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ABSTRACT 

In the pursuit of optimizing complex engineering systems, 
the exploration and thorough understanding of the design 
space become imperative, particularly when dealing with 
multi-objective systems characterized by an array of 
independent variables. This paper presents a comprehensive 
analysis on the design space mapping of such intricate 
systems, utilizing a turboshaft engine as a representative case 
study. 

Our initial methodology phase involves the employment of a 
physics-based model to generate a synthetic dataset. This 
dataset reflects the intricate interplay of various system 
parameters that underpin the engine's operation. The 
synthesized data serves as a foundation for the subsequent 
development of a Machine Learning or Deep Learning-based 
surrogate model. This surrogate AI model is meticulously 
crafted to encapsulate the multiple inputs and outputs 
inherent in the turboshaft engine's functioning, thereby 
facilitating an efficient and accurate exploration of the design 
space. 

The core of our investigation revolves around AI surrogate 
model utilization for conducting multi-objective 
optimization. This optimization process is not merely focused 
on enhancing specific performance metrics but is also geared 
towards identifying a comprehensive family of feasible 
design solutions. Such an approach enables the delineation of 
the entire design space, offering invaluable insights into the 
trade-offs and synergies among different design objectives. 
Through this methodology, we can uncover a wide spectrum 
of viable design alternatives, thereby providing a robust 
framework for decision-making in the engineering design 
process. 
 
 
 
 
 
 

1. INTRODUCTION 
 
Aerospace system optimization is a critical engineering area 
focusing on improving the performance, efficiency, and cost-
effectiveness of various components and processes within the 
aerospace industry. This involves applying mathematical and 
computational techniques to design, analyze, and refine 
systems such as aircraft, spacecraft, propulsion systems, and 
avionics.  
 
Design optimization involves identifying the optimal design 
parameters that meet project specifications. Engineers often 
employ design of experiments (DOE), statistical analysis, 
and optimization techniques to assess trade-offs and pinpoint 
the best design. 
 
In many design scenarios, numerous parameters must be 
considered. Some parameters may influence performance 
metrics in a nonlinear manner, while others might only 
assume discrete values. Furthermore, there are typically 
multiple, often conflicting, requirements and objectives to 
satisfy. Adjusting one parameter at a time manually can lead 
to less-than-ideal outcomes and evaluating every possible 
option in the design space can be prohibitively time-
consuming. 
 
Design optimization tackles these issues by using numerical 
optimization methods to automatically find the best solutions 
within given constraints. This approach navigates the design 
space more efficiently than exhaustive searches. The iterative 
process of design refinement is automated, reducing the time 
required and the potential for human error. Engineers also 
apply statistical techniques to explore parameter sensitivities 
and gain insights into the design space before and after 
optimization, ensuring the robustness of the optimal 
solutions. 
 
An aircraft sub-system, such as the engine, must meet 
multiple design objectives and a wide array of independent 
variables. It becomes challenging to execute trade studies and 
optimize the design in such a way that all the design 
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requirements are satisfied in quick time. Traditional methods 
of design space exploration can be labor-intensive and 
inefficient.  
 
This paper introduces an innovative approach that combines 
physics- based modeling with advanced AI techniques to 
efficiently map the system design space. Using a turboshaft 
engine as a case study, we generate synthetic data through a 
physics-based model, which then informs the development of 
a Machine Learning or Deep Learning-based surrogate 
model. This AI surrogate model facilitates accurate multi-
objective optimization, uncovering a wide range of feasible 
design solutions. Our methodology not only enhances 
performance metrics but also provides deep insights into the 
trade-offs and synergies between different design objectives. 
The results demonstrate the potential of this hybrid approach 
to revolutionize engineering design by offering a robust 
framework for optimizing complex systems. 
 
2. WORKFLOW 
 
In this research paper, a generic workflow is discussed to 
systematically approach data generation with experiment 
design, evaluation of multiple AI models with validation, 
conducting multi-objective optimization, and mapping the 
full family of feasible design solutions through a design space 
map, as shown in Figure 1. 
 

 
Figure 1. Generic workflow depicting systematic approach 
to data generation, data driven modeling, optimization, and 

design space mapping. 
 
The workflow and analysis described in this paper are 
implemented using MATLAB®. We will highlight the salient 
aspects of each step of the workflow in the subsequent 
sections. 
 
2.1. Design of Experiments 

The first step to uncovering the best possible engineering 
product/asset design is to take a systematic approach to data 
generation, starting with running simulations and 

experiment design. A physics-based model is created to 
generate the data. 

