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ABSTRACT

Aero engines are widely used in modern aviation due to their
high thrust-to-weight ratio, high efficiency, and high
reliability, placing greater demands on the operational safety
of key components such as bearings. Traditional bearing fault
diagnosis methods typically rely on vibration signals
collected by a single sensor, which makes it difficult to
handle challenges such as incomplete information and noise
interference in industrial settings. The paper proposes an
intelligent fault diagnosis model called the Time-Frequency
Attention Network, which is based on a time-frequency-
aware convolutional layer and a fused attention mechanism.
The goal is to fully exploit the time-frequency feature
information from multi-sensor signals. First, a time-
frequency-aware convolutional layer is designed using a
kernel function constrained by the Short-Time Fourier
Transform, leveraging a complex-valued convolution
structure to effectively extract non-stationary features and
local instantaneous frequency variations. Subsequently, a
fused attention module is constructed, introducing a dual-
attention mechanism in both channel and spatial dimensions
to adaptively adjust the response intensity and frequency-
domain focus areas of different sensor signals. The proposed
network is experimentally validated on the Harbin Institute
of Technology bearing dataset, achieving an accuracy of
99.54%. The results demonstrate that the proposed method
outperforms existing benchmark models in terms of fault
recognition accuracy and robustness, showcasing excellent
diagnostic performance and generalization ability.
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Multi-sensor; Complex-valued convolution.

Shuquan Xiao et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

Aero engines are widely used in modern aviation due to their
high thrust-to-weight ratio, high efficiency, and high
reliability. As their performance continues to improve, there
is an increasing demand for advanced intelligent maintenance
technologies, particularly in ensuring the operational
reliability of key components such as bearings, gears, and
shafts (Dai, Liang, Li, Wu & Wang, 2025). If faults are not
identified accurately and in a timely manner during operation,
they can easily lead to systemic failures, resulting in
significant economic losses and even safety accidents.
Therefore, fault diagnosis of bearings is a crucial measure to
ensure their operational safety and reliability.

Current fault diagnosis methods primarily rely on vibration
signals collected by a single accelerometer. For example, a
sparsity-controllable sparse morphological decomposition
method has been proposed to efficiently identify prominent
shift-invariant components containing impulsive features,
aiming to enhance the accuracy and robustness of fault
diagnosis for high-speed bearings (Kim & Lee, 2025). To
further improve fault diagnosis performance, another novel
approach combines multi-kernel Maximum  Mean
Discrepancy and multi-kernel Conditional Maximum Mean
Discrepancy to propose a new joint distribution discrepancy
measure. By enhancing domain confusion effects, this
method effectively captures fault features even when data
distributions are imbalanced or exhibit significant variation
(Li, Chen & Li, 2025). To address issues such as low
diagnostic accuracy and poor robustness, a multi-branch
feature fusion module is constructed to capture multi-scale
correlation information within the signals, enabling adaptive
learning of fault features at different levels (Liu, Chen, Li,
Zhou & Wu, 2025). The methods mentioned in the above
literature all rely on single-sensor data for fault diagnosis.
However, in real industrial environments, complex bearing
component systems may face challenges such as insufficient
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fault feature information and difficulty in extracting critical
features when using fault diagnosis methods based solely on
a single sensor.

In order to address the instability and information
incompleteness of single sensor data fault diagnosis in
practical industrial environments, researchers have gradually
adopted multi-sensor data input to obtain comprehensive
information about equipment operation from different
perspectives, enabling a more comprehensive fault feature
representation. By analyzing the correlation between
different sensors and samples, multi-layer graph data is
constructed to achieve multi-sensor data level fusion (Xiao,
Li & He, 2025). For the early weak fault diagnosis of bearings,
principal component analysis is used to combine vibration
signals from multiple sensors in both horizontal and vertical
directions, making full use of the feature information from
multi-sensor signals (Xu, Chen & Xu, 2025). A global feature
perception mechanism is constructed by integrating a multi-
sensor sparse Transformer and a hierarchical architecture,
fully exploiting the global features specific to each sensor as
well as the cross-sensor global features between multiple
sensors (Yang, Li, Xue & He, 2025). In summary, bearing
fault diagnosis methods still have vast potential for
improvement in processing signal sequences and exploring
their internal correlations. From initially relying on signals
from a single sensor to gradually integrating multi-sensor
data, bearing fault diagnosis strategies are continuously
evolving towards multi-source, multi-dimensional, and
multi-scale information fusion. However, challenges remain
in effectively coordinating high-dimensional heterogeneous
data, suppressing redundant information, and modeling the
relationships between deep features. For example, when
applying convolutional neural networks for multi-source
information fault diagnosis, there is a lack of specificity,
making it difficult to effectively capture the relationships
between different information sources. Additionally, the
limited local receptive field of convolutional kernels requires
stacking a large number of convolutional layers to obtain
global information. Therefore, in order to efficiently extract
fault-related time-frequency information from raw vibration
signals and capture long-range dependencies, this paper
proposes a time-frequency attention network (TFANet) based
on STFT transformation. The proposed method was validated
on the Harbin Institute of Technology bearing dataset, and by
comparing it with benchmark models and other methods, the
results demonstrate that the proposed method has superior
diagnostic performance. The contributions of this study can
be summarized as follows:

