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ABSTRACT

In the pursuit of optimizing complex engineering systems,
the exploration and thorough understanding of the design
space become imperative, particularly when dealing with
multi-objective systems characterized by an array of
independent variables. This paper presents a comprehensive
analysis on the design space mapping of such intricate
systems, utilizing a turboshaft engine as a representative case
study.

Our initial methodology phase involves the employment of a
physics-based model to generate a synthetic dataset. This
dataset reflects the intricate interplay of various system
parameters that underpin the engine's operation. The
synthesized data serves as a foundation for the subsequent
development of a Machine Learning or Deep Learning-based
surrogate model. This surrogate Al model is meticulously
crafted to encapsulate the multiple inputs and outputs
inherent in the turboshaft engine's functioning, thereby
facilitating an efficient and accurate exploration of the design
space.

The core of our investigation revolves around Al surrogate
model utilization for conducting  multi-objective
optimization. This optimization process is not merely focused
on enhancing specific performance metrics but is also geared
towards identifying a comprehensive family of feasible
design solutions. Such an approach enables the delineation of
the entire design space, offering invaluable insights into the
trade-offs and synergies among different design objectives.
Through this methodology, we can uncover a wide spectrum
of viable design alternatives, thereby providing a robust
framework for decision-making in the engineering design
process.
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terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

Aerospace system optimization is a critical engineering area
focusing on improving the performance, efficiency, and cost-
effectiveness of various components and processes within the
aerospace industry. This involves applying mathematical and
computational techniques to design, analyze, and refine
systems such as aircraft, spacecraft, propulsion systems, and
avionics.

Design optimization involves identifying the optimal design
parameters that meet project specifications. Engineers often
employ design of experiments (DOE), statistical analysis,
and optimization techniques to assess trade-offs and pinpoint
the best design.

In many design scenarios, numerous parameters must be
considered. Some parameters may influence performance
metrics in a nonlinear manner, while others might only
assume discrete values. Furthermore, there are typically
multiple, often conflicting, requirements and objectives to
satisfy. Adjusting one parameter at a time manually can lead
to less-than-ideal outcomes and evaluating every possible
option in the design space can be prohibitively time-
consuming.

Design optimization tackles these issues by using numerical
optimization methods to automatically find the best solutions
within given constraints. This approach navigates the design
space more efficiently than exhaustive searches. The iterative
process of design refinement is automated, reducing the time
required and the potential for human error. Engineers also
apply statistical techniques to explore parameter sensitivities
and gain insights into the design space before and after
optimization, ensuring the robustness of the optimal
solutions.

An aircraft sub-system, such as the engine, must meet
multiple design objectives and a wide array of independent
variables. It becomes challenging to execute trade studies and
optimize the design in such a way that all the design
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requirements are satisfied in quick time. Traditional methods
of design space exploration can be labor-intensive and
inefficient.

This paper introduces an innovative approach that combines
physics- based modeling with advanced Al techniques to
efficiently map the system design space. Using a turboshaft
engine as a case study, we generate synthetic data through a
physics-based model, which then informs the development of
a Machine Learning or Deep Learning-based surrogate
model. This Al surrogate model facilitates accurate multi-
objective optimization, uncovering a wide range of feasible
design solutions. Our methodology not only enhances
performance metrics but also provides deep insights into the
trade-offs and synergies between different design objectives.
The results demonstrate the potential of this hybrid approach
to revolutionize engineering design by offering a robust
framework for optimizing complex systems.

2. WORKFLOW

In this research paper, a generic workflow is discussed to
systematically approach data generation with experiment
design, evaluation of multiple AI models with validation,
conducting multi-objective optimization, and mapping the
full family of feasible design solutions through a design space
map, as shown in Figure 1.
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Figure 1. Generic workflow depicting systematic approach
to data generation, data driven modeling, optimization, and

design space mapping.

The workflow and analysis described in this paper are
implemented using MATLAB®. We will highlight the salient
aspects of each step of the workflow in the subsequent
sections.

2.1. Design of Experiments
The first step to uncovering the best possible engineering

product/asset design is to take a systematic approach to data
generation, starting with running simulations and

experiment design. A physics-based model is created to
generate the data.

