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ABSTRACT

The Prognostics and Health Management (PHM) field faces
significant challenges due to fragmented benchmarks, incon-
sistent evaluation protocols, and limited accessibility to com-
prehensive frameworks, particularly in the era of large-scale
data and foundation models. To address these critical lim-
itations, we introduce PHM-Vibench, a unified, extensible,
and modular benchmarking platform for vibration-based PHM
research. PHM-Vibench features a novel architecture that
decouples the PHM pipeline into distinct data, model, task,
and trainer factories, enabling flexible instantiation and cus-
tomization of specific PHM workflows. The platform inte-
grates comprehensive 20+ datasets with standardized pro-
tocols. It supports diverse PHM tasks including fault diag-
nosis, remaining useful life prediction, and anomaly detec-
tion. The framework addresses complex scenarios such as do-
main generalization, cross-system transfer, few-shot learning.
Grounded in the Unified PHM Problem (UPHMP) framework
with seven fundamental spaces: domain knowledge space
(P), data space (D), task space (T), model space (M), loss
function space (L), protocol space (Π), and evaluation met-
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ric space (E), PHM-Vibench enables systematic problem for-
malization and reproducible experimentation. The platform
accommodates both traditional machine learning models and
foundation models, with extensive experimental validation
demonstrating superior cross-domain performance. PHM-
Vibench addresses the standardization challenges in PHM
research and provides a comprehensive solution for bench-
marking and advancing the field. The platform is openly
available at https://github.com/PHMbench/PHM-Vibench.

1. INTRODUCTION

Prognostics and Health Management (PHM) is a critical engi-
neering discipline focused on predicting the failure of systems
or components, thereby enhancing the reliability, safety, and
efficiency of industrial operations (Zio, 2022). The field has
experienced rapid evolution from traditional model-based ap-
proaches to sophisticated data-driven methodologies, with
machine learning and deep learning models being applied to
core tasks such as fault diagnosis (FD), remaining useful life
(RUL) prediction, and anomaly detection (AD) (Lei et al.,
2018; Y. Wu, Sicard, & Gadsden, 2024). Advanced research
now explores complex scenarios including domain general-
ization, meta-learning, and few-shot learning to address the
fundamental challenge of model robustness across diverse op-
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erational conditions and system configurations (C. Zhao, Zio,
& Shen, 2024a; Feng et al., 2022).

However, PHM research currently lacks the systematic theoret-
ical foundations that have enabled rapid progress in computer
vision and natural language processing. Unlike these estab-
lished fields, PHM suffers from inconsistent problem formu-
lations, ad hoc evaluation protocols, and fragmented datasets
with incompatible formats. This theoretical gap becomes par-
ticularly problematic as the field embraces deep learning mod-
els and foundation model paradigms, which require rigorous
frameworks for systematic evaluation and comparison.

Existing benchmarks, while valuable for specific applications
such as deep learning-based fault diagnosis (Z. Zhao et al.,
2020, 2021), represent isolated solutions rather than unified
theoretical frameworks. The PHM community faces practical
challenges: bespoke data processing pipelines that prevent
cross-study validation, inconsistent evaluation metrics that
preclude meaningful performance comparisons, and domain-
specific solutions that cannot be systematically generalized.
The emergence of foundation models in PHM amplifies these
challenges, demanding theoretically grounded frameworks for
systematic research advancement.

To address these gaps, we introduce the Unified PHM Problem
(UPHMP) framework along with its practical implementation
through PHM-Vibench. The UPHMP framework establishes
theoretical foundations through seven fundamental spaces that
enable systematic problem representation and formal optimi-
zation protocols. PHM-Vibench provides a unified benchmark-
ing platform that bridges theoretical rigor with reproducible
experimental validation. Our key contributions include:

• Unified Theoretical Framework: We develop the
UPHMP framework with seven fundamental spaces
(P,D,T,M,L,Π,E) that provides the theoretical foun-
dation for PHM research standardization and cross-study
comparisons.

• Practical Benchmarking Platform: PHM-Vibench im-
plements this framework through a modular architecture
that decouples PHM pipelines into data, model, task,
and trainer components, enabling reproducible evalua-
tion across diverse scenarios.

• Comprehensive Validation: We integrate public PHM
datasets with standardized preprocessing and evaluation
protocols, providing examples with domain generaliza-
tion, cross-system transfer, few-shot learning and founda-
tion model integration.

This paper is structured as follows: Section 2 reviews exist-
ing PHM benchmarks and related work. Section 3 details
the design and implementation of the PHM-Vibench platform.
Section 4 presents preliminary experimental results and dis-
cussions, including demonstrations of domain generalization
and cross-dataset evaluation. Finally, Section 5 concludes the

paper and outlines future research directions, including the
development of foundation models for PHM.