2.1.1. Physics-based Model for Synthetic Data 

A first principles-based turboprop engine model is 
developed using Simulink® and SimscapeTM, as shown in 
Figure 2.  

 
Figure 2. First principles-based turboprop engine model 

highlighting independent design variables. 
 
This model serves as a representative system for our analysis, 
rather than an exact replica of an actual engine. The system 
comprises two aerodynamically coupled spools, the core 
rotor, the power turbine module, and a propeller shaft 
connected to the power turbine shaft via a bevel gear. The 
model incorporates nine independent parameters, including 
shaft inertias and the structural damping for each of the three 
rotors, combustor volume, gear ratio, and vane opening. The 
compressor and turbine maps are pre-defined, as shown in 
Figure 3.  
 

 
Figure 3. Predefined Compressor and Turbine maps. 

 
These parameters were selected to capture the essential 
dynamics and interactions within the turboprop system. For 
this workflow demonstration, we simulated the engine under 
a throttle ramp and hold condition over a duration of 1200 
seconds, as shown in Figure 4. The throttle position is ramped 
to 600 seconds and held at a constant value for another 600 
seconds. During this period, all system objectives were 
calibrated for steady-state operation when the throttle was in 
the hold condition. 
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Figure 4. Core rotor speed being plotted with respect to 

time. Core rotor speed reacts to the ramp and hold throttle 
position profile. 

 
The outputs monitored during the simulation include core 
thrust, power turbine thrust, and shaft mechanical power. 
These outputs provide critical insights into the system's 
performance and serve as the basis for developing our AI-
based surrogate model. 
By employing this synthetic dataset, we ensure that our 
methodology is robust and generalizable, capable of adapting 
to various complex engineering systems. The generated data 
encapsulates the intricate system parameter interplay, thereby 
laying a solid foundation for subsequent optimization and 
analysis. 
 
2.1.2. Sampling 

To systematically explore synthetic data generation, we 
employed a Design of Experiments (DOE) approach for 
executing the simulations. One common method in DOE is 
full factorial sampling, where all possible combinations of the 
independent parameters are tested. While comprehensive, 
full factorial sampling is often impractical for complex 
systems with numerous parameters due to its exponential 
growth in the number of required simulations, as shown in 
Table 1. In this case study we have nine independent system 
parameters. Even if we define three levels for each parameter, 
the full factorial design sampling will generate 20,000 
sampling points, which can lead to excessive computational 
costs and time inefficiencies. 

Table 1. Number of sampling points for a full-factorial 
design with nine independent parameters and multiple levels 

on each parameter. 

Levels 
# of 
Simulations 

10 1B 
9 387M 
7 40M 
5 2M 
3 20K 

 

Given the computational constraints, we opted for Latin 
Hypercube Sampling (LHS), a more efficient and scalable 
technique. LHS ensures that the entire range of each 
parameter is sampled, offering a more representative 
distribution of the design space with fewer sampling points 
compared to full factorial sampling. For our analysis, we 
selected 2,000 sampling points using LHS, as referenced in 
Figure 5. This choice strikes a balance between 
computational feasibility and the need for thorough 
exploration of the design space. 
 

 
Figure 5.  Latin Hypercube Sampling space for nine 

independent parameters but limited to 2,000 simulations. 
 
Using LHS, we can efficiently generate a diverse simulation 
set that captures the variability and interactions among the 
nine independent parameters. This approach enhances the 
robustness of our synthetic dataset, thereby improving the 
accuracy and reliability of the subsequent AI-based surrogate 
model. 
 
2.1.3. Parallel Simulation and Synthetic Dataset 

To expedite the simulation process, multiple simulations 
were executed in parallel, leveraging parallel computing. We 
significantly reduced the time required to generate the 
synthetic dataset by utilizing multiple processing cores 
simultaneously. This parallel execution not only enhances 
efficiency but also ensures the extensive set of 2,000 
sampling points is processed in a timely manner. As a result, 
we got a 2,000 time-series data table consisting of nine 
predictors and three responses.  

2.2. AI Modeling 
 
In the previous step, a dataset was created concerning each of 
the nine independent tunable parameters. Now that the 
dataset is ready, the next step is to train an AI model.  
 
2.2.1. Feature Ranking 

In this section, we conducted an analysis to determine the 
relative importance of various design parameters on system 
performance. Utilizing the F-Test, a statistical method that 
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assesses each feature’s significance in explaining the 
response variable variance, we identified three parameters as 
particularly influential: PT Nozzle Opening, Gear Ratio, and 
PT Damping. These parameters stood out among the nine 
considered, demonstrating a higher impact on the Power 
Turbine Thrust, as shown in Figure 6. 