1. In response to the non-stationary and time-varying nature
of bearing fault signals, this paper proposes a time-frequency
perception convolutional layer based on the STFT kernel
function, which more accurately captures the non-stationary
patterns of fault features and local instantaneous frequency
variations.

2. A new feature fusion module is designed, introducing a
dual attention path during the convolution process. This
module adaptively adjusts the response strength and time-
domain weight distribution of multi-channel bearing sensor
signals, effectively highlighting the diagnostic information in
key frequency regions.

2. METHODOLOGY

The proposed TFANet network is primarily composed of the
time-frequency perception convolutional layer and the
feature fusion module. This section will first introduce the
design and mechanism of the time-frequency perception
convolutional layer, followed by a detailed explanation of the
implementation and role of the feature fusion module.

2.1. Time-Frequency Aware Convolutional Layer

Traditional convolutional layers often struggle to effectively
extract key time-frequency features when processing
vibration signals. Additionally, the single STFT method lacks
the ability to adaptively extract information based on the
specific characteristics of the fault dataset. In contrast, neural
networks have the ability to automatically learn high-
dimensional features from fault samples. Based on this, this
paper proposes a time-frequency-aware convolutional layer,
which aims to integrate the advantages of traditional time-
frequency analysis with deep learning to more effectively
extract time-frequency information from signals. This
convolutional layer uses complex convolutional kernels as
the core structure, with the real and imaginary parts designed
as two parallel convolutional channels. By using dual-
channel feature learning, it enhances the richness of feature
representation. As shown in Figure 1, the time-frequency-
aware convolutional layer introduces the STFT method to
calculate the magnitude of the real and imaginary part
features, thereby generating a time-frequency feature map,
which serves as the final output of the convolutional layer.
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Figure 1. Time-Frequency Aware Convolutional Layer
The process is performed independently for each input
channel, effectively preserving the fine-grained time-
frequency structure of the original signal. The core idea of
this design is to construct convolutional weights in complex
form, allowing the network to simultaneously capture both
the amplitude and phase variations of the signal during
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feature extraction, thereby enhancing its ability to model non-
stationary features. The initial convolutional kernel weights
are still randomly initialized, but they are modulated and
constrained by the STFT kernel function in subsequent
calculations. The mathematical expression is as follows:

v,eC v,.¥, €R
v,, =rw,) (1
v, =iy,)

Where, 1y, represents the kernel function, ¥/, and
correspond to the real part kernel and imaginary part kernel,
respectively. 7(-) and i(-) are operators for the real and
imaginary parts of the complex-valued function, respectively.
6 represents the trainable parameters of the convolutional
kernel  function, updated during the
backpropagation process.

which are

To further clarify the modulation mechanism of the STFT
kernel on the convolution kernel weights, let the input signal

be x(¢) , and its short-time Fourier transform can be
expressed as:

X, ) =x(@)wit-1)e > "dr 2)

Where, W(-) denotes the window function. In the time—
frequency aware convolutional layer, the complex-valued
convolution kernel i/, can be regarded as a combination of
the STFT kernel function and trainable weights, that is:
Vot /)= W,(t.f) - e 3)

rainable weight STFT modulation

The phase component of the convolution kernel is modulated
by the STFT kernel, while its amplitude is controlled by the
trainable parameters W, . This structure enables the network

to adaptively adjust the filter’s amplitude response during
training, while maintaining time—frequency consistency
constraints along the frequency dimension.

In the forward propagation, the complex convolution of the
input signal can be expressed as:

y:x*V/a:(xr"'jxi)*(wr,a"'jwi,g) 4)
By expanding the equation, we obtain:
yr = xr * l//r,e _xi *l//[ﬂ

Vi=X2Y, g =X, %Y,

©)

Where, y, and y, represent the real and imaginary parts of

the output features, respectively. This structure enables the
interactive fusion of real and imaginary feature components:
the real part mainly reflects energy and amplitude variations,

while the imaginary part carries information about phase and
frequency shifts. Through joint training, the network can
automatically balance the contributions of both components
at the feature level, thereby enhancing its capability to model
non-stationary time—frequency characteristics.