2. RELATED WORK

Standardized benchmarks are foundational to progress in data-
driven research, and PHM is no exception. Several open
initiatives already support PHM experimentation. pyPHM
provides Python utilities for accessing and preparing a small
set of canonical datasets (e.g., IMS bearings, U.C. Berkeley
milling, Airbus helicopter accelerometer), which facilitates
reproducible workflows but remains limited in scope (von
Hahn & Mechefske, 2023). ProgPy (NASA) offers a mature
prognostics library with model- and algorithm-level abstrac-
tions and includes dataset loaders for C-MAPSS turbofan and
NASA battery data, providing a practical foundation for RUL-
centric studies (Teubert, Jarvis, Corbetta, Kulkarni, & Daigle,
2023; Saxena & Goebel, 2008). More recently, PHMD curates
a substantially larger catalog (≈ 59 datasets at publication)
with unified search/load interfaces (Solı́s-Martı́n, Galán-Páez,
& Borrego-Dı́az, 2025).

More specialized benchmarks also exist. For example, Zhao
et al. have developed influential benchmarks for bearing fault
diagnosis, initially focusing on deep learning and transfer
learning applications (Z. Zhao et al., 2020, 2021), and more
recently extending their work to address the specific challenges
of domain generalization (C. Zhao, Zio, & Shen, 2024b).

The functionality of existing tools and platforms is summa-
rized in Table 1. In summary, the features are as follows:

• pyPHM focuses on accessing and preprocessing com-
mon PHM datasets, with a class hierarchy for datasets
and simple preprocessing (e.g., windowing) that supports
standardized workflows.

• ProgPy provides physics-based and data-driven prognos-
tic models, state estimation, prognostics, evaluation, visu-
alization, and selected dataset downloaders.

• PHMD supports 59 datasets with unified search/load in-
terfaces, standardized formats, metadata, and task-specific
experimental settings; includes cross-validation and seeds
for reproducibility.

• Zhao’20 releases an open-source benchmark comparing
deep learning models across seven datasets with unified
code and evaluation settings.

• Zhao’21 (UDTL) provides a taxonomy, comparative
study, and a released test framework for unsupervised
deep transfer learning in intelligent fault diagnosis.

• Zhao’24 (DGFD) conducts a domain generalization
benchmark on eight open-source and two self-collected
datasets and releases code; the paper frames domain gener-
alization for fault diagnosis applications and protocols.

PHM-Vibench extends existing approaches by providing com-
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prehensive support for advanced scenarios including domain
generalization, cross-system transfer, few-shot learning, and
foundation model integration within a unified theoretical
framework.

Notwithstanding these contributions, current tools typically
face critical constraints:

• Limited scope and narrow dataset coverage or specializa-
tion by equipment type;

• Weak or ad hoc support for users to provide private and
consortial datasets, which are common in industrial col-
laborations;

• Inadequate extensibility for new models, tasks, or
datasets.

PHM-Vibench addresses these gaps through three key inno-
vations:

• Comprehensive Dataset Integration: Broadens access
by integrating extensive public PHM datasets (building
on catalogs such as PHMD and the PHM Society) while
providing metadata standards in HuggingFace or Mod-
elScope that are automatically downloaded during code
execution.

• Modular Architecture Design: Features a modular archi-
tecture that enables seamless integration of new algo-
rithms (including state-of-the-art time-series models), pre-
processing pipelines, and tasks.

• Standardized Evaluation Framework: Emphasizes
comprehensive, standardized evaluation, combining gen-
eral machine learning metrics with PHM-specific mea-
sures to ensure rigorous assessment across diverse scenar-
ios.

3. PHM-VIBENCH DESIGN AND IMPLEMENTATION

3.1. Overview

PHM-Vibench targets three primary goals: standardization,
extensibility, and reproducibility for vibration-based PHM re-
search. The platform provides a seamless workflow from data
to evaluation through five core components. These include
dataset management for both public and private data with stan-
dardized formats, data preprocessing with common techniques
and custom extensions, and baseline model implementations
with integration frameworks. Additionally, the platform sup-
ports task definitions for fault diagnosis, anomaly detection,
and RUL prediction, along with evaluation engines featuring
standardized metrics and protocols.

The platform follows a three-step workflow. First, researchers
specify experimental configurations by selecting elements
from the seven UPHMP spaces, creating a complete problem
formalization. Second, PHM-Vibench instantiates appropri-
ate factory components based on this specification, handling

data preprocessing, model initialization, and evaluation pro-
tocols automatically. Finally, results are generated following
standardized evaluation protocols with performance metrics,
confidence intervals, and cross-domain analysis.

This approach transforms the UPHMP theoretical framework
into practical research capabilities while maintaining experi-
mental reproducibility.