 
Figure 6.  Feature importance scores for Power Turbine 

Thrust response using F-Test. 
 
The identification of these key parameters is crucial for 
several reasons. First, it allows for a more focused design 
space exploration, prioritizing variables that most 
significantly affect outcomes. Second, we can efficiently 
solve both the optimization problem and the design space 
mapping by concentrating on influential parameters. Lastly, 
understanding the importance of features aids in simplifying 
the model, potentially reducing complexity without 
sacrificing predictive accuracy. This insight into feature 
significance not only informs the design and optimization 
strategies but also provides a foundation for further 
investigations into system dynamics. 
 
2.2.2. AutoML 

Accurately modeling system responses is crucial in 
optimizing complex engineering designs. This case study 
focused on three design objectives: shaft mechanical power, 
core thrust, and power turbine thrust. We employed 
automated machine learning (AutoML) to train over 20 
regression models for each objective using a synthetic 
dataset. These models included variants of linear regression, 
support vector machines, decision trees, ensemble methods, 
gaussian process regression, and neural networks. A 20% 
holdout validation set was used to ensure unbiased 
performance evaluation of the AI model on the unseen data. 
Models were assessed with adjusted R², accounting for the 
predictor count and offering a precise performance measure.  
Apart from adjusted R² values, we also considered RMSE 
(Root Mean Squared Error) and MAE (Mean Absolute Error) 
metrics to measure goodness of fit. Figure 7 represents the 

observed root mean squared error (RMSE) values on the test 
data for multiple trained machine learning models.  

 
Figure 7.  Root Mean Squared Error comparison over test 

dataset for multiple machine learning models. 
 
2.2.3. Hyperparameter Tuning 

As observed in the previous results, the Artificial Neural 
Networks (ANN) model outperforms others for the core 
thrust predictions. The trained ANN has three hidden layers 
with 10 neurons each. This architecture uses ReLU activation 
level. We set up the hyperparameter tuning experiment with 
Bayesian Optimization for the ANN architecture while 
varying the number of fully connected layers, activation 
function, and regularization strength. The minimum MSE 
value observed on the validation data is reported with each 
iteration, as shown in Figure 8.  

 

Figure 8. Minimum Mean-Squared-Error plot regarding 
Iterations during Hyperparameter Tuning of the ANN 

model. 
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The MSE value dropped from 52.58 to 45.97 for the 
optimized network, and the RMSE value improved from 7.25 
to 6.78 on the test data as reported in Table 2, whereas the 
MAPE is similar to the unoptimized network.  The optimized 
network has two fully connected layers with 20 neurons in 
the first layer and one neuron in the second layer, with ReLU 
activation and regularization strength set as 6.5e-5. 

 
Table 2 Results Summary table for multiple machine 

learning models trained on core thrust response. 
Model  

Type 

Training Test 

RMSE MSE 𝑹𝟐 MAPE MSE RMSE 𝑹𝟐 MAPE 

ANN 
optimized 

19.07 
363.6
0 

0.934
3 

5.32% 45.97 6.78 
0.991
0 

1.91% 

ANN 
Trilayered 

15.10 
227.9
8 

0.958
8 

3.52% 52.58 7.25 
0.989
7 

1.83% 

ANN 
Bilayered 

16.68 
278.3
3 

0.949
7 

4.26% 96.13 9.80 
0.981
1 

2.55% 

ANN Wide 10.44 
109.0
7 

0.980
3 

2.99% 
105.7
2 

10.28 
0.979
3 

2.81% 

GPR 
Rationale 

Quadratic 

14.70 
215.9
9 

0.960
9 

4.37% 
186.9
7 

13.67 
0.963
3 

3.87% 

GPR 
Matern 5/2 

14.74 
217.3
1 

0.960
7 

4.42% 
188.9
1 

13.74 
0.963
0 

3.91% 

GPR 
Exponential 

16.06 
257.8
9 

0.953
4 

4.77% 
207.1
5 

14.39 
0.959
4 

4.1 % 

GPR 
Exponential

2 15.50 
240.3
0 

0.956
6 

4.75% 
208.9
7 

14.46 
0.959
0 

4.22% 

SVM 
Medium 

Gaussian 

18.60 
345.9
9 

0.937
4 

5.81% 
282.1
7 

16.80 
0.944
7 

5.12% 

SVM Cubic 18.72 
350.6
2 

0.936
6 

5.75% 
341.3
7 

18.48 
0.933
1 

5.75% 

Kernel 
Least Squares 

Regression 

21.91 
480.1
8 

0.913
2 

6.97% 
355.0
4 

18.84 
0.930
4 

5.91% 

Ensembl
e Bagged 

Trees 

22.09 
488.1
2 

0.911
7 

6.61% 
383.6
3 

19.59 
0.924
8 

5.74% 

 
ANN excelled over other family of models, achieving 
adjusted R² values of 0.98 and above on both training and test 
datasets for all three design objectives, as shown in Figure 9 
below. 
 

