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ABSTRACT 

Aero engines are widely used in modern aviation due to their 

high thrust-to-weight ratio, high efficiency, and high 

reliability, placing greater demands on the operational safety 

of key components such as bearings. Traditional bearing fault 

diagnosis methods typically rely on vibration signals 

collected by a single sensor, which makes it difficult to 

handle challenges such as incomplete information and noise 

interference in industrial settings. The paper proposes an 

intelligent fault diagnosis model called the Time-Frequency 

Attention Network, which is based on a time-frequency-

aware convolutional layer and a fused attention mechanism. 

The goal is to fully exploit the time-frequency feature 

information from multi-sensor signals. First, a time-

frequency-aware convolutional layer is designed using a 

kernel function constrained by the Short-Time Fourier 

Transform, leveraging a complex-valued convolution 

structure to effectively extract non-stationary features and 

local instantaneous frequency variations. Subsequently, a 

fused attention module is constructed, introducing a dual-

attention mechanism in both channel and spatial dimensions 

to adaptively adjust the response intensity and frequency-

domain focus areas of different sensor signals. The proposed 

network is experimentally validated on the Harbin Institute 

of Technology bearing dataset, achieving an accuracy of 

99.54%. The results demonstrate that the proposed method 

outperforms existing benchmark models in terms of fault 

recognition accuracy and robustness, showcasing excellent 

diagnostic performance and generalization ability.  

Keywords: Bearing fault diagnosis; Attention mechanism; 

Multi-sensor; Complex-valued convolution. 

1. INTRODUCTION 

Aero engines are widely used in modern aviation due to their 

high thrust-to-weight ratio, high efficiency, and high 

reliability. As their performance continues to improve, there 

is an increasing demand for advanced intelligent maintenance 

technologies, particularly in ensuring the operational 

reliability of key components such as bearings, gears, and 

shafts (Dai, Liang, Li, Wu & Wang, 2025). If faults are not 

identified accurately and in a timely manner during operation, 

they can easily lead to systemic failures, resulting in 

significant economic losses and even safety accidents. 

Therefore, fault diagnosis of bearings is a crucial measure to 

ensure their operational safety and reliability. 

Current fault diagnosis methods primarily rely on vibration 

signals collected by a single accelerometer. For example, a 

sparsity-controllable sparse morphological decomposition 

method has been proposed to efficiently identify prominent 

shift-invariant components containing impulsive features, 

aiming to enhance the accuracy and robustness of fault 

diagnosis for high-speed bearings (Kim & Lee, 2025). To 

further improve fault diagnosis performance, another novel 

approach combines multi-kernel Maximum Mean 

Discrepancy and multi-kernel Conditional Maximum Mean 

Discrepancy to propose a new joint distribution discrepancy 

measure. By enhancing domain confusion effects, this 

method effectively captures fault features even when data 

distributions are imbalanced or exhibit significant variation 

(Li, Chen & Li, 2025). To address issues such as low 

diagnostic accuracy and poor robustness, a multi-branch 

feature fusion module is constructed to capture multi-scale 

correlation information within the signals, enabling adaptive 

learning of fault features at different levels (Liu, Chen, Li, 

Zhou & Wu, 2025). The methods mentioned in the above 

literature all rely on single-sensor data for fault diagnosis. 

However, in real industrial environments, complex bearing 

component systems may face challenges such as insufficient 
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fault feature information and difficulty in extracting critical 

features when using fault diagnosis methods based solely on 

a single sensor. 