3.2. Unified PHM Problem (UPHMP) Framework

We introduce the UPHMP framework based on seven funda-
mental spaces that represent any PHM problem. Each space
contains all possible choices for that component. For instance,
the data space D contains every possible PHM dataset, while
the model space M contains every possible algorithm. A spe-
cific PHM experiment selects one element from each space,
creating a complete experimental specification.

The UPHMP framework is theoretically represented as:

Ω = (P,D,T,M,L,Π,E) (1)

where each space contains all possible instances of its respec-
tive component:

• P denotes the domain knowledge space, which represents
physical constraints, engineering expertise, and regular-
ization terms

• D denotes the data space, which represents PHM datasets
with sensor measurements, labels, and metadata

• T denotes the task space, which represents fault diagnosis,
RUL prediction, anomaly detection, and forecasting tasks

• M denotes the model space, which represents traditional
ML models and foundation models with embedding-
backbone-head architecture

• L denotes the loss function space, which represents opti-
mization objectives from standard ML to PHM-specific
losses

• Π denotes the protocol space, which represents evaluation
protocols ensuring reproducibility and preventing data
leakage

• E denotes the evaluation metric space, which represents
performance measures from general ML metrics to PHM-
specific assessments

Any specific PHM problem is formalized as a meta-setting
ω = (P,D,T,M,L,π,E), defined as a complete specification
that selects exactly one element from each of the seven
UPHMP spaces. A meta-setting provides a unique experimen-
tal configuration that fully determines the problem domain
knowledge, dataset, task formulation, model architecture, loss
function, evaluation protocol, and performance metrics. For
example, a bearing fault diagnosis experiment might be repre-
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Table 1. Related Work comparisons

Dimension pyPHM ProgPy PHMD DLFD UDTL DGFD PHM-Vibench
Dataset scale Few Few 59 datasets Medium Medium ≈ 10 datasets Target > 20
Input/Output abstraction & task readiness ✓ ∼ ✓✓ ✓ ✓ ✓ ✓✓
Model/algorithm layer × ✓✓ × ✓ ✓ ✓ ✓✓
Task coverage (AD, FD, and RUL) ∼, ✓, ∼ ✓, ×, ✓ ∼, ✓, ✓ ✓, ✓, × ✓, ✓, × ✓, ✓, × ✓, ✓✓, ✓✓
Evaluation (general metrics) ✓ ✓ ✓ ✓ ✓ ✓ ✓✓
Advanced scenarios × ∼ × × ✓ ✓✓ ✓✓
Reproducibility (splits, seeds, scripts) ∼ ∼ ✓✓ ✓ ✓ ✓ ✓✓

Legend: ✓✓ = Strong and Native support, ✓ = Supported, ∼ = Partial and Limited support, × = Not provided

Figure 1. PHM-Vibench Architecture Overview: The unified factory-style benchmarking framework demonstrating the systematic
integration of data, model, task, and trainer factories with comprehensive dataset support and standardized evaluation protocols.

sented as:

ω = (Pphys,DCWRU ,Tcls,MCNN ,LCE ,πsplit ,EF1) (2)

using physics-based constraints, the CWRU bearing dataset,
classification task, CNN model, cross-entropy loss, 80-20
train-test split, and F1-score evaluation. This formalization
enables comparison across different datasets, models, and
evaluation protocols while ensuring reproducible experiments
through protocol isolation guarantees.

The framework supports both traditional machine learning
and foundation models. The model space M encompasses
transformer architectures and pre-trained models, while the
protocol space Π accommodates specialized evaluation sce-
narios. The task space T enables assessment across zero-shot,
few-shot, and full fine-tuning configurations.

The framework addresses complex PHM scenarios through
specific meta-setting configurations. For example, domain

Generalization uses leave-one-domain-out protocols:

ωDG = (Pdomain,Dmulti,Tcls,M,L,πLODO,E) (3)

where ωDG represents the domain generalization meta-setting,
Pdomain denotes domain-specific prior knowledge, Dmulti rep-
resents multi-domain datasets, Tcls indicates classification task
specification, M denotes the model space, L represents the loss
space, πLODO specifies the leave-one-domain-out protocol,
and E represents the evaluation space, with domain isolation
constraint dtrain ∩dtest = /0. Cross-System Transfer employs
leave-one-system-out evaluation:

ωCSG = (Pphysics,Dsystems,T,M,L,πLOSO,E) (4)

where ωCSG represents the cross-system generalization meta-
setting, Pphysics denotes physics-based prior knowledge,
Dsystems represents multi-system datasets, T indicates task
specification, M denotes the model space, L represents the
loss space, πLOSO specifies the leave-one-system-out protocol,

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

and E represents the evaluation space, with system isolation
constraint σtrain ∩σtest = /0. Few-Shot Learning uses episodic
training with class isolation:

ωFSL = (Depisodes,T,Mmeta,L,P,πN-way-K-shot,E) (5)

where ωFSL represents the few-shot learning meta-setting,
Depisodes denotes episodic datasets for meta-learning, T indi-
cates task specification, Mmeta represents meta-learning model
architectures, L denotes the loss space, P represents prior
knowledge, πN-way-K-shot specifies the N-way K-shot learning
protocol, and E represents the evaluation space.