2.1.1. Physics-based Model for Synthetic Data

A first principles-based turboprop engine model is
developed using Simulink® and Simscape™, as shown in
Figure 2.
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Figure 2. First principles-based turboprop engine model
highlighting independent design variables.

This model serves as a representative system for our analysis,
rather than an exact replica of an actual engine. The system
comprises two aerodynamically coupled spools, the core
rotor, the power turbine module, and a propeller shaft
connected to the power turbine shaft via a bevel gear. The
model incorporates nine independent parameters, including
shaft inertias and the structural damping for each of the three
rotors, combustor volume, gear ratio, and vane opening. The
compressor and turbine maps are pre-defined, as shown in
Figure 3.
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Figure 3. Predefined Compressor and Turbine maps.

These parameters were selected to capture the essential
dynamics and interactions within the turboprop system. For
this workflow demonstration, we simulated the engine under
a throttle ramp and hold condition over a duration of 1200
seconds, as shown in Figure 4. The throttle position is ramped
to 600 seconds and held at a constant value for another 600
seconds. During this period, all system objectives were
calibrated for steady-state operation when the throttle was in
the hold condition.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Commanded Rotor Speed (RPM)

AN

Ramp & Hold

Figure 4. Core rotor speed being plotted with respect to
time. Core rotor speed reacts to the ramp and hold throttle
position profile.

The outputs monitored during the simulation include core
thrust, power turbine thrust, and shaft mechanical power.
These outputs provide critical insights into the system's
performance and serve as the basis for developing our Al-
based surrogate model.

By employing this synthetic dataset, we ensure that our
methodology is robust and generalizable, capable of adapting
to various complex engineering systems. The generated data
encapsulates the intricate system parameter interplay, thereby
laying a solid foundation for subsequent optimization and
analysis.

2.1.2. Sampling

To systematically explore synthetic data generation, we
employed a Design of Experiments (DOE) approach for
executing the simulations. One common method in DOE is
full factorial sampling, where all possible combinations of the
independent parameters are tested. While comprehensive,
full factorial sampling is often impractical for complex
systems with numerous parameters due to its exponential
growth in the number of required simulations, as shown in
Table 1. In this case study we have nine independent system
parameters. Even if we define three levels for each parameter,
the full factorial design sampling will generate 20,000
sampling points, which can lead to excessive computational
costs and time inefficiencies.

Table 1. Number of sampling points for a full-factorial
design with nine independent parameters and multiple levels
on each parameter.
# of
Simulations
0 1B
387M
40M
M
20K

Levels

W N |Q|\O|—=

Given the computational constraints, we opted for Latin
Hypercube Sampling (LHS), a more efficient and scalable
technique. LHS ensures that the entire range of each
parameter is sampled, offering a more representative
distribution of the design space with fewer sampling points
compared to full factorial sampling. For our analysis, we
selected 2,000 sampling points using LHS, as referenced in
Figure 5. This choice strikes a balance between
computational feasibility and the need for thorough
exploration of the design space.
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Figure 5. Latin Hypercube Sampling space for nine
independent parameters but limited to 2,000 simulations.

Using LHS, we can efficiently generate a diverse simulation
set that captures the variability and interactions among the
nine independent parameters. This approach enhances the
robustness of our synthetic dataset, thereby improving the
accuracy and reliability of the subsequent Al-based surrogate
model.

2.1.3. Parallel Simulation and Synthetic Dataset

To expedite the simulation process, multiple simulations
were executed in parallel, leveraging parallel computing. We
significantly reduced the time required to generate the
synthetic dataset by utilizing multiple processing cores
simultaneously. This parallel execution not only enhances
efficiency but also ensures the extensive set of 2,000
sampling points is processed in a timely manner. As a result,
we got a 2,000 time-series data table consisting of nine
predictors and three responses.

2.2. AI Modeling

In the previous step, a dataset was created concerning each of
the nine independent tunable parameters. Now that the
dataset is ready, the next step is to train an AI model.