In order to address the instability and information 

incompleteness of single sensor data fault diagnosis in 

practical industrial environments, researchers have gradually 

adopted multi-sensor data input to obtain comprehensive 

information about equipment operation from different 

perspectives, enabling a more comprehensive fault feature 

representation. By analyzing the correlation between 

different sensors and samples, multi-layer graph data is 

constructed to achieve multi-sensor data level fusion (Xiao, 

Li & He, 2025). For the early weak fault diagnosis of bearings, 

principal component analysis is used to combine vibration 

signals from multiple sensors in both horizontal and vertical 

directions, making full use of the feature information from 

multi-sensor signals (Xu, Chen & Xu, 2025). A global feature 

perception mechanism is constructed by integrating a multi-

sensor sparse Transformer and a hierarchical architecture, 

fully exploiting the global features specific to each sensor as 

well as the cross-sensor global features between multiple 

sensors (Yang, Li, Xue & He, 2025). In summary, bearing 

fault diagnosis methods still have vast potential for 

improvement in processing signal sequences and exploring 

their internal correlations. From initially relying on signals 

from a single sensor to gradually integrating multi-sensor 

data, bearing fault diagnosis strategies are continuously 

evolving towards multi-source, multi-dimensional, and 

multi-scale information fusion. However, challenges remain 

in effectively coordinating high-dimensional heterogeneous 

data, suppressing redundant information, and modeling the 

relationships between deep features. For example, when 

applying convolutional neural networks for multi-source 

information fault diagnosis, there is a lack of specificity, 

making it difficult to effectively capture the relationships 

between different information sources. Additionally, the 

limited local receptive field of convolutional kernels requires 

stacking a large number of convolutional layers to obtain 

global information. Therefore, in order to efficiently extract 

fault-related time-frequency information from raw vibration 

signals and capture long-range dependencies, this paper 

proposes a time-frequency attention network (TFANet) based 

on STFT transformation. The proposed method was validated 

on the Harbin Institute of Technology bearing dataset, and by 

comparing it with benchmark models and other methods, the 

results demonstrate that the proposed method has superior 

diagnostic performance. The contributions of this study can 

be summarized as follows: 

1. In response to the non-stationary and time-varying nature 

of bearing fault signals, this paper proposes a time-frequency 

perception convolutional layer based on the STFT kernel 

function, which more accurately captures the non-stationary 

patterns of fault features and local instantaneous frequency 

variations. 

2. A new feature fusion module is designed, introducing a 

dual attention path during the convolution process. This 

module adaptively adjusts the response strength and time-

domain weight distribution of multi-channel bearing sensor 

signals, effectively highlighting the diagnostic information in 

key frequency regions. 

2. METHODOLOGY 

The proposed TFANet network is primarily composed of the 

time-frequency perception convolutional layer and the 

feature fusion module. This section will first introduce the 

design and mechanism of the time-frequency perception 

convolutional layer, followed by a detailed explanation of the 

implementation and role of the feature fusion module. 

2.1. Time-Frequency Aware Convolutional Layer 

Traditional convolutional layers often struggle to effectively 

extract key time-frequency features when processing 

vibration signals. Additionally, the single STFT method lacks 

the ability to adaptively extract information based on the 

specific characteristics of the fault dataset. In contrast, neural 

networks have the ability to automatically learn high-

dimensional features from fault samples. Based on this, this 

paper proposes a time-frequency-aware convolutional layer, 

which aims to integrate the advantages of traditional time-

frequency analysis with deep learning to more effectively 

extract time-frequency information from signals. This 

convolutional layer uses complex convolutional kernels as 

the core structure, with the real and imaginary parts designed 

as two parallel convolutional channels. By using dual-

channel feature learning, it enhances the richness of feature 

representation. As shown in Figure 1, the time-frequency-

aware convolutional layer introduces the STFT method to 

calculate the magnitude of the real and imaginary part 

features, thereby generating a time-frequency feature map, 

which serves as the final output of the convolutional layer.  

 

Figure 1. Time-Frequency Aware Convolutional Layer 

The process is performed independently for each input 

channel, effectively preserving the fine-grained time-

frequency structure of the original signal. The core idea of 

this design is to construct convolutional weights in complex 

form, allowing the network to simultaneously capture both 

the amplitude and phase variations of the signal during 
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feature extraction, thereby enhancing its ability to model non-

stationary features. The initial convolutional kernel weights 

are still randomly initialized, but they are modulated and 

constrained by the STFT kernel function in subsequent 

calculations. The mathematical expression is as follows: 
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Where，


  represents the kernel function, 
,r

  and 
.i

  

correspond to the real part kernel and imaginary part kernel, 

respectively. r(·) and i(·) are operators for the real and 

imaginary parts of the complex-valued function, respectively. 