Foundation Model Integration leverages pre-trained models
with adaptation strategies. This formalization enables PHM-
Vibench to provide unified evaluation while maintaining ex-
perimental rigor. And all of the meta-settings ω can be instan-
tiated through the factory components.

3.3. PHM-Vibench Implementation: Factory-Style Frame-
work Instantiation

PHM-Vibench is a theoretically grounded PHM benchmark
platform that demonstrates the practical instantiation of the
UPHMP framework. The platform uses a single configuration
file specifying elements from all seven UPHMP spaces. The
platform instantiates core factory components: Data Factory
(FD), Task Factory (FT ), Model Factory (FM), and Trainer
Factory (Fπ ). This architecture enables complete meta-setting
instantiation F(ω) for end-to-end PHM experiments.

3.3.1. Data Factory

The data space encompasses datasets containing input features,
labels, and associated metadata. Formally, this is represented
as:

D= {D|D = (X ,Y,Ξ),X ∈ X ,Y ∈ Y ,Ξ ∈ M } (6)

where X represents input features, Y denotes labels, and Ξ

contains metadata. This structure preserves domain, system,
and temporal organization essential for PHM applications.

The Data Factory centralizes dataset registration, reading,
preprocessing, and splitting to produce reproducible data
pipelines with UPHMP compliance. Splits satisfy rigorous
protocol isolation (no leakage) as required by π ∈ Π:

Itrain ∩ Ival = Ival ∩ Itest = Itrain ∩ Itest =∅ (7)

where Itrain, Ival, and Itest represent the index sets for training,
validation, and testing data respectively, and ∅ denotes the
empty set, ensuring complete data isolation across all splits.

Additional optional constraints include d(Itrain ∪ Ival) ∩
d(Itest) = ∅ (cross-domain), σ(Itrain ∪ Ival) ∩ σ(Itest) = ∅
(cross-system), and temporal hold-out Itrain ⊂ {τ < τ0}, Itest ⊂

{τ ≥ τ0}, where sliding windows must not cross τ0.
The DataFactory provides the following key capabilities:

• Register and read public and private datasets; standardize
storage (.npy and HDF5; shape (B,L,C)).

• Preprocess (normalization, resampling, windowing) and
inject metadata (domain and site, system and source,
timestamp).

• Splitting and sampling: class, domain, and source strat-
ification; construct few-shot episodes (N-way, K-shot,
Q-query).

• Generate reproducible data streams (fixed seeds, batch
sizes, distributed sampling methods, consistent batch or-
ganization).

3.3.2. Model Factory

The model space encompasses all possible architectures and
their parametric representations. This space is defined as:

M= {Mθ |θ ∈ Θ,Mθ : X → Y } (8)

where Mθ represents a model with parameters θ from parame-
ter space Θ, mapping input space X to output space Y . This
formulation maintains unified architecture abstractions while
preserving parameter space topology.

The Model Factory instantiates models under the Embed-
ding–Backbone–Head decomposition

fθ = fh ◦ fb ◦ fe (9)

where fθ represents the complete model function, fh denotes
the head component for task-specific output processing, fb
represents the backbone component for feature extraction, fe
denotes the embedding component for input processing, and ◦
indicates function composition. The factory declares trainable
parameter subsets ∆Θ ⊆ Θ.

Advantages of Embedding-Backbone-Head Architecture:
The Embedding-Backbone-Head decomposition offers several
advantages for vibration signal processing in PHM applica-
tions:

• The embedding component fe enables hierarchical fea-
ture learning by processing raw vibration signals into
meaningful representations, capturing frequency-domain
characteristics and temporal patterns specific to rotating
machinery.

• The backbone fb supports multi-scale pattern recognition
by providing flexible feature extraction capabilities, en-
abling the learning of multi-scale representations essential
for diagnosing faults at different severity levels.

• The head component fh facilitates task-specific adapta-
tion, allowing seamless integration with diverse PHM
tasks (classification, regression, anomaly detection) with-
out modifying the core feature extraction layers.
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• The decomposition allows for parameter-efficient fine-
tuning by enabling selective parameter updates through
∆Θ ⊆ Θ, which facilitates transfer learning across dif-
ferent equipment types and operating conditions while
preserving learned knowledge.

