sensor data 

collected from multiple radar units. For confidentiality, the 

data have been anonymized. Experimental results 

demonstrate that the method effectively highlights features 

responsible for anomalies. 
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2. ARCHITECTURE REFERENCE MODEL 

From a systems architecture perspective, we use ISO 13374 

[ISO] to build the HUMS functional blocks, as shown in 

Figure 1. Using these functional blocks as the architecture 

reference model, we manage a common understanding of the 

developed function and establish a collaborative framework 

with the customers. 

In the present paper, we have focused on the development of 

the HUMS function within the Data Acquisition, Data 

Manipulation, and State Detection blocks. 

The Data Acquisition block is an add-on logger integrated 

within radars with the purpose of collecting multi-physics 

sensors data integrated within the sub-systems of interest. It 

has the advantage of capturing both high and low dynamic 

behavior from the sensor. Time series datasets are stored for 

a certain amount of time. Then, they are transferred to the 

back office in order to be analyzed (Data Manipulation, and 

State Detection blocks). 

 

Figure 1. ISO 13374 Functional blocks for CBM systems – 

Reference Model [ISO] 

3. CASES STUDY    

In this section, we describe the two case studies addressed in 

the development of the HUMS function. 

3.1 Case N°1 

The drive mechanism is a mechanism design where the force 

or torque from a prime mover is transmitted to rotate the 

antenna and contribute to the functional operation of the radar. 

This subsystem plays a key role for radar function. 

Electromechanical drive failures may be caused by rolling 

bearing damage, which can lead to high costs because of 

downtimes. Thus, high-risk applications push us to aesses the 

health of the bearing elements. Detection of bearing damage 

is monitored by vibration analysis using accelerometer 

sensors. 

Based on the drive mechanical architecture, we collect 

vibration data at a high sampling frequency: 

• Three accelerometers are installed on the drive bearing 

elements.  

3.2 Case N°2 

The antenna mast is the mechanical structure that connects 

the equipped platform to the fixed part of the drive 

mechanism on which the antenna is mounted. Its role is to 

raise and lower the antenna between multiple predefined 

configurations, depending on the operational needs. 

The mast can be in one of the following positions: 

• Position 0: The antenna is fully folded down. It is in a 

non-operational state, fully retracted for transport or 

storage. Both the drive actuator and the telescopic 

actuators are retracted. 

• Position 1: The antenna is raised just above the shelter 

roof, allowing access for maintenance or operation. The 

drive actuator is deployed, while the telescopic actuators 

remain retracted. 

• Position 2: The antenna is fully deployed. In this 

configuration, the telescopic actuators are deployed, and 

the drive actuator is retracted. 

Based on the mast’s mechanical architecture, we collect the 

following data: 

• Pressure values from two telescopic actuators 

(actuator_1 and actuator_2). 

• Pressure from the drive actuator (actuator_3). 

• Oil temperature from the hydraulic tank. 

• Binary indicators reflecting the current position of the 

antenna mast (positions 0, 1, or 2). 

4. HEALTH MONITORING METHODOLOGY  

Most studies in the field of health monitoring rightfully focus 

on reasoning approaches in determining state-of-health 

during state detection, health assessment, and prognostic 

processes. Health monitoring functions require robust 

reasoning algorithms that identify trends in system 

performance and make inferences about the current and 

future state of health of the target subsystems. The various 

reasoning techniques available can be broadly categorized 

into model-based, data-driven, and hybrid approaches, 

Ranasinghe et al. (2022). 

In our proposed methodology, we are using hybrid 

approaches. On one hand, physical reasoning allows us to 

extract compliant engineering features from the raw data. On 

the other hand, data-driven methods are used to build models 

that classify health states from anomalies. The following sub-

sections describe in details the proposed methodology. 

4.1 Data Pre-processing  

The preprocessing of the raw data is defined as follows: 
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• Remove NaN values from the dataset. 

• An outlier 𝑥 is identified and removed if: |𝑥 − 𝜇| < 𝛼 ⋅
𝜎   𝑤𝑖𝑡ℎ  𝛼  set to a fixed value. 

• Removed values are then interpolated to maintain 

continuity in the time series. 

• The datasets are split into two parts: a training set, taken 

from a period considered representative of normal 

behavior and a test set, covering the remaining data, 

useful for evaluation (inference step). 

4.2 Feature extraction  

The feature extraction step plays a key role in anomaly 

detection. Based on our prior knowledge of the case studies, 

pre-processed datasets are transformed into features based on 

time and frequency domains. 

4.3 Normality models 

As discussed in the introduction, the lack of sufficient labeled 

failure data makes supervised learning unsuitable. We instead 

adopt an unsupervised anomaly detection approach based on 

two methods devoted respectively to cases N°1 & N°2. These 

methods are fed by steps 4.1 and 4.2. 

4.3.1 Random Forest 

A Random Forest is an ensemble machine learning model 

that combines multiple decision trees, Liu (2008). Each tree 

in the forest is trained on a random sample of the data 

(bootstrap sampling) and considers only a random subset of 

features when making splits (feature randomization). 

For classification tasks, the forest predicts by majority voting 

among trees, while for regression tasks, it averages the 

predictions. The model’s strength comes from its "wisdom of 

crowds" approach – while individual trees might make errors, 

the collective decision-making process tends to average out 

these mistakes and arrive at more reliable predictions. 

4.3.2 Fully connected autoencoder 

Autoencoders are neural networks trained to reconstruct their 

input. When trained only on normal data, they can later 

identify anomalies by measuring reconstruction errors. 