θ represents the trainable parameters of the convolutional 

kernel function, which are updated during the 

backpropagation process.  

To further clarify the modulation mechanism of the STFT 

kernel on the convolution kernel weights, let the input signal 

be ( )x t , and its short-time Fourier transform can be 

expressed as: 
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( , ) ( ) ( ) j f
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Where， ( )w  denotes the window function. In the time–

frequency aware convolutional layer, the complex-valued 

convolution kernel  can be regarded as a combination of 

the STFT kernel function and trainable weights, that is: 
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The phase component of the convolution kernel is modulated 

by the STFT kernel, while its amplitude is controlled by the 

trainable parameters w . This structure enables the network 

to adaptively adjust the filter’s amplitude response during 

training, while maintaining time–frequency consistency 

constraints along the frequency dimension. 

In the forward propagation, the complex convolution of the 

input signal can be expressed as: 

 , ,( ) ( )r i r iy x x jx j    =  = +  +  (4) 

By expanding the equation, we obtain: 
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Where, ry and iy represent the real and imaginary parts of 

the output features, respectively. This structure enables the 

interactive fusion of real and imaginary feature components: 

the real part mainly reflects energy and amplitude variations, 

while the imaginary part carries information about phase and 

frequency shifts. Through joint training, the network can 

automatically balance the contributions of both components 

at the feature level, thereby enhancing its capability to model 

non-stationary time–frequency characteristics. 

During the backpropagation process, the time-frequency-

aware convolutional layer computes the gradient of the 

trainable parameters, and the trainable parameters are 

updated at each training step. The expression for this update 

is as follows:  
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Where, θ represents the trainable parameters, 

  refers to the 

algorithm's gradient,   indicates the partial derivative, L 

represents the classification loss, and H is the output of the 

time-frequency-aware convolutional layer. η is the learning 

rate of the optimizer. 

2.2. Attention Module Integration 

In the process of multi-sensor fault feature fusion, it is 

essential to selectively emphasize information channels and 

highlight important local detail features. It is recommended 

to redesign parts involving skip connections to facilitate the 

complementary interaction and effective fusion between 

high-dimensional and low-dimensional features. Inspired by 

this idea, this paper introduces a spatial-channel attention 

module for cross-combination, named the fusion attention 

module, as shown in Figure 2. 

 ( )
H H c L H

F F att F F

=    (7) 

 ( )
L L s L H

F F att F F

=    (8) 

 

Figure 2. Attention Module Integration 

Where, 
L

F  and 
H

F  represent low-dimensional and high-

dimensional features, respectively. 
'

H
F  and 

'

L
F  represent the 

high and low-dimensional features obtained after processing 

with the channel and spatial attention modules, respectively. 

  represents the multiplication operation,   represents the 

summation operation, and 
c

att  and 
s

att  represent the 

channel attention and spatial attention, respectively. 
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Where, 
A

G  represents global average pooling, and 
M

G  

represents global max pooling, both used to extract global 

information. 
1conv

f  represents a 1×1 convolutional shared 

convolutional layer, and 
7conv

f  represents a convolutional 

layer with a kernel size of 7×7. The combination of these two 

methods can effectively address the issue of weak feature 

representation ability. 
Out

F  represents the final features 

obtained after the input features are processed through the 

channel and spatial attention modules in a cross manner. 

By cross-reorganizing the channel attention module and the 

spatial attention module, it cleverly links information from 

different dimensions while differentiating the weight size 

based on the importance of each feature, allowing the model 

to better emphasize features that are useful for the task. 

2.3. Multi-Sensor Data Fusion Strategy 

To fully exploit the advantages of multi-sensor collaborative 

perception, this paper proposes a unified preprocessing and 

fusion scheme for heterogeneous sensor signals. Suppose the 

system is equipped with N acceleration sensors placed at key 

positions such as the bearing outer ring and 

horizontal/vertical directions, each recording vibration 

signals under the same operating condition. The raw signal of 

the 𝑖-th sensor is denoted as ( ), 1, 2, ...,
i

x t i N= . 