This architecture aligns with the nature of vibration signals,
which exhibit multi-frequency characteristics and require both
local feature extraction and global pattern recognition for ef-
fective fault diagnosis and prognosis.
The ModelFactory provides the following essential capabili-
ties:

• Modular implementations (CNN, Transformer, and ad-
vanced models), with unified forward shapes and numeri-
cal stability.

• Pretraining and model initialization; support parameter
adaptation strategies (e.g., head fine-tuning, adapters,
LoRA, full fine-tuning).

• Device and precision policies (supporting GPU acceler-
ation and mixed precision), and reporting of parameter
counts and complexity.

3.3.3. Task Factory

The task space defines all possible PHM problem formulations
through input-output specifications and constraints. This is
formalized as:

T= {T |T = (XT ,YT ,constraintsT )} (10)

where XT and YT represent task-specific input and output
spaces, while constraintsT define task-specific requirements.
This ensures standardized input-output contracts and evalua-
tion protocol consistency.

The Task Factory binds task contracts, losses from L, and
metrics from E to ensure theoretically consistent evaluation.

The factory design provides unified access to Loss Space L
and Evaluation Space E elements through task specification,
ensuring consistency across task instantiation φT (T ), loss in-
stantiation φL(L), and evaluation instantiation φE(E). The
TaskFactory delivers the following specialized services:

• Task definitions: classification (fault diagnosis), anomaly
detection (score-based and binary), RUL and regression,
forecasting and reconstruction.

• Losses and metrics: Cross Entropy (CE), Mean Squared
Error (MSE), Mean Absolute Error (MAE), Pinball Loss,
etc.; F1 Score (macro/micro), Area Under Receiver Op-
erating Characteristic Curve (AUROC), Precision-Recall
Area Under Curve (PR-AUC), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Prognostics and
Health Management (PHM) scores.

• Evaluation protocol: calibrate thresholds and tempera-
tures on validation data; aggregate results by overall,
per-domain and per-system, and confidence intervals (CI).

• Few-shot learning: episodic evaluation with adapta-
tion methods (prototypical networks, linear probing,
lightweight fine-tuning).

3.3.4. Trainer Factory

The Trainer Factory implements the rigorous two-phase
UPHMP optimization protocol with reproducible execution.
Phase 1 Implementation (Training): Model optimization
with Domain Knowledge P ∈ P regularization from protocol
π ∈ Π:

θ
∗ = argmin

Θ

1
|Itrain| ∑

i∈Itrain

ℓT ( fΘ(xi),yi)︸ ︷︷ ︸
L∈L

(11)

+λR(Θ,P)︸ ︷︷ ︸
P∈P

(12)

through standard optimization procedures.

θbest = argmax
θ∗

eval(θ
∗,Dval)︸ ︷︷ ︸

E∈E

(13)

where θbest represents the optimal model parameters selected
based on validation performance, θ ∗ denotes the candidate
optimal parameters from training, eval is the validation eval-
uation function, Dval represents the validation dataset, and
E ∈ E indicates the evaluation space element used for model
selection.

Phase 2 Implementation (Testing): Evaluation on protocol-
isolated test set with zero mutual information guarantee
I(Dtrain;Dtest) = 0. The TrainerFactory orchestrates the fol-
lowing critical operations:

• Two-phase training orchestration with protocol isolation
enforcement.

• Model selection via validation, final testing via protocol-
defined metrics E ∈ E.

• Reproducible execution: fixed seeds, configuration ver-
sioning, systematic record-keeping.

3.3.5. Foundation Model Architecture and Integration

PHM-Vibench incorporates foundation models as a critical
component of the model space M, representing a paradigm
shift towards pre-trained, generalizable architectures for PHM
tasks. Foundation models in PHM-Vibench follow the
embedding-backbone-head decomposition fθ = fh ◦ fb ◦ fe,
enabling flexible adaptation across diverse PHM scenarios.

Model Architecture. Our implementation encompasses di-
verse foundation model architectures, including CNN-based
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models like TimesNet (H. Wu et al., 2022), the Neural Op-
erator models like Fourier Neural Operator (FNO) (Li et
al., 2021), Transformer-based models like PatchTST (Nie,
Nguyen, Sinthong, & Kalagnanam, 2023), and MLP-based
models like DLinear (Zeng, Chen, Zhang, & Xu, 2022). Each
architecture captures distinct aspects of temporal dependencies
in vibration signals, while unified interface integration pre-
serves the theoretical properties of the model space M across
various PHM applications.

Multi-Task Learning Integration. Simultaneous learning
across fault diagnosis, anomaly detection, and RUL prediction
tasks is facilitated through shared backbone representations
paired with task-specific heads. This architecture enables
effective knowledge transfer between PHM objectives while
preserving task isolation when necessary for experimental
rigor.