During the backpropagation process, the time-frequency-
aware convolutional layer computes the gradient of the
trainable parameters, and the trainable parameters are
updated at each training step. The expression for this update
is as follows:

oL ( oH Oy,  oH 0w
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Where, 8 represents the trainable parameters, J, refers to the
algorithm's gradient, 0 indicates the partial derivative, L
represents the classification loss, and H is the output of the
time-frequency-aware convolutional layer. # is the learning
rate of the optimizer.

2.2. Attention Module Integration

In the process of multi-sensor fault feature fusion, it is
essential to selectively emphasize information channels and
highlight important local detail features. It is recommended
to redesign parts involving skip connections to facilitate the
complementary interaction and effective fusion between
high-dimensional and low-dimensional features. Inspired by
this idea, this paper introduces a spatial-channel attention
module for cross-combination, named the fusion attention
module, as shown in Figure 2.
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Figure 2. Attention Module Integration

Where, F, and F}, represent low-dimensional and high-

dimensional features, respectively. £, and F, represent the

high and low-dimensional features obtained after processing

with the channel and spatial attention modules, respectively.
& represents the multiplication operation, @ represents the
summation operation, and at#f, and aff, represent the
channel attention and spatial attention, respectively.
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Where, G,
represents global max pooling, both used to extract global

represents global average pooling, and G,,

information. f

convl

convolutional layer, and f,

represents a 1x1 convolutional shared
represents a convolutional
layer with a kernel size of 7x7. The combination of these two
methods can effectively address the issue of weak feature

representation ability. represents the final features

()ul
obtained after the input features are processed through the

channel and spatial attention modules in a cross manner.

By cross-reorganizing the channel attention module and the
spatial attention module, it cleverly links information from
different dimensions while differentiating the weight size
based on the importance of each feature, allowing the model
to better emphasize features that are useful for the task.

2.3. Multi-Sensor Data Fusion Strategy

To fully exploit the advantages of multi-sensor collaborative
perception, this paper proposes a unified preprocessing and
fusion scheme for heterogeneous sensor signals. Suppose the
system is equipped with V acceleration sensors placed at key
positions such as the bearing outer ring and
horizontal/vertical directions, each recording vibration
signals under the same operating condition. The raw signal of

the i-th sensor is denoted as x.(¢),i =1,2,...,N .

All sensor signals are first filtered by a band-pass filter (20—
8000 Hz) to remove environmental noise and then
synchronized by linear interpolation. To eliminate amplitude
deviation caused by installation differences and sensitivity
variation, Z-score normalization is applied:

Data Collectmn and Processmg T

J==7i

Model Combination and Training
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o.

1
Where, 1, and O, denote the mean and standard deviation of

the i-th sensor signal, respectively. This ensures that all
sensor channels share a consistent amplitude scale.

Each sensor signal is processed by the Time-Frequency
Aware Convolution (TFAConv) layer to extract the
corresponding time—frequency feature map F, € R . To
achieve unified multi-source representation, the features
from all sensors are concatenated along the channel
dimension:

F

fusion :Concat(E’]:Z""’FN) (13)

A 1 X 1convolution is then applied for linear projection and
dimensional compression'

=Conv,, (F,

Based on the fused feature F', a dual attention module—
comprising channel and spatial attention—is introduced to
adaptively weigh the features from different sensors. The
channel attention captures the importance variation across
sensors, while the spatial attention focuses on key local
regions, thus enabling effective multi-source information
enhancement and noise suppression.

(14)

‘usion )

2.4. The Fault Diagnosis Framework

The time-frequency aware convolutional layer proposed
earlier is used as a preprocessing layer, combined with CNN,
resulting in a new network named TFANet. By utilizing the
time-frequency aware convolutional layer to extract time-
frequency information related to fault factors from vibration
signals, it can effectively diagnose fault types in mechanical
equipment. The network architecture based on TFANet is
shown in Table 1. The overall framework of the fault
diagnosis method based on TFANet is illustrated in Figure 3.
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Figure 3. Fault Diagnosis Framework Diagram
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First, vibration signals are collected from the bearing test rig.
The time-frequency aware convolutional layer is used to
capture key feature information from multi-sensor vibration
signals, and the samples are labeled for training. An improved
convolutional neural network is then used to extract
discriminative key feature information. The established
model is trained and applied to recognize test samples,
ultimately outputting the fault diagnosis features.
Tablel. Model Parameters