All sensor signals are first filtered by a band-pass filter (20–

8000 Hz) to remove environmental noise and then 

synchronized by linear interpolation. To eliminate amplitude 

deviation caused by installation differences and sensitivity 

variation, Z-score normalization is applied: 

 
( )

( ) i i
i

i

x t
x t





−
=  (12) 

Where, i and i denote the mean and standard deviation of 

the 𝑖 -th sensor signal, respectively. This ensures that all 

sensor channels share a consistent amplitude scale. 

Each sensor signal is processed by the Time-Frequency 

Aware Convolution (TFAConv) layer to extract the 

corresponding time–frequency feature map
C T

i
F


 . To 

achieve unified multi-source representation, the features 

from all sensors are concatenated along the channel 

dimension: 

 1 2Concat( , , , )fusion NF F F F=   (13) 

A 1×1convolution is then applied for linear projection and 

dimensional compression: 

 1 1Conv ( )fusionF F=  (14) 

Based on the fused feature F  , a dual attention module—

comprising channel and spatial attention—is introduced to 

adaptively weigh the features from different sensors. The 

channel attention captures the importance variation across 

sensors, while the spatial attention focuses on key local 

regions, thus enabling effective multi-source information 

enhancement and noise suppression. 

2.4. The Fault Diagnosis Framework 

The time-frequency aware convolutional layer proposed 

earlier is used as a preprocessing layer, combined with CNN, 

resulting in a new network named TFANet. By utilizing the 

time-frequency aware convolutional layer to extract time-

frequency information related to fault factors from vibration 

signals, it can effectively diagnose fault types in mechanical 

equipment. The network architecture based on TFANet is 

shown in Table 1. The overall framework of the fault 

diagnosis method based on TFANet is illustrated in Figure 3. 

 
Figure 3. Fault Diagnosis Framework Diagram
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First, vibration signals are collected from the bearing test rig. 

The time-frequency aware convolutional layer is used to 

capture key feature information from multi-sensor vibration 

signals, and the samples are labeled for training. An improved 

convolutional neural network is then used to extract 

discriminative key feature information. The established 

model is trained and applied to recognize test samples, 

ultimately outputting the fault diagnosis features. 

Table1. Model Parameters 

Number Network Kernel size kernel Output  

 Input   3*1024 

1 TFAConv 1×15/1 16 nc*1024 

2 Conv1-BN 1×3/1 32 32*1010 

3 CA 1×3/1 32 32*1010 

4 Conv2-BN- 1×3/1 64 64*1008 

5 Maxpool 1×2/2 64 64*504 

6 Conv3-BN- 1×3/1 128 128*502 

7 Maxpool 1×2/2 128 128*251 

8 Conv4-BN 1×3/1 256 256*249 

9 SA 1×3/1 256 256*249 

10 
Linear(256)-ReLU-

Linear(128)-ReLU-Linear(4) 
—— 4 

3. EXPERIMENTAL VERIFICATION 

In this section, in order to verify and analyze the application 

of the proposed TFANet method in bearing fault diagnosis, 

we will conduct experiments from different perspectives and 

report the results. The bearing datasets used in this section are 

vibration signals collected via accelerometers. All 

experimental programs were run on the following configured 

computer: Pytorch 1.12.0+cu113, CPU: i5-12400F, GPU: 

NVIDIA GeForce RTX 2060 SUPER, 16 GB RAM. 

The proposed method is comprehensively compared with 

several mainstream fault diagnosis methods, as detailed 

below： 

(1) Classical Convolutional Neural Network Model (Han, 

Shao & Jiang, 2022): Automatically extracts fault features 

from raw vibration signals. 

(2) ResNet18 Model with Residual Connections (Wang, 

Chen, Wang & Shao, 2023): Achieves efficient learning and 

representation of deep-level features. 