2.2.1. Feature Ranking

In this section, we conducted an analysis to determine the
relative importance of various design parameters on system
performance. Utilizing the F-Test, a statistical method that
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assesses each feature’s significance in explaining the
response variable variance, we identified three parameters as
particularly influential: PT Nozzle Opening, Gear Ratio, and
PT Damping. These parameters stood out among the nine
considered, demonstrating a higher impact on the Power
Turbine Thrust, as shown in Figure 6.
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Figure 6. Feature importance scores for Power Turbine
Thrust response using F-Test.

The identification of these key parameters is crucial for
several reasons. First, it allows for a more focused design
space exploration, prioritizing variables that most
significantly affect outcomes. Second, we can efficiently
solve both the optimization problem and the design space
mapping by concentrating on influential parameters. Lastly,
understanding the importance of features aids in simplifying
the model, potentially reducing complexity without
sacrificing predictive accuracy. This insight into feature
significance not only informs the design and optimization
strategies but also provides a foundation for further
investigations into system dynamics.

2.2.2. AutoML

Accurately modeling system responses is crucial in
optimizing complex engineering designs. This case study
focused on three design objectives: shaft mechanical power,
core thrust, and power turbine thrust. We employed
automated machine learning (AutoML) to train over 20
regression models for each objective using a synthetic
dataset. These models included variants of linear regression,
support vector machines, decision trees, ensemble methods,
gaussian process regression, and neural networks. A 20%
holdout validation set was used to ensure unbiased
performance evaluation of the AI model on the unseen data.
Models were assessed with adjusted R?, accounting for the
predictor count and offering a precise performance measure.
Apart from adjusted R? values, we also considered RMSE
(Root Mean Squared Error) and MAE (Mean Absolute Error)
metrics to measure goodness of fit. Figure 7 represents the

observed root mean squared error (RMSE) values on the test
data for multiple trained machine learning models.
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Figure 7. Root Mean Squared Error comparison over test
dataset for multiple machine learning models.

2.2.3. Hyperparameter Tuning

As observed in the previous results, the Artificial Neural
Networks (ANN) model outperforms others for the core
thrust predictions. The trained ANN has three hidden layers
with 10 neurons each. This architecture uses ReLU activation
level. We set up the hyperparameter tuning experiment with
Bayesian Optimization for the ANN architecture while
varying the number of fully connected layers, activation
function, and regularization strength. The minimum MSE
value observed on the validation data is reported with each
iteration, as shown in Figure 8.
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Figure 8. Minimum Mean-Squared-Error plot regarding
Iterations during Hyperparameter Tuning of the ANN
model.
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The MSE value dropped from 52.58 to 45.97 for the
optimized network, and the RMSE value improved from 7.25
to 6.78 on the test data as reported in Table 2, whereas the
MAPE is similar to the unoptimized network. The optimized
network has two fully connected layers with 20 neurons in
the first layer and one neuron in the second layer, with ReLU
activation and regularization strength set as 6.5¢e-5.

Table 2 Results Summary table for multiple machine
learning models trained on core thrust response.

Model Training Test

Type RMSE | MSE R? MAPE | MSE RMSE | R? MAPE
ANN 19.07 | 3636 10934 4 53000 14597 [ 678 | 29! | 1.01%
optimized 0 3 0