 
Figure 9.  Predicted response (y-axes) vs. Ground Truth (x-

axes) for all three design objectives. 
 
While the machine learning models demonstrate high 
accuracy when comparing predicted values to ground truth, 
Figure 9, shows that 2,000 observations in a 9-dimensional 
space may only capture a coarse representation of the 
response surfaces, especially if any system responses exhibit 
non-linearity. In scenarios where the number of simulations 
for synthetic data generation is limited, it is crucial to validate 
the model’s accuracy by examining cross-sections of the 
multidimensional space. This involves visually overlaying 
the predicted response surfaces onto the ground truth, as 
shown in Figure 10.  
 

 
Figure 10.  3-D Response surfaces highlighting the great fit 
between simulated and predicted responses. Only one point 

(black dot) from this 3-D cross section of the 9-D 
parametric space has been used to train the AI models. 

 
In this visual representation, a black dot indicates an 
individual observation used for training the machine learning 
models. The magenta-colored surface represents the ML-
predicted response surface, while the blue surface depicts the 
re-generated or re-simulated ground truth. This 3D cross-
sectional view of the 9D parametric space illustrates the 
impressive accuracy of the regression model, despite being 
trained with limited data. The overlay demonstrates how 
effectively the model captures the underlying response 
dynamics, validating its robustness in approximating 
complex systems. To facilitate this validation, we conducted 
additional simulations of the plant model to generate accurate 
3D representations of response surfaces for specific cross-
sections of the 9D design space. These simulations were 
supplementary to the original 2,000 observations and were 
not used for re-training the models. However, there is no 
restriction on using this data for future model refinement. 
Given their distinct dynamics, the study also addressed the 
need for different models for transient versus steady-state 
operations. We evaluated the trade-offs between training 
separate models for each response and using a single deep-
learning model for multiple responses. We selected separate 
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models for each system response to achieve better accuracy. 
This approach highlights the importance of tailored model 
selection and validation in capturing engineering system 
complexity. 
 
2.3. Parameter Optimization 

The parameter optimization step can be interchangeably used 
with design space exploration, as highlighted earlier in the 
workflow. This is a crucial step in refining complex 
engineering designs. This research employed a multi-
objective solver, specifically a Pareto-search algorithm, to 
identify optimal values for nine design variables that satisfy 
all three system objectives. Multi-objective optimization 
inherently involves trade-offs between different objectives, 
and the solver often provides multiple solutions. In our case, 
the optimization routine utilizing AI models for predicting 
system responses yielded 70 potential solutions, as depicted 
in the scatter plot in Figure 11. Traditionally, engineers might 
employ surrogate optimization by directly integrating 
physics-based simulation models to capture system 
responses. However, this approach can incur significant 
computational costs, especially when the system involves 
many degrees of freedom. 

 

 
Figure 11. Optimization solver outcomes mapped against a 

3-D objectives plot. The objectives are constrained such that 
the optimization solver looks for solutions in the highlighted 

cuboid. 
 
The scatter plot reveals a range of solutions, with a cuboidal 
region representing the area of interest for all three design 
objectives. This region highlights the lower bounds of the 
objectives, with uncapped upper bounds. These solutions can 
be further filtered based on a bias towards specific system 
responses and can be transformed into a parametric 
configuration file for reintegration into the design cycle. 
While machine learning regression models in this approach 
exhibit a 1-2% error, they offer significant efficiency 

advantages, particularly when identifying operational 
regimes rather than exact solutions. This optimization 
approach using machine learning models on synthetic 
datasets is highly efficient regarding computational time. 
However, challenges arise in cross-disciplinary settings, 
where one engineering team’s design decisions impact 
another. In such scenarios, a full family of potential design 
solutions may help over optimization results. An 
interchangeable workflow between optimization and design 
space mapping is recommended, in such cases. 
 