Number Network Kernel size  kernel Output

Input 3*1024
1 TFAConv 1x15/1 16 nc*1024
2 Convl-BN 1x3/1 32 32*1010
3 CA 1x3/1 32 32*1010
4 Conv2-BN- 1x3/1 64 64*1008
5 Maxpool 1x2/2 64 64*504
6 Conv3-BN- 1x3/1 128 128*502
7 Maxpool 1x2/2 128 128*251
8 Conv4-BN 1x3/1 256 256*249
9 SA 1x3/1 256 256*249
10 Linear(256)-ReLU- 4

Linear(128)-ReLU-Linear(4)

3. EXPERIMENTAL VERIFICATION

In this section, in order to verify and analyze the application
of the proposed TFANet method in bearing fault diagnosis,
we will conduct experiments from different perspectives and
report the results. The bearing datasets used in this section are
vibration signals collected via accelerometers. All
experimental programs were run on the following configured
computer: Pytorch 1.12.0+cull3, CPU: i5-12400F, GPU:
NVIDIA GeForce RTX 2060 SUPER, 16 GB RAM.

The proposed method is comprehensively compared with
several mainstream fault diagnosis methods, as detailed
below:

(1) Classical Convolutional Neural Network Model (Han,
Shao & Jiang, 2022): Automatically extracts fault features
from raw vibration signals.

(2) ResNetl8 Model with Residual Connections (Wang,
Chen, Wang & Shao, 2023): Achieves efficient learning and
representation of deep-level features.

(3) GAAE Model with Global Perception Attention
Mechanism (Yan, Shao & Ming, 2023): Achieves deep
expression and compressed reconstruction of key fault
features.

(4) HAGCN Model with Hierarchical Attention Mechanism
and Graph Convolutional Structure (Li, Zhao & Sun, 2023):
Effectively models the topological relationships of vibration
signals in non-Euclidean space.

(5) DAGCN Model Combining Graph Convolutional
Structure and Dual Attention Mechanism (Li, Zhao & Sun,
2021): Dynamically mines key feature information from
vibration signals.

3.1. Harbin Institute of Technology Bearing Dataset.

The bearing dataset used in this study (Hou, Yi, Jin & Gui,
2023) originates from real data collected from an aviation
engine. The fault diagnosis experimental platform consists of
an improved aviation engine (with the rotor blades,
combustion chamber, and some accessory shells removed,
but retaining the dual-rotor structure of the main components),
a motor drive system, a lubrication system, two eddy current
sensors, and four acceleration sensors (the specific structure
is shown in Figure 4). The sampling frequency for each set of
signals is 25,000 Hz, with a continuous sampling time of 15
seconds.

The bearing dataset consists of four health conditions, as
shown in Figure 5 and Table 2. The faults are created through
wire cutting processing and include normal bearings (N),
outer race faults (OF), and inner race faults (IF) with fault
lengths of 0.5 and 1.0. The fault data under different health
conditions are segmented using a sliding window approach.
An overlapping sampling method is applied to obtain 360
samples for each category, with 70% used for the training set

‘ N :
‘-\rﬁ )
*‘Eﬂad{'é, o

v
G

1=k -

Figure 4. The Experimental Platform

'

b | c | d

a

Normal Depth=0.5, Length=0.5 : Depth=0.5, Length=0.5 :l)epth=(i,5. Length=1.0
Figure 5. Bearing Health Condition
Table 2. Data Introduction.

Condition Label Depth of fault Depth of fault
Normal (a) 0 — —
OR fault (b) 1 0.5 0.5
IR fault (c) 2 0.5 0.5
IR fault (d) 3 0.5 1.0

3.2. Experimental Results and Analysis

To ensure fairness of the experiments, the hyperparameters
of all comparison methods mentioned in this paper are the
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same as those used in the proposed method. In each training
and testing iteration, to reduce the randomness of the
experiments, each method is run 10 times, and the average
value is taken to make the validation more stable and
convincing. The performance values after 300 training
rounds are shown in the table below.

Table 3. Average Metrics.

Method Accuracy% variance MAE
CNN 96.12 0.43X10°3 0.132
ResNet18 96.31 0.56 X103 0.104
GAAE 97.04 0.33X107 0.127
HAGCN 97.32 0.25x1073 0.072
DAGCN 98.54 0.18x107 0.084
TFANet 99.54 0.13X103 0.051

The confusion matrix provides an intuitive visualization of
the recognition results for each fault type, quantifying the
model's classification performance on each fault type. As
shown in Figure 6, the comparison models achieve good
diagnostic performance overall. However, in the data related
to label 1 and label 2, there is noticeable feature entanglement,
leading to misclassification of these two fault types in the
diagnosis process.
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Figure7. t-SNE
The paper visualizes the feature distribution learned by
different models using the t-SNE algorithm. As shown in
Figure 7 (6), the proposed method significantly outperforms
other methods in terms of classification performance. The
distribution of the same fault type across different data
domains is more compact, while the distinction between

different fault categories is clearer. This indicates that the
proposed model can efficiently extract key fault feature
information from multi-sensor vibration signals.