ANN 15.10 ?7'9 2'958 3.52% | 52.58 | 7.25 3'989 1.83%
Trilayered

ANN 16.68 378‘3 (7)‘949 426% | 96.13 | 9.80 (1)‘981 2.55%
Bilayered

ANN wige | 10.44 %09'0 2'980 2.99% 505'7 10.28 2'979 2.81%
GPR

Rotionale 14.70 ;15‘9 (9)‘%0 437% ;86'9 13.67 (3)‘%3 3.87%
Quadratic

GPR g | 21730960 |, oo (1889 | 100 0963 | 5o,
Matern 5/2 1 7 1 0

GPR 16.06 (2)57'8 2‘953 477% §°7'1 14.39 2‘959 41%
Exponential

GPR 1 15.50 340‘3 2‘956 4.75% 308'9 14.46 8‘959 4.22%
Exponential

SVM

Medium 18.60 345‘9 2‘937 5.81% 382'1 16.80 (7)‘944 5.12%
Gaussian

SVM cue | 18.72 350‘6 2‘936 5.75% ;41'3 18.48 (1)‘933 5.75%
Kernel

Least Squaes | 2191 280'1 2'913 6.97% 355'0 18.84 2'930 5.91%
Regression

Ensembl

€ Bageed | 2209 ‘2‘88‘1 (7)‘9“ 6.61% §83'6 19.59 (8)‘924 5.74%
Trees

ANN excelled over other family of models, achieving
adjusted R? values of 0.98 and above on both training and test
datasets for all three design objectives, as shown in Figure 9
below.
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Figure 9. Predicted response (y-axes) vs. Ground Truth (x-
axes) for all three design objectives.

While the machine learning models demonstrate high
accuracy when comparing predicted values to ground truth,
Figure 9, shows that 2,000 observations in a 9-dimensional
space may only capture a coarse representation of the
response surfaces, especially if any system responses exhibit
non-linearity. In scenarios where the number of simulations
for synthetic data generation is limited, it is crucial to validate
the model’s accuracy by examining cross-sections of the
multidimensional space. This involves visually overlaying
the predicted response surfaces onto the ground truth, as
shown in Figure 10.
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Figure 10. 3-D Response surfaces highlighting the great fit

between simulated and predicted responses. Only one point
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In this visual representation, a black dot indicates an
individual observation used for training the machine learning
models. The magenta-colored surface represents the ML-
predicted response surface, while the blue surface depicts the
re-generated or re-simulated ground truth. This 3D cross-
sectional view of the 9D parametric space illustrates the
impressive accuracy of the regression model, despite being
trained with limited data. The overlay demonstrates how
effectively the model captures the underlying response
dynamics, validating its robustness in approximating
complex systems. To facilitate this validation, we conducted
additional simulations of the plant model to generate accurate
3D representations of response surfaces for specific cross-
sections of the 9D design space. These simulations were
supplementary to the original 2,000 observations and were
not used for re-training the models. However, there is no
restriction on using this data for future model refinement.

Given their distinct dynamics, the study also addressed the
need for different models for transient versus steady-state
operations. We evaluated the trade-offs between training
separate models for each response and using a single deep-
learning model for multiple responses. We selected separate
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models for each system response to achieve better accuracy.
This approach highlights the importance of tailored model
selection and validation in capturing engineering system
complexity.

2.3. Parameter Optimization

The parameter optimization step can be interchangeably used
with design space exploration, as highlighted earlier in the
workflow. This is a crucial step in refining complex
engineering designs. This research employed a multi-
objective solver, specifically a Pareto-search algorithm, to
identify optimal values for nine design variables that satisfy
all three system objectives. Multi-objective optimization
inherently involves trade-offs between different objectives,
and the solver often provides multiple solutions. In our case,
the optimization routine utilizing AI models for predicting
system responses yielded 70 potential solutions, as depicted
in the scatter plot in Figure 11. Traditionally, engineers might
employ surrogate optimization by directly integrating
physics-based simulation models to capture system
responses. However, this approach can incur significant
computational costs, especially when the system involves
many degrees of freedom.
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Figure 11. Optimization solver outcomes mapped against a
3-D objectives plot. The objectives are constrained such that
the optimization solver looks for solutions in the highlighted

cuboid.

The scatter plot reveals a range of solutions, with a cuboidal
region representing the area of interest for all three design
objectives. This region highlights the lower bounds of the
objectives, with uncapped upper bounds. These solutions can
be further filtered based on a bias towards specific system
responses and can be transformed into a parametric
configuration file for reintegration into the design cycle.

While machine learning regression models in this approach
exhibit a 1-2% error, they offer significant efficiency

advantages, particularly when identifying operational
regimes rather than exact solutions. This optimization
approach using machine learning models on synthetic
datasets is highly efficient regarding computational time.
However, challenges arise in cross-disciplinary settings,
where one engineering team’s design decisions impact
another. In such scenarios, a full family of potential design
solutions may help over optimization results. An
interchangeable workflow between optimization and design
space mapping is recommended, in such cases.