(3) GAAE Model with Global Perception Attention 

Mechanism (Yan, Shao & Ming, 2023): Achieves deep 

expression and compressed reconstruction of key fault 

features. 

(4) HAGCN Model with Hierarchical Attention Mechanism 

and Graph Convolutional Structure (Li, Zhao & Sun, 2023): 

Effectively models the topological relationships of vibration 

signals in non-Euclidean space. 

(5) DAGCN Model Combining Graph Convolutional 

Structure and Dual Attention Mechanism (Li, Zhao & Sun, 

2021): Dynamically mines key feature information from 

vibration signals. 

3.1. Harbin Institute of Technology Bearing Dataset. 

The bearing dataset used in this study (Hou, Yi, Jin & Gui, 

2023) originates from real data collected from an aviation 

engine. The fault diagnosis experimental platform consists of 

an improved aviation engine (with the rotor blades, 

combustion chamber, and some accessory shells removed, 

but retaining the dual-rotor structure of the main components), 

a motor drive system, a lubrication system, two eddy current 

sensors, and four acceleration sensors (the specific structure 

is shown in Figure 4). The sampling frequency for each set of 

signals is 25,000 Hz, with a continuous sampling time of 15 

seconds. 

The bearing dataset consists of four health conditions, as 

shown in Figure 5 and Table 2. The faults are created through 

wire cutting processing and include normal bearings (N), 

outer race faults (OF), and inner race faults (IF) with fault 

lengths of 0.5 and 1.0. The fault data under different health 

conditions are segmented using a sliding window approach. 

An overlapping sampling method is applied to obtain 360 

samples for each category, with 70% used for the training set 

and 30% for the testing set. 

 

Figure 4. The Experimental Platform 

 

Figure 5. Bearing Health Condition 

Table 2. Data Introduction. 

Condition Label Depth of fault Depth of fault 

Normal（a） 0 — — 

OR fault（b） 1 0.5 0.5 

IR fault（c） 2 0.5 0.5 

IR fault（d） 3 0.5 1.0 

3.2. Experimental Results and Analysis 

To ensure fairness of the experiments, the hyperparameters 

of all comparison methods mentioned in this paper are the 
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same as those used in the proposed method. In each training 

and testing iteration, to reduce the randomness of the 

experiments, each method is run 10 times, and the average 

value is taken to make the validation more stable and 

convincing. The performance values after 300 training 

rounds are shown in the table below. 

Table 3. Average Metrics. 

Method Accuracy% variance MAE 

CNN 96.12 0.43×10-3 0.132 

ResNet18 96.31 0.56×10-3 0.104 

GAAE 97.04 0.33×10-3 0.127 

HAGCN 97.32 0.25×10⁻³ 0.072 

DAGCN 98.54 0.18×10⁻³ 0.084 

TFANet 99.54 0.13×10-3 0.051 

The confusion matrix provides an intuitive visualization of 

the recognition results for each fault type, quantifying the 

model's classification performance on each fault type. As 

shown in Figure 6, the comparison models achieve good 

diagnostic performance overall. However, in the data related 

to label 1 and label 2, there is noticeable feature entanglement, 

leading to misclassification of these two fault types in the 

diagnosis process. 

 

Figure 6. Confusion Matrix 

 

Figure7. t-SNE 
The paper visualizes the feature distribution learned by 

different models using the t-SNE algorithm. As shown in 

Figure 7 (6), the proposed method significantly outperforms 

other methods in terms of classification performance. The 

distribution of the same fault type across different data 

domains is more compact, while the distinction between 

different fault categories is clearer. This indicates that the 

proposed model can efficiently extract key fault feature 

information from multi-sensor vibration signals. 

To investigate the true classification performance of the 

model for each fault type in detail, this paper evaluates the 

classification performance of each model for every health 

condition of the bearing. As shown in Table 4. 

Table 4. F1 Score of Each Label. 