To investigate the true classification performance of the
model for each fault type in detail, this paper evaluates the
classification performance of each model for every health
condition of the bearing. As shown in Table 4.

Table 4. F1 Score of Each Label.

Label\F1 0 1 2 3
CNN 76.74  100.0 96.74 100.0
ResNet18 100.0  87.17 67.54 100.0
GAAE 93.08  100.0 87.05 95.86
HAGCN 100.0  100.0 46.79 89.97
DAGCN 99.16  96.47 75.01 100.0
TFANet 100.0  100.0 100.0 100.0

3.3. Ablation Experiment

To further validate the diagnostic performance of the
proposed TFANet method, this section conducts an ablation
experiment. The time-frequency aware convolutional layer is
named as Module A, the feature fusion module is named as
Module B, and the single-sensor vibration signal input is
named as A Sensor. The combination of Modules A and B
forms the TFANet method proposed in this paper. The
diagnostic results of all modules are shown in Table 5.

Table 5. Evaluation Metrics of Each Module.

Method F1 Pr(%) Re(%) Accuracy(%)
A 96.12 96.69 96.74 96.86
A+B 98.20 98.00 98.57 98.12
A Sensor 97.36 98.21 97.09 97.95
TFANet 100.0 99.52 100.0 99.54

Table 5 demonstrates the improvement in bearing fault
diagnosis performance when integrating the time-frequency
aware convolutional layer module and the feature fusion
module in the proposed network architecture. The baseline
model A achieves an F1 score of 96.12%. With the addition
of the feature fusion module (A+B), the F1 score increases to
98.20%, indicating that this module significantly enhances
feature interaction. The single-sensor input (A Sensor) also
achieves some improvement, reaching an F1 score of 97.36%,
though its overall performance remains slightly inferior to the
multi-sensor configuration. The complete TFANet achieves
the best performance across multiple metrics (F1 and Recall
at 100%, Precision at 99.52%, and Accuracy at 99.54%),
yielding relative improvements of 4.04%, 3.03%, 3.35%, and
2.77% over the baseline.

3.4. Sensitivity Analysis on Sensor Quantity

To evaluate the impact of sensor quantity on model
performance, experiments were conducted using single-
sensor, dual-sensor, and three-sensor inputs for comparison.
As shown in Table 6, the diagnostic performance of the
proposed model consistently improves with the increase in
the number of sensors. When three sensors are used, the
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model achieves the highest accuracy of 99.78% and a perfect
Fl-score of 100, indicating that multi-sensor fusion
effectively enhances feature perception and fault
discrimination capability. Further increasing the number of
sensors yields only marginal improvement, suggesting that
three sensors provide an optimal balance between diagnostic
accuracy and system complexity. Therefore, three-sensor
input is adopted as the standard configuration for TFANet in
this study.
Table 6. Performance with Different Sensor Numbers.

Number Accuracy(%) Variance (x1073) F1
1 Sensor 96.78 0.52 96.86
2 Sensor 98.42 0.31 98.21
3 Sensor 99.78 0.13 100

4. CONCLUSION

This paper proposes a deep learning model named TFANet,
which designs a time-frequency aware convolutional layer as
a preprocessing module and incorporates a fusion attention
mechanism to enhance the feature extraction capability of the
convolutional neural network. The model can effectively
extract time-frequency features closely related to faults from
vibration signals, enabling the modeling of long-range
dependencies for key features. Experimental results show
that the proposed method achieves an accuracy of 99.54% on
the HIT bearing dataset, significantly outperforming existing
comparison methods. Further ablation experiments validate
the effectiveness of each component module of TFANet in
improving fault diagnosis performance.

In summary, the TFANet model proposed in this paper
demonstrates superior diagnostic performance in mechanical
equipment fault diagnosis tasks, providing strong support for
both theoretical research and engineering applications, and
showing considerable potential for broader adoption. It
should be noted that the experiments in this study are
primarily based on publicly available datasets, and the
model’s generalization capability on additional datasets and
under complex real-world operating conditions remains to be
further validated. In future work, we plan to apply TFANet to
multi-sensor fault diagnosis, real-time monitoring, and
predictive maintenance scenarios, aiming to further enhance
its practical value and contribute to the development of
intelligent manufacturing.
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