2.4. Design Space Mapping

Human beings can typically visualize in up to three
dimensions, which is why design space mapping is valuable,
especially when coupled with sensitivity analysis. This
method involves identifying the top features in the dataset
that most significantly influence system responses. For
example, we focus on the two most sensitive parameters
while fixing all other design parameters to create a 2D cross-
section of the design volume. Although one can extend this
visualization to 3D by including the top three features, we
describe the 2D design space for simplicity.

Using regression models, we predict the three system
responses and overlay them as contour lines on the 2D plot.
In Figure 12, red contour lines represent shaft mechanical
power, blue lines represent power turbine thrust, and black
lines represent core thrust. The intersection of these contour
lines reveals the full family of feasible design solutions or the
design space. Within this space, designers and engineers can
make conservative choices by selecting design points slightly
inside the decision boundaries, fully aware of the marginal
inaccuracy of the regression models.
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Figure 12. 2-D cross-section of a 9-D parametric space
revealing the feasible design space for the chosen features of
interest.

Objectives contours are overlayed to unveil the full family of
feasible design solutions (design space), which is shown as
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dotted regions in green. As we vary any of the lower-ranked
features, this 2D design space representation will adjust
accordingly, either shrinking or expanding, as demonstrated
in Figure 13 where the power turbine nozzle is opened up to
52% as compared to 42% in the previous result.
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Figure 13. Design Space changes dynamically in the 2D
cross-sectional view of the high dimensional parametric
space as we change the other important features.

Importantly, this process does not require any additional
computational resources once the machine learning models
are trained, making it an efficient tool for exploring design
possibilities.

3. CONCLUSION

This analysis marks a significant advancement in optimizing
multi-objective systems by integrating data-driven insights
and advanced optimization techniques. We began our
research by strategically conducting trade studies on physics-
based models, meticulously preparing data that captures the
system’s complexities. This groundwork enabled us to
perform feature ranking, identifying key parameters that
drive system responses, and enhancing the explainability of
our Al models.

The development of a machine learning-based Al surrogate
was pivotal, allowing designers to achieve top-notch
accuracy in results without the need for further physical
simulations. The use of AutoML was crucial in selecting and
fine-tuning the most effective models, ensuring our surrogate
model was both robust and precise.

Our Al-based approach to optimization, combining machine
learning, demonstrated significant efficiency gains over
traditional physics-based optimization methods. This not
only accelerated the process multi-folds but also made it more
adaptable, removing the time-consuming barriers of repeated
optimization cycles.

Design space mapping provided a transformative way to
visualize the high-dimensional parametric space, focusing on
the most sensitive regimes within the design volume. This
technique offered clarity in interpreting optimization results
and revealed the full spectrum of feasible design solutions.

In essence, this version of our methodology sets a new
benchmark for efficient, insightful design processes in
complex engineering systems. By seamlessly integrating
strategic data preparation, feature ranking, Al surrogates,
multi-objective optimization, and advanced visualization
techniques, we provide a comprehensive framework that
enhances both the efficiency and depth of engineering design
and decision-making.

4. FUTURE SCOPE

The current research focuses on steady-state design
objectives. In the future, this work can be expanded to
address transient-state design. To ensure predictive accuracy
in transient-state applications, the physics-based model
would require calibration with a trained AI model.
Additionally, residual analysis can be included to get deeper
understanding of prediction errors across the data range.

This research could also be extended to analyze the prediction
speed and the memory footprint of the Al model on various
deployment platforms, such as embedded hardware (virtual
sensors) or cloud environments. Selecting a suitable Al
model is critical to achieving optimal performance.

Compare Results

Figure 14. Performance vs. Pfediction latency of various Al
models.

For example, the Decision Tree models are faster, whereas
the Neural Network models offer moderate speed with lower
RMSE. Model comparison for prediction speed vs. accuracy
is shown in Figure 14. Designers can use this information to
perform trade-off analyses and choose the appropriate model
based on specific deployment needs.
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DEFINITIONS/ABBREVIATIONS

DOE Design of Experiments

ANN Artificial Neural Networks
WNN Wide Neural Network

RMSE Root Mean Squared Error

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
AutoML Automated Machine Learning
LHS Latin Hypercube Sampling
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