Domain Adaptation Capabilities. Flexible adaptation strate-
gies encompass full fine-tuning, parameter-efficient methods
such as LoRA and adapters, and few-shot learning protocols.
Such versatility allows models to accommodate new systems,
operating conditions, and fault types by building upon pre-
trained representations from related PHM domains.

3.4. Pipeline Implementation: UPHMP Meta-Setting Exe-
cution

The core pipeline of PHM-Vibench provides systematic meta-
setting execution φ(ω) for any valid UPHMP meta-setting
ω = (P,D,T,M,L,π,E) ∈ Ωvalid , where Ωvalid represents the
set of all theoretically consistent meta-settings. The platform
implements this execution through a modular architecture that
follows the theoretically motivated sequence:

The pipeline begins with configuration parsing, transform-
ing YAML specifications into valid meta-settings ω ∈ Ωvalid
through theoretical consistency checking across all seven
spaces. Theoretical validation then verifies meta-setting con-
sistency, including space-element relationships, protocol isola-
tion requirements, and property preservation.

Following validation, space instantiation proceeds systemati-
cally across all UPHMP components. Data space instantiation
executes φD(D) to create DataFactory instances with protocol-
aware splitting that respects isolation constraints π ∈ Π. Task
space instantiation executes φT (T ), integrating loss space
φL(L) and evaluation space φE(E) elements with type-safe
contracts. Model space instantiation executes φM(M) to create
parameter space Θ with embedding-backbone-head decompo-
sition preserving theoretical topology. Protocol instantiation
executes φπ(π) with domain knowledge integration φP(P) for
two-phase optimization.

Optimization execution implements the training phase

through:

θ
∗ = argmin

Θ
L(φM(M)θ ,φD(D)train,φT (T ))︸ ︷︷ ︸

Loss Space Implementation

(14)

+ λR(θ ,φP(P))︸ ︷︷ ︸
Domain Knowledge Integration

(15)

where θ ∗ represents the optimal model parameters, Θ denotes
the parameter space, L(·) is the task-specific loss function
from loss space implementation, λ is the regularization weight,
and R(θ ,φP(P)) represents domain knowledge regularization
terms, with standard optimization monitoring.

After training completion, protocol-isolated evaluation
ensures rigorous testing through verified isolation. Iso-
lation verification confirms zero mutual information
I(φD(D)train;φD(D)test) = 0 between training and testing
data before evaluation. Final evaluation executes testing phase
computation Pf inal = φE(E)(θbest,φD(D)test) with confidence
interval computation. Meta-setting results generation produces
theoretically grounded outcomes with reproducibility metrics,
property validation, and UPHMP compliance verification.

Throughout this process, the pipeline implementation pre-
serves all UPHMP theoretical properties through system-
atic enforcement. Optimization monitoring provides prac-
tical tracking of training progress and validation performance
throughout the learning process. Isolation guarantees ensure
zero mutual information between training and testing phases,
maintaining experimental rigor. Reproducibility assurance
through fixed seeds and configuration versioning enables de-
terministic meta-setting execution. Consistency guarantees
ensure all factory interactions preserve space-element relation-
ships from the theoretical framework.

Meta-Setting Catalog and Extensibility: PHM-Vibench im-
plements a comprehensive catalog of validated meta-settings
{ωDG,ωCSG,ωFSL,ωRUL,ωAD, . . .} ⊂Mvalid , where Mcatalog
represents the curated collection of validated meta-settings
including domain generalization (ωDG), cross-system gener-
alization (ωCSG), few-shot learning (ωFSL), remaining useful
life (ωRUL), and anomaly detection (ωAD), each with proven
theoretical-practical equivalence. The modular design of the
pipeline enables systematic extension to new PHM scenarios
while preserving UPHMP theoretical properties and imple-
mentation guarantees.

4. UPHMP FRAMEWORK VALIDATION THROUGH EX-
PERIMENTAL DEMONSTRATIONS

This section presents comprehensive experimental valida-
tion demonstrating how the UPHMP theoretical framework
translates to practical implementation through PHM-Vibench.
Each experiment validates specific theoretical properties:
meta-setting consistency, protocol isolation enforcement, and
implementation-theory equivalence. The demonstrations focus
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on three paradigmatic scenarios that showcase the framework’s
ability to unify diverse PHM challenges under a systematic
theoretical approach while maintaining practical applicability.

The experimental validation is structured into classification-
focused demonstrations (Examples 1-3) that showcase domain
generalization, cross-system transfer, and few-shot learning
capabilities, followed by foundation model integration analysis
covering multiple PHM task types including fault diagnosis,
anomaly detection, and remaining useful life prediction.