 2.4. Design Space Mapping 

Human beings can typically visualize in up to three 
dimensions, which is why design space mapping is valuable, 
especially when coupled with sensitivity analysis. This 
method involves identifying the top features in the dataset 
that most significantly influence system responses. For 
example, we focus on the two most sensitive parameters 
while fixing all other design parameters to create a 2D cross-
section of the design volume. Although one can extend this 
visualization to 3D by including the top three features, we 
describe the 2D design space for simplicity. 

Using regression models, we predict the three system 
responses and overlay them as contour lines on the 2D plot. 
In Figure 12, red contour lines represent shaft mechanical 
power, blue lines represent power turbine thrust, and black 
lines represent core thrust. The intersection of these contour 
lines reveals the full family of feasible design solutions or the 
design space. Within this space, designers and engineers can 
make conservative choices by selecting design points slightly 
inside the decision boundaries, fully aware of the marginal 
inaccuracy of the regression models. 
 

 
Figure 12.  2-D cross-section of a 9-D parametric space 

revealing the feasible design space for the chosen features of 
interest. 

 
Objectives contours are overlayed to unveil the full family of 
feasible design solutions (design space), which is shown as 
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dotted regions in green. As we vary any of the lower-ranked 
features, this 2D design space representation will adjust 
accordingly, either shrinking or expanding, as demonstrated 
in Figure 13 where the power turbine nozzle is opened up to 
52% as compared to 42% in the previous result. 
 

 
Figure 13.  Design Space changes dynamically in the 2D 
cross-sectional view of the high dimensional parametric 

space as we change the other important features. 
 
Importantly, this process does not require any additional 
computational resources once the machine learning models 
are trained, making it an efficient tool for exploring design 
possibilities. 
 
3. CONCLUSION 

This analysis marks a significant advancement in optimizing 
multi-objective systems by integrating data-driven insights 
and advanced optimization techniques. We began our 
research by strategically conducting trade studies on physics-
based models, meticulously preparing data that captures the 
system’s complexities. This groundwork enabled us to 
perform feature ranking, identifying key parameters that 
drive system responses, and enhancing the explainability of 
our AI models. 
The development of a machine learning-based AI surrogate 
was pivotal, allowing designers to achieve top-notch 
accuracy in results without the need for further physical 
simulations. The use of AutoML was crucial in selecting and 
fine-tuning the most effective models, ensuring our surrogate 
model was both robust and precise. 
Our AI-based approach to optimization, combining machine 
learning, demonstrated significant efficiency gains over 
traditional physics-based optimization methods. This not 
only accelerated the process multi-folds but also made it more 
adaptable, removing the time-consuming barriers of repeated 
optimization cycles. 
Design space mapping provided a transformative way to 
visualize the high-dimensional parametric space, focusing on 
the most sensitive regimes within the design volume. This 
technique offered clarity in interpreting optimization results 
and revealed the full spectrum of feasible design solutions. 

In essence, this version of our methodology sets a new 
benchmark for efficient, insightful design processes in 
complex engineering systems. By seamlessly integrating 
strategic data preparation, feature ranking, AI surrogates, 
multi-objective optimization, and advanced visualization 
techniques, we provide a comprehensive framework that 
enhances both the efficiency and depth of engineering design 
and decision-making. 
 
4. FUTURE SCOPE 

The current research focuses on steady-state design 
objectives. In the future, this work can be expanded to 
address transient-state design. To ensure predictive accuracy 
in transient-state applications, the physics-based model 
would require calibration with a trained AI model. 
Additionally, residual analysis can be included to get deeper 
understanding of prediction errors across the data range.   

This research could also be extended to analyze the prediction 
speed and the memory footprint of the AI model on various 
deployment platforms, such as embedded hardware (virtual 
sensors) or cloud environments. Selecting a suitable AI 
model is critical to achieving optimal performance. 
 

 
Figure 14. Performance vs. Prediction latency of various AI 

models. 
 
For example, the Decision Tree models are faster, whereas 
the Neural Network models offer moderate speed with lower 
RMSE. Model comparison for prediction speed vs. accuracy 
is shown in Figure 14. Designers can use this information to 
perform trade-off analyses and choose the appropriate model 
based on specific deployment needs. 
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DEFINITIONS/ABBREVIATIONS 

DOE  Design of Experiments 

ANN  Artificial Neural Networks 

WNN  Wide Neural Network 

RMSE   Root Mean Squared Error 

MAE  Mean Absolute Error 

MAPE  Mean Absolute Percentage Error 

AutoML  Automated Machine Learning 

LHS   Latin Hypercube Sampling 
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