Label\F1 0 1 2 3 

CNN 76.74 100.0 96.74 100.0 

ResNet18 100.0 87.17 67.54 100.0 

GAAE 93.08 100.0 87.05 95.86 

HAGCN 100.0 100.0 46.79 89.97 

DAGCN 99.16 96.47 75.01 100.0 

TFANet 100.0 100.0 100.0 100.0 

3.3. Ablation Experiment  

To further validate the diagnostic performance of the 

proposed TFANet method, this section conducts an ablation 

experiment. The time-frequency aware convolutional layer is 

named as Module A, the feature fusion module is named as 

Module B, and the single-sensor vibration signal input is 

named as A Sensor. The combination of Modules A and B 

forms the TFANet method proposed in this paper. The 

diagnostic results of all modules are shown in Table 5. 

Table 5. Evaluation Metrics of Each Module. 

Method F1 Pr(%) Re(%) Accuracy(%) 

A 96.12 96.69 96.74 96.86 

A+B 98.20 98.00 98.57 98.12 

A Sensor 97.36 98.21 97.09 97.95 

TFANet 100.0 99.52 100.0 99.54 

Table 5 demonstrates the improvement in bearing fault 

diagnosis performance when integrating the time-frequency 

aware convolutional layer module and the feature fusion 

module in the proposed network architecture. The baseline 

model A achieves an F1 score of 96.12%. With the addition 

of the feature fusion module (A+B), the F1 score increases to 

98.20%, indicating that this module significantly enhances 

feature interaction. The single-sensor input (A Sensor) also 

achieves some improvement, reaching an F1 score of 97.36%, 

though its overall performance remains slightly inferior to the 

multi-sensor configuration. The complete TFANet achieves 

the best performance across multiple metrics (F1 and Recall 

at 100%, Precision at 99.52%, and Accuracy at 99.54%), 

yielding relative improvements of 4.04%, 3.03%, 3.35%, and 

2.77% over the baseline. 

3.4. Sensitivity Analysis on Sensor Quantity 

To evaluate the impact of sensor quantity on model 

performance, experiments were conducted using single-

sensor, dual-sensor, and three-sensor inputs for comparison. 

As shown in Table 6, the diagnostic performance of the 

proposed model consistently improves with the increase in 

the number of sensors. When three sensors are used, the 
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model achieves the highest accuracy of 99.78% and a perfect 

F1-score of 100, indicating that multi-sensor fusion 

effectively enhances feature perception and fault 

discrimination capability. Further increasing the number of 

sensors yields only marginal improvement, suggesting that 

three sensors provide an optimal balance between diagnostic 

accuracy and system complexity. Therefore, three-sensor 

input is adopted as the standard configuration for TFANet in 

this study. 

Table 6. Performance with Different Sensor Numbers. 

Number Accuracy(%) Variance (×10-3) F1 

1 Sensor 96.78 0.52 96.86 

2 Sensor 98.42 0.31 98.21 

3 Sensor 99.78 0.13 100 

4. CONCLUSION 

This paper proposes a deep learning model named TFANet, 

which designs a time-frequency aware convolutional layer as 

a preprocessing module and incorporates a fusion attention 

mechanism to enhance the feature extraction capability of the 

convolutional neural network. The model can effectively 

extract time-frequency features closely related to faults from 

vibration signals, enabling the modeling of long-range 

dependencies for key features. Experimental results show 

that the proposed method achieves an accuracy of 99.54% on 

the HIT bearing dataset, significantly outperforming existing 

comparison methods. Further ablation experiments validate 

the effectiveness of each component module of TFANet in 

improving fault diagnosis performance.  

In summary, the TFANet model proposed in this paper 

demonstrates superior diagnostic performance in mechanical 

equipment fault diagnosis tasks, providing strong support for 

both theoretical research and engineering applications, and 

showing considerable potential for broader adoption. It 

should be noted that the experiments in this study are 

primarily based on publicly available datasets, and the 

model’s generalization capability on additional datasets and 

under complex real-world operating conditions remains to be 

further validated. In future work, we plan to apply TFANet to 

multi-sensor fault diagnosis, real-time monitoring, and 

predictive maintenance scenarios, aiming to further enhance 

its practical value and contribute to the development of 

intelligent manufacturing. 
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