Experimental Design Principles: All experiments follow
UPHMP theoretical requirements:

1. Meta-Setting Instantiation: Each experiment imple-
ments a complete meta-setting ω = (P,D,T,M,L,π,E)
∈Mvalid through factory pattern mapping φ(ω)

2. Protocol Isolation Verification: Rigorous enforcement
of isolation constraints with validation of zero mutual
information

3. Performance Monitoring: Systematic tracking of train-
ing progress and validation metrics during optimization

4. Reproducibility Assurance: Fixed seeds and determinis-
tic execution enabling exact experimental replication

5. Theoretical Property Validation: Post-hoc verification
that implementation preserves all UPHMP theoretical
properties

4.1. Example 1: Domain Generalization

We evaluate domain generalization using leave-one-domain-
out validation across five vibration datasets (D1, D5, D6,
D13, D19 detailed in Table 2). The protocol ensures strict
domain isolation: d(Dtrain ∪Dval)∩ d(Dtest) = /0. We com-
pare four model architectures (DLinear (Zeng et al., 2022),
PatchTST (Nie et al., 2023), FNO (Li et al., 2021), Times-
Net (H. Wu et al., 2022)) using cross-entropy loss and F1-
score evaluation. The experimental setup employs only basic
loss functions without incorporating physical constraints or
domain-specific prior knowledge regularization terms.

Results in Table 3 show TimesNet achieves superior cross-
domain robustness (0.9073±0.015 on D19), demonstrating
the effectiveness of the framework for domain generalization
evaluation.

4.2. Example 2: Cross-System Transfer Learning

PHM-Vibench validated cross-system generalization using
meta-setting ωCSG with Leave-One-System-Out protocol. Test-
ing across bearing systems from different manufacturers
demonstrated the ability of the framework to systematically
evaluate model transfer capabilities while maintaining protocol
isolation σ(Dtrain)∩σ(Dtest) = /0. The evaluation employs
standard cross-entropy loss without incorporating physical
constraints or system-specific prior knowledge regularization

terms. Results in Table 4 demonstrated the superior cross-
system performance of TimesNet (0.9635±0.0018), validating
the systematic approach of the framework to transfer learning
evaluation.

4.3. Example 3: Few-Shot Learning Evaluation

PHM-Vibench validated few-shot learning using episodic
meta-setting ωFSL with N-way K-shot protocol ensuring class
isolation. The experimental setup relies solely on basic cross-
entropy loss functions without incorporating physical con-
straints or meta-learning-specific prior knowledge regulariza-
tion terms. Results in Table 5 show FNO demonstrated su-
perior few-shot adaptation (0.6996±0.0722), confirming the
systematic approach of the framework to meta-learning evalu-
ation.

4.4. Example 4: Foundation Model Evaluation

This example demonstrates foundation model evaluation
across three distinct PHM task types: fault diagnosis (classifi-
cation), anomaly detection (score-based binary classification),
and remaining useful life (RUL) prediction (regression). This
multi-task evaluation validates the capability of the UPHMP
framework to systematically assess foundation model perfor-
mance across diverse PHM applications within a unified theo-
retical structure.

We conducted comprehensive foundation model evaluation
using the UPHMP meta-setting ωFM across datasets detailed
in Table 2 (D1, D5, D6, D13, D19) plus additional dataset
D2 i.e XJTU dataset. The evaluation employs in-distribution
testing with partial train-test splits within each system to as-
sess multi-task performance across fault diagnosis, anomaly
detection, and RUL prediction tasks. The experimental ap-
proach utilizes only fundamental loss functions (cross-entropy
for classification, MSE for regression) without incorporating
physical constraints or foundation model-specific prior knowl-
edge regularization terms.

Table 6 presents comprehensive performance across classifica-
tion accuracy, anomaly detection, and RUL prediction tasks,
demonstrating the effectiveness of foundation models with
different architectures.

FNO demonstrates superior overall performance with the low-
est loss (1.2750±0.0148) and highest classification accuracy
(0.9627±0.0048), while DLinear achieves the best anomaly
detection accuracy (0.8944±0.0467). The results validate the
systematic approach of the UPHMP framework to foundation
model evaluation across diverse PHM tasks.