An autoencoder consists of two functions, Basora et al. 

(2021), Ahmad (2020), Malhotra (2016). 

• The encoder, which maps an input vector 𝑥 ∈ R𝑑  to a 

hidden (latent) representation y ∈ Rℎ , through a non-

linear transformation: 

𝑦 = 𝑔(𝑊 ⋅  𝑠 + 𝑏) 

• The decoder, which reconstructs the original input from 

the latent representation: 

𝑥̂ = 𝑔(𝑊′ ⋅  𝑦 + 𝑏′) 

 

 

In our case: 

• 𝑑 corresponds to the input dimension after flattening a 

sequence (i.e. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ ⋅ 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). 

• ℎ corresponds to the size of the latent space, i.e., the most 

compact representation of the sequence. 

• 𝑔(⋅) is a non-linear activation function, used to introduce 

non-linearity into the model. We use ReLU (Rectified 

Linear Unit) in the hidden layers to enable the model to 

capture complex patterns and sparsity in the 

representation. A Sigmoid activation is used in the final 

layer to ensure the outputs remain within a stable 

numeric range [0, 1], compatible with normalized input 

data. 

The model is trained to minimize the reconstruction loss 

between the input 𝑥 and the output 𝑥̂, using the mean squared 

error (MSE) loss: 

𝑀𝑆𝐸(𝑥, 𝑥̂) =
1

𝑁
∑‖𝑥𝑖 − 𝑥𝑖̂‖

2

𝑁

𝑖=1

 

The architecture is symmetric, composed of three dense 

layers in both encoder and decoder (Figure 2). The layer 

dimensions are defined as: 

• 𝑑𝑖𝑚1 =  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ ⋅ 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

• 𝑑𝑖𝑚2 =  0.7 ⋅ 𝑑𝑖𝑚1 

• 𝑑𝑖𝑚3 =  0.7 ⋅ 𝑑𝑖𝑚2 

• 𝑛𝑓 =  0.7 ⋅ 𝑑𝑖𝑚3 

 

Figure 2. Fully connected autoencoder 

5. RESULTS DISCUSSIONS   

5.1 Case N°1: Drive Mechanisms  

In this section, we present the results related to the drive 

mechanism, i.e., the inference model versus the normality 

model over a horizon of time. Figure 3 depicts the results: the 

green part is related to the normality model built from the 

random forest method, while the other part is related to the 
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inference model. One can see that, within a certain time 

horizon, the inference model exceeds the threshold, which 

indicates an anomaly within the drive.  

Now that an anomaly is detected, one area of interest is to 

assess which bearing elements have the most significant 

scoring contribution. Based on algorithm background, a 

scoring is calculated for the different features. Table 1 depicts 

that the bearing elements related to sensors #2 and #3 have 

the most contribution to the anomaly. 

 

Figure 3. Results related to case N°1  

 

 

5.2 Case N°2: Antenna mast  

In this section, we present the results related to antenna mast 

by plotting the Mahalanobis score alongside the original and 

reconstructed signals for each feature from the autoencoder 

method. This comprehensive approach allows us to gain a 

complete overview of the model's performance and better 

understand the relationship between the original and 

reconstructed signals.  

We observed the following key results (Figure 4): 

• No Spikes in the Mahalanobis Score: the spikes 

corresponding to the transition phase, which were 

previously observed, no longer appear in the analysis. 

This indicates that by focusing only on the data collected 

when the radar is in its deployed position (position 2), 

we have successfully filtered out the anomalies caused 

by the transition phase. 

• Problem in actuator_1_pressure: The primary issue with 

radar Delta from the actuator_1_pressure feature, which 

displays a decreasing trend in the signal. This abnormal 

behavior, unlike what is observed in other  

radar units, contributes to the high Mahalanobis score and 

signals an anomaly in the actuator's performance. 

During our analysis, we highlighted an abnormal decreasing 

pattern in actuator_1_pressure. This aligns with the 

decreasing trend observed in the Mahalanobis score, 

confirming that the anomaly flagged by the model 

corresponds to a real failure event, which could result in 

system malfunction if not addressed. 

The increasing Mahalanobis score suggests that condition-

based monitoring could be an effective method for detecting 

such anomalies in future cases. By continuously tracking 

changes in the Mahalanobis score, it may be possible to 

identify potential issues early and trigger maintenance 

actions before a failure occurs. 

 

 

Figure 4. Mahalanobis score, signals and all reconstructed 

signals for "Radar Delta" 

Table 1. Contribution of the monitored components to 

the anomalies. 

Feature Scoring [%] 

Sensor #1 11.452 

Sensor #2 44.116 

Sensor #3 44.432 
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6. CONCLUSION  

Recent progress in the industrial application of CBM in the 

context of radar systems was discussed in this paper. The 

paper highlighted that the application of data-driven 

approaches plays a role in enabling the state detection process. 

Two approaches have been applied to radar subsystems, 

mainly the drive mechanism and antenna mast. Additionally, 

the model faces challenges in characterizing what constitutes 

an anomaly. The difficulty arises from the variety of anomaly 

types, including outliers and abnormal patterns, which are not 

Future exploration should focus on testing the model with 

other subsystems. This would provide a broader 

understanding of the system’s behavior. Furthermore, 

exploring alternative models and fine-tuning their 

hyperparameters could lead to improved performance, 

although this remains challenging given the uncertainty in 

defining anomalies. For future work, we propose to address 

the challenge of prognostics. 
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