5. CONCLUSION AND FUTURE WORK

This paper introduces the Unified PHM Problem (UPHMP)
framework and its practical implementation through PHM-
Vibench. The UPHMP framework provides a systematic theo-
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Table 2. Dataset Specifications for example demonstrations

ID Dataset Name Classes Rate (Hz) Duration
D1 CWRU 4 12k/48k 40.3s
D5 Ottawa 3 200k 10s
D6 THU 4 20.48k 60s
D13 Ottawa19 5 42k 10s
D19 HUST 6 25.6k 10.2s

Table 3. Domain Generalization Performance Validation

D1 D5 D6 D13 D19
TimesNet 0.765±0.0086 0.0449±0.0248 0.3887±0.01315 0.9934±0.0025 0.9073±0.015
FNO 0.7338±0.027 0.0664±0.0276 0.5295±0.0127 0.9955±0.0017 0.7802±0.0264
PatchTST 0.7922±0.0202 0.0039±0 0.6732±0.0178 0.9954±0.0021 0.948±0.0096
DLinear 0.6926±0.0247 0.9901±0.0028 0.0723±0.0098 0.9901±0.0028 0.8448±0.0243

Table 4. Cross-System Generalization Performance Validation

CDDG task D1 D5 D6 D13 D19
TimesNet 0.7924 ± 0.0114 0.4023 ± 0.0884 0.5854 ± 0.0656 0.9980 ± 0.0016 0.9635 ± 0.0018
FNO 0.8509 ± 0.0202 0.0078 ± 0.0000 0.4697 ± 0.0435 0.9718 ± 0.0313 0.9177 ± 0.0310
PatchTST 0.8104 ± 0.0695 0.1112 ± 0.0028 0.2702 ± 0.0252 0.9752 ± 0.0129 0.8502 ± 0.0368
DLinear 0.7176 ± 0.0088 0.0508 ± 0.0663 0.3386 ± 0.0293 0.9735 ± 0.0105 0.8812 ± 0.0660

Table 5. Few-Shot Learning Performance Validation

GFS task D1 D5 D6 D13 D19
TimesNet 0.4282 ± 0.0769 0.2619 ± 0.1077 0.2636 ± 0.0132 0.3957 ± 0.0828 0.1282 ± 0.0558
FNO 0.4327 ± 0.0836 0.3780 ± 0.0449 0.3364 ± 0.0199 0.6996 ± 0.0722 0.2513 ± 0.0616
PatchTST 0.4260 ± 0.1148 0.3775 ± 0.1125 0.2611 ± 0.0412 0.5423 ± 0.0450 0.1966 ± 0.0076
DLinear 0.4666 ± 0.0000 0.2019 ± 0.0442 0.2427 ± 0.0141 0.3752 ± 0.0193 0.0994 ± 0.0025

Table 6. Foundation Model In-Distribution Test Performance

Backbone Loss Classification Acc Anomaly Test Acc RUL Mae
TimesNet 1.3060±0.0032 0.7776±0.0021 0.7506±0.0021 0.4830±0.0000
FNO 1.2750±0.0148 0.9627±0.0048 0.8276±0.1104 0.4829±0.0000
PatchTST 2.1664±0.0113 0.7781±0.0010 0.8307±0.0785 0.4834±0.0000
DLinear 1.4699±0.0079 0.9294±0.0188 0.8944±0.0467 0.4834±0.0000

retical approach to PHM research through seven fundamental
spaces (P,D,T,M,L,Π,E), enabling systematic meta-setting
definitions and two-phase optimization protocols that address
inconsistent evaluation and poor reproducibility in PHM re-
search.

PHM-Vibench demonstrates practical implementation through
factory pattern architecture with comprehensive dataset in-
tegration and UPHMP-compliant protocols. Experimental
validation across domain generalization, cross-system transfer,
and few-shot learning scenarios confirms the effectiveness of
the framework for systematic PHM research.

5.1. Future Work

Building upon the UPHMP framework and PHM-Vibench plat-
form demonstrated in this paper, we outline several promising
directions for future research:

Equipment Diversity Expansion: While current demonstra-

tions focus on bearing datasets due to their standardized for-
mats and availability, future work will expand the platform
to encompass gear systems, turbofan engines, and other in-
dustrial rotating machinery. This expansion will validate the
versatility across diverse PHM applications and demonstrate
its capacity for cross-equipment transfer learning scenarios.

Foundation Model Development: Leveraging the modular
architecture of PHM-Vibench, we will develop PHM-specific
foundation models pretrained on large-scale vibration datasets,
enabling zero-shot and few-shot capabilities for new equip-
ment types and fault conditions.

Physics-informed Learning Integration: Future iterations
will incorporate physics-based constraints directly into the
UPHMP framework’s domain knowledge space P, enabling
seamless integration of physical models with data-driven ap-
proaches for improved robustness and interpretability.

Community Standardization: We will continue extending
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UPHMP to multi-modal PHM domains, develop foundation
models through protocol-aware pre-training and universal
meta-learning, and promote community standardization ef-
forts. The complete space-to-factory mapping F : Ω → F
establishes theoretical grounding for PHM research, enabling
reliable, generalizable solutions with formal theoretical back-
ing for industrial